SOT23, Very High Precision, 3V/5V Rail-to-Rail Op Amps

Abstract

General Description The MAX4236/MAX4237 are high-precision op amps that feature an exceptionally low offset voltage and offset voltage temperature coefficient without using any chopper techniques. The MAX4236 and MAX4237 have a typical large-signal, open-loop voltage gain of 120 dB . These devices have an ultra-low input-bias current of $1 p A$. The MAX4236 is unity-gain stable with a gainbandwidth product of 1.7 MHz , while the MAX4237 is stable for closed-loop gains greater than $5 \mathrm{~V} / \mathrm{V}$ with a gain-bandwidth product of 7.5 MHz . Both devices have a shutdown function in which the quiescent current is reduced to less than $0.1 \mu \mathrm{~A}$, and the amplifier output is forced into a high-impedance state. The input common-mode range of the MAX4236/ MAX4237 extends below the negative supply range, and the output swings Rail-to-Rail ${ }^{\circledR}$. These features make the amplifiers ideal for applications with +3 V or +5 V single power supplies. The MAX4236/MAX4237 are specified for the extended temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ and are available in tiny SOT23, $\mu \mathrm{MAX}$, and SO packages. For greater accuracy, the A grade $\mu \mathrm{MAX}$ and SO packages are tested to guarantee $20 \mu \mathrm{~V}$ (max) offset voltage at $+25^{\circ} \mathrm{C}$ and less then $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift.

Applications

Strain Gauges

Piezoelectric Sensors
Thermocouple Amplifiers
Electrochemical Sensors
Battery-Powered Instrumentation
Instrumentation Amplifiers

Rail-to-Rail is a registered trademark of Nippon Motorola, Inc.
Pin Configurations

- Ultra-Low Offset Voltage $20 \mu \mathrm{~V}$ (max) at $+25^{\circ} \mathrm{C}$ (Grade A) $50 \mu \mathrm{~V}$ (max) at $+25^{\circ} \mathrm{C}$ (Grade B, 6-Pin SOT23)
- Ultra-Low Offset Voltage Drift $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (max) (Grade A)
$4.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (max) (Grade B, 6-Pin SOT23) $5.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (max) (6-Pin SOT23)
- Ultra-Low 1pA Input Bias Current
- High Open-Loop Voltage Gain: 110dB (min) ($\mathrm{RL}=100 \mathrm{k} \Omega$)
- Compatible with +3 V and +5 V Single-Supply Power Systems
- Ground Sensing: Input Common-Mode Range Includes Negative Rail
- Rail-to-Rail Output Swing into a 1k Ω Load
- $350 \mu \mathrm{~A}$ Quiescent Current
- Gain-Bandwidth Product
1.7 MHz (MAX4236, $\mathrm{Av}=1 \mathrm{~V} / \mathrm{V}$)
7.5MHz (MAX4237, Av = 5V/V)
- 200pF Capacitive Load Handling Capability
- Shutdown Mode: 0.1 $\mu \mathrm{A}$ Quiescent Current, Places Output in a High-Impedance State
- Available in Space-Saving SOT23 and μ MAX Packages

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4236EUT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$6 \mathrm{SOT} 23-6$
MAX4236AEUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX4236BEUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX4236AESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4236BESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4237EUT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$6 \mathrm{SOT} 23-6$
MAX4237AEUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX4237BEUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX4237AESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4237BESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO

SOT23, Very High Precision, 3V/5V Rail-To-Rail Op Amps

ABSOLUTE MAXIMUM RATINGS

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (SO-8 and $\mu \mathrm{MAX}-8$)

$\left(V_{C C}=+2.4 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{E E}=0, \mathrm{~V}_{C M}=0, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{C C} / 2, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to $\mathrm{V}_{C C} / 2, T_{A}=\mathrm{T}_{\mathrm{MIN}}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	$V_{C C}$	Guaranteed by the PSRR test		2.4		5.5	V
Quiescent Supply Current	IcC	$V_{C C}=+5 \mathrm{~V}$	In normal mode		350	440	$\mu \mathrm{A}$
			In shutdown mode		0.1	2	
		$V_{C C}=+3 V$	In normal mode		350	440	
			In shutdown mode		0.1	2	
Input Offset Voltage	Vos	$V_{C C}=+5 \mathrm{~V},$ Grade A	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 5	± 20	$\mu \mathrm{V}$
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			± 150	
		$V_{C C}=+5 \mathrm{~V},$ Grade B	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 5	± 50	
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			± 340	
Input Offset Voltage Temperature Coefficient	TCVos	$V_{C C}=+5 \mathrm{~V}$ (Note 3)	Grade A		± 0.6	± 2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
			Grade B		± 0.6	± 4.5	
Input Bias Current	IB	(Note 2)			± 1	± 500	pA
Input Offset Current	los	(Note 2)			± 1		pA
Input Resistance	RIN	Differential or common mode		1000			$\mathrm{M} \Omega$
Input Common-Mode Voltage	V_{CM}	Guaranteed by the CMRR test		-0.15		$V_{C C}-1.2$	V
Common-Mode Rejection Ratio	CMRR	$\begin{aligned} & V_{C C}=+5 V \\ & -0.15 V \leq V_{C M} \leq \\ & \left(V_{C C}-1.2 V\right) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	84	102		dB
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	80			
		$\begin{aligned} & V_{C C}=+3.0 V \\ & -0.15 \mathrm{~V} \leq V_{C M} \leq \\ & \left(V_{C C}-1.2 V\right) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	82	102		
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	78			
Power-Supply Rejection Ratio	PSRR	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+2.4 \mathrm{~V} \text { to } \\ & +5.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	97	120		dB
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	95			

SOT23, Very High Precision, 3V/5V
 Rail-To-Rail Op Amps

ELECTRICAL CHARACTERISTICS (SO-8 and μ MAX-8) (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+2.4 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Large-Signal Voltage Gain	Avol	$V_{C C}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}$ connected to $\mathrm{V}_{\mathrm{C}} / 2$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\text {OUT }}= \\ & 15 \mathrm{mV} \text { to }(\mathrm{VCC}-50 \mathrm{mV}) \end{aligned}$		110	128		dB
			$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {OUT }}= \\ & 0.15 \mathrm{~V} \text { to }\left(\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}\right) \end{aligned}$		105	114		
		$V_{C C}=+5 V, R_{L}$ connected to $\mathrm{V}_{\mathrm{C}} / 2$, $T_{A}=T_{\text {MIN }}$ to TMAX	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\text {OUT }}= \\ & 15 \mathrm{mV} \text { to }\left(\mathrm{V}_{\mathrm{CC}}-50 \mathrm{mV}\right) \end{aligned}$		110			
			$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \mathrm{VOUT}=0.15 \mathrm{~V} \\ & \text { to }\left(\mathrm{V}_{C C}-0.3 \mathrm{~V}\right) \end{aligned}$		100			
		$V_{C C}=+3 V, R_{L}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\text {OUT }}= \\ & 15 \mathrm{mV} \text { to }\left(\mathrm{V}_{\mathrm{CC}}-50 \mathrm{mV}\right) \end{aligned}$		110	128		
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} / 2, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{RL}=1 \mathrm{k} \Omega, \\ & \mathrm{VOUT}=0.15 \mathrm{~V} \\ & \text { to }(\mathrm{V} C \mathrm{CC}-0.3 \mathrm{~V}) \end{aligned}$		100	114		
		$V_{C C}=+3 V, R_{L}$ connected to $\mathrm{V}_{\mathrm{C}} / 2$, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to TMAX	$\begin{aligned} & \mathrm{RL}=100 \mathrm{k} \Omega, \mathrm{~V} \text { OUT }= \\ & 15 \mathrm{mV} \text { to }(\mathrm{VCC}-50 \mathrm{mV}) \end{aligned}$		105			
			$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \mathrm{VOUT}=0.15 \mathrm{~V} \\ & \text { to }(\mathrm{V} C \mathrm{CC}-0.3 \mathrm{~V}) \end{aligned}$		95			
Output Voltage Swing	Vout	$V_{C C}=+5 \mathrm{~V},$ R_{L} connected to $\mathrm{V}_{\mathrm{C}} / 2$, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$		VCC - VOH		2	10	mV
				Vol - Vee		3	10	
		$V_{C C}=+5 \mathrm{~V}$ R_{L} connected to $V_{C C} / 2$, $R L=1 \mathrm{k} \Omega$		V CC $-\mathrm{V}_{\text {OH }}$		150	250	
				VOL - VEE		50	100	
Output Short-Circuit Current	IOUT(SC)	Shorted to VEE				10		mA
		Shorted to VCC				30		
Gain-Bandwidth Product	GBWP	$R \mathrm{~L}=\infty, \mathrm{CL}_{\mathrm{L}}=5 \mathrm{pF}$		MAX4236		1.7		MHz
				MAX4237		7.5		
Slew Rate	SR	$\mathrm{V}_{\text {CC }}=+5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4 \mathrm{~V}$ step		MAX4236		0.3		V/us
				MAX4237		1.3		V/us
Settling Time	ts	VOUT settling to within 0.01\%		MAX4236		1		$\mu \mathrm{S}$
				MAX4237		1		
Total Harmonic Distortion	THD	$\begin{aligned} & f=5 \mathrm{kHz}, \mathrm{~V}_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$				0.001		\%

SOT23，Very High Precision，3V／5V Rail－To－Rail Op Amps

ELECTRICAL CHARACTERISTICS（SO－8 and μ MAX－8）（continued）

$\left(\mathrm{V}_{\mathrm{CC}}=+2.4 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$ ，unless otherwise noted．Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ．）（Note 1）

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Capacitance	$\mathrm{CIN}^{\text {N }}$	$\mathrm{f}=100 \mathrm{kHz}$			7.5		pF
Input Voltage Noise Density	e_{n}	$f=1 \mathrm{kHz}$			14		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Voltage	enp－p	$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz			0.2		$\mu \mathrm{Vp}$－p
Capacitive Load Stability	Cload	No sustained oscillations	MAX4236		200		pF
			MAX4237		200		
Shutdown Mode Output Leakage	IOUT（SH）	Device in shutdown mode（ $\overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{EE}}$ ） Vout $=0$ to $V_{C C}$			± 0.01	± 1.0	$\mu \mathrm{A}$
$\overline{\text { SHDN }}$ Logic Low	VIL					$\begin{aligned} & 0.3 \times \\ & V_{C C} \end{aligned}$	V
$\overline{\text { SHDN }}$ Logic High	V_{IH}			$\begin{aligned} & 0.7 \times \\ & V_{C C} \end{aligned}$			V
$\overline{\text { SHDN }}$ Input Current		$\overline{\text { SHDN }}=\mathrm{V}_{\text {EE }}$ or $\mathrm{V}_{\text {CC }}$			1	3	$\mu \mathrm{A}$
Shutdown Delay Time	t（SH）	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$			1		$\mu \mathrm{s}$
Shutdown Recovery Time	t （EN）	$\mathrm{RL}=1 \mathrm{k} \Omega$			4		$\mu \mathrm{s}$

ELECTRICAL CHARACTERISTICS（SOT23－6）

$\left(V_{C C}=+2.4 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{C M}=0, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{C C} / 2, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$ ，unless otherwise noted．Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ．）（Note 1）

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	VCC	Guaranteed by the PSRR test		2.4		5.5	V
Quiescent Supply Current	IcC	$V_{C C}=+5 \mathrm{~V}$	In normal mode		350	440	$\mu \mathrm{A}$
			In shutdown mode		0.1	2	
		$V_{C C}=+3 \mathrm{~V}$	In normal mode		350	440	
			In shutdown mode		0.1	2	
Input Offset Voltage	Vos	$V_{C C}=+5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 5	± 50	$\mu \mathrm{V}$
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			± 600	
Input Offset Voltage Temperature Coefficient（Note 2）	TCVos	$V_{C C}=+5 \mathrm{~V}$			± 0.6	± 5.5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	IB	（Note 2）			± 1	± 500	pA
Input Offset Current	Ios	（Note 2）			± 1		pA
Input Resistance	RIN	Differential or common mode			1000		$\mathrm{M} \Omega$
Input Common－Mode Voltage	$\mathrm{V}_{\text {CM }}$	Guaranteed by the CMRR test		－0．15		VCC－1．2	V
Common－Mode Rejection Ratio	CMRR	$\begin{aligned} & V_{C C}=+5 \mathrm{~V},-0.15 \mathrm{~V} \\ & \leq V_{C M} \leq\left(V_{C C}-1.2 \mathrm{~V}\right) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	82	102		dB
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	80			
		$\begin{aligned} & \mathrm{VCC}=+3.0 \mathrm{~V} ;-0.15 \mathrm{~V} \\ & \leq \mathrm{V}_{C M} \leq(\mathrm{VCC}-1.2 \mathrm{~V}) \end{aligned}$	$T_{A}=+25^{\circ} \mathrm{C}$	82	102		
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	78			

SOT23, Very High Precision, 3V/5V Rail-To-Rail Op Amps

ELECTRICAL CHARACTERISTICS (SOT23-6) (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+2.4 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{E E}=0, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Power-Supply Rejection Ratio	PSRR	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+2.4 \mathrm{~V} \text { to } \\ & +5.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		97	120		dB
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		95			
Large-Signal Voltage Gain	Avol	$V_{C C}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}$ connected to $\mathrm{V}_{\mathrm{Cc}} / 2$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\text {OUT }}=15 \mathrm{mV} \text { to } \\ & (\mathrm{VCC}-50 \mathrm{mV}) \\ & \hline \end{aligned}$		110	128		dB
			$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \mathrm{VOUT}=0.15 \mathrm{~V} \\ & \text { to }(\mathrm{VCC}-0.3 \mathrm{~V}) \\ & \hline \end{aligned}$		100	114		
		$V_{C C}=+5 \mathrm{~V}, R_{L}$ connected to $\mathrm{V}_{\mathrm{C}} / 2$, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to TMAX	$\begin{aligned} & \mathrm{RL}=100 \mathrm{k} \Omega, \mathrm{VOUT}= \\ & 15 \mathrm{mV} \text { to }(\mathrm{VCC}-50 \mathrm{mV}) \end{aligned}$		110			
			$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, \\ & \text { VOUT }=0.15 \mathrm{~V} \text { to } \\ & (\mathrm{V} C \mathrm{C}-0.3 \mathrm{~V}) \end{aligned}$		95			
		$V_{C C}=+3 V, R_{L}$ connected to $\mathrm{V}_{\mathrm{Cc}} / 2$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { RL= } 100 \mathrm{k} \Omega, \\ & \text { VOUT }=15 \mathrm{mV} \text { to } \\ & (\mathrm{VCC}-50 \mathrm{mV}) \\ & \hline \end{aligned}$		110	128		
			$\begin{aligned} & \mathrm{RL}=1 \mathrm{k} \Omega, \\ & \mathrm{VOUT}=0.15 \mathrm{~V} \text { to } \\ & (\mathrm{V} C \mathrm{C}-0.3 \mathrm{~V}) \end{aligned}$		100	114		
		$V_{C C}=+3 V, R L$ connected to $\mathrm{V}_{\mathrm{Cc}} / 2$, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to TMAX	$\begin{aligned} & \hline \mathrm{RL}=100 \mathrm{k} \Omega, \\ & \mathrm{VOUT}^{2}=15 \mathrm{mV} \text { to } \\ & (\mathrm{VCC}-50 \mathrm{mV}) \\ & \hline \end{aligned}$		105			
			$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\text {OUT }}=0.15 \mathrm{~V} \text { to } \\ & \left(\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}\right) \end{aligned}$		95			
Output Voltage Swing	Vout	$V_{C C}=+5 \mathrm{~V}$ RL connected to $\mathrm{V}_{\mathrm{CC}} / 2$, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$		VCC - Voh		2	10	mV
				Vol - Vee		3	10	
		$V_{C C}=+5 \mathrm{~V}$ R_{L} connected to $\mathrm{V}_{\mathrm{Cc}} / 2$, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		$\mathrm{VCC}-\mathrm{VOH}$		150	250	
				Vol - Vee		50	100	
Output Short-Circuit Current	IOUT(SC)	Shorted to VEE				10		mA
		Shorted to V $\mathrm{C}^{\text {c }}$				30		
Gain-Bandwidth Product	GBWP	$R \mathrm{~L}=\infty, C \mathrm{~L}=15 \mathrm{pF}$		MAX4236		1.7		MHz
				MAX4237		7.5		
Slew Rate	SR	$\begin{aligned} & \mathrm{VCC}=+5 \mathrm{~V}, \\ & \text { VOUT }=4 \mathrm{~V} \text { step } \end{aligned}$		MAX4236		0.3		V/us
				MAX4237		1.3		

SOT23, Very High Precision, 3V/5V Rail-To-Rail Op Amps

ELECTRICAL CHARACTERISTICS (SOT23-6) (continued)

$\left(V_{C C}=+2.4 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{E E}=0, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{C C} / 2, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to $\mathrm{V}_{C C} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Settling Time	ts	Vout settling to within 0.01%	MAX4236		1		$\mu \mathrm{s}$
			MAX4237		1		
Total Harmonic Distortion	THD	$\begin{aligned} & f=5 \mathrm{kHz}, \mathrm{~V}_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$			0.001		\%
Input Capacitance	CIN	$\mathrm{f}=100 \mathrm{kHz}$			7.5		pF
Input Voltage Noise Density	e_{n}	$\mathrm{f}=1 \mathrm{kHz}$			14		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Voltage	$e_{\text {np-p }}$	$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz			0.2		$\mu \vee \mathrm{p}-\mathrm{p}$
Capacitive Load Stability	Cload	No sustained oscillations	MAX4236		200		pF
			MAX4237		200		
Shutdown Mode Output Leakage	IOUT(SH)	Device in shutdown mode $\left(\overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{EE}}\right)$ Vout $=0$ to $V_{C C}$			± 0.01	± 1.0	$\mu \mathrm{A}$
SHDN Logic Low	$\mathrm{V}_{\text {IL }}$					$0.3 \times V_{\text {cC }}$	V
SHDN Logic High	V_{IH}			$0.7 \times V_{C C}$			V
$\overline{\text { SHDN }}$ Input Current		$\overline{\text { SHDN }}=\mathrm{V}_{\text {EE }}$ or $\mathrm{V}_{\text {CC }}$			1	3	$\mu \mathrm{A}$
Shutdown Delay Time	t(SH)	$\mathrm{RL}=1 \mathrm{k} \Omega$			1		$\mu \mathrm{s}$
Shutdown Recovery Time	t(EN)	$R \mathrm{~L}=1 \mathrm{k} \Omega$			4		$\mu \mathrm{s}$

Note 1: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; all specifications over temperature are guaranteed by design, unless otherwise specified.
Note 2: Guaranteed by design, not production tested.
Note 3: Maxim specification limits for the temperature coefficient of the offset voltage (TCVOS) are 100\% tested for the A-grade, 8pin SO and $\mu \mathrm{MAX}$ packages.

Typical Operating Characteristics
$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

SOT23, Very High Precision, 3V/5V
 Rail-To-Rail Op Amps

Typical Operating Characteristics (continued)
$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

SOT23, Very High Precision, 3V/5V Rail-To-Rail Op Amps

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

MINIMUM OUTPUT VOLTAGE vs. TEMPERATURE

OUTPUT VOLTAGE
vs. SUPPLY VOLTAGE

SUPPLY VOLTAGE (V)

Typical Operating Characteristics (continued)

MAXIMUM OUTPUT VOLTAGE vs. TEMPERATURE

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

LARGE-SIGNAL GAIN vs. TEMPERATURE

OUTPUT VOLTAGE
vs. SUPPLY VOLTAGE

OUTPUT SOURCE CURRENT
vs. OUTPUT VOLTAGE

SOT23，Very High Precision，3V／5V
 Rail－To－Rail Op Amps

Typical Operating Characteristics（continued）
$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．$)$

SOT23, Very High Precision, 3V/5V Rail-To-Rail Op Amps

Typical Operating Characteristics (continued)
$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

$V_{C C}= \pm 2.5 \mathrm{~V}$
$R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}$
$A_{V}=5 \mathrm{~V} / \mathrm{N}$

MAX4236
NONINVERTING LARGE-SIGNAL RESPONSE

$V_{C C}= \pm 2.5 \mathrm{~V}$
$R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}$
$A_{V}=1 \mathrm{~V} / \mathrm{N}$

MAX4237
noninverting Large-signal response

$V_{\text {CC }}= \pm 2.5 \mathrm{~V}$
$R_{L}=100 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}$
$A_{V}=5 \mathrm{~V} / \mathrm{N}$

MAX4236
NONINVERTING LARGE-SIGNAL RESPONSE

$\mathrm{V}_{\mathrm{CC}}= \pm 2.5 \mathrm{~V}$
$R_{L}=100 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}$
$\mathrm{A}=1 \mathrm{~V} / \mathrm{N}$

SOT23，Very High Precision，3V／5V Rail－To－Rail Op Amps

Pin Description

PIN		NAME	
SOT23	$\mathbf{S O} / \boldsymbol{\mu M A X}$		
1	6	OUT	Amplifier Output
2	4	VEE	Negative Power Supply．Bypass with a $0.1 \mu \mathrm{~F}$ capacitor to ground．Connect to GND for single－supply operation．
3	3	$\mathrm{IN}+$	Noninverting Amplifier Input
4	2	$\mathrm{IN}-$	Inverting Amplifier Input
5	8	$\overline{\text { SHDN }}$	Shutdown Input．Do not leave floating．Connect to VCC for normal operation or GND to enter the shutdown mode．
6	7	VCC	Positive Supply Input．Bypass with a 0．1 μ F capacitor to ground．
-	1,5	N．C．	No Connection．Not internally connected．

Detailed Description

The MAX4236／MAX4237 are high－precision op amps with a CMOS input stage and an excellent set of DC and $A C$ features．The combination of tight maximum voltage offset，low offset tempco and very low input current make them ideal for use in high－precision DC circuits．They feature low－voltage operation，low－power consumption，high－current drive with rail－to－rail output swing and high－gain bandwidth product．

High Accuracy

The MAX4236／MAX4237 maximum input offset voltage is $20 \mu \mathrm{~V}(5 \mu \mathrm{~V}$ ，typ）for grade A version and $50 \mu \mathrm{~V}$ for grade B version at $+25^{\circ} \mathrm{C}$ ．The maximum temperature coefficient of the offset voltage for grade A and B are guaranteed to be $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and $4.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ respectively． The parts have an input bias current of 1 pA．Noise characteristics are $14 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ ，and a low frequency noise（ 0.1 Hz to 10 Hz ）of $0.2 \mu \mathrm{Vp}-\mathrm{p}$ ．The CMRR is 102 dB ，and the PSRR is 120 dB ．The combination is what is necessary for the design of circuits to process signals while keeping high signal－to－noise ratios，as in stages preceding high－resolution converters，or when they are produced by sensors or transducers generat－ ing very small outputs．
Rail－to－Rail Outputs，Ground－Sensing Input
The input common－mode range extends from（VEE－ 0.15 V ）to（VCC -1.2 V ）with excellent common－mode rejection．Beyond this range，the amplifier output is a nonlinear function of the input，but does not undergo phase reversal or latch－up（see Typical Operating Characteristics）．

The output swings to within 150 mV of the power－supply rails with a $1 \mathrm{k} \Omega$ load．The input ground sensing and the rail－to－rail output substantially increase the dynamic range．

Power－Up and Shutdown Mode The MAX4236／MAX4237 have a shutdown option． When the shutdown pin（SHDN）is pulled low，the sup－ ply current drops to $0.1 \mu \mathrm{~A}$ ，and the amplifiers are dis－ abled with the output in a high－impedance state．Pulling SHDN high enables the amplifiers．The turn－on time for the amplifiers to come out of shutdown is $4 \mu \mathrm{~s}$ ．

Applications Information

As described above，the characteristics of the MAX4236／MAX4237 are excellent for high－precision／ accuracy circuitry，and the high impedance，low－cur－ rent，low－offset，and noise specifications are very attractive for piezoelectric transducers applications．In these applications，the sensors generate an amount of electric charge proportional to the changes in the mechanical stress applied to them．These charges are transformed into a voltage proportional to the applied force by injecting them into a capacitance and then amplifying the resulting voltage．The voltage is an inverse function of the capacitance into which the charges generated by the transducer／sensor are injected．This capacitance and the resistance that dis－ charges it，define the low－frequency response of the circuit．It is desirable，once the preferred low－frequency response is known，to maintain the capacitance as low as possible，because the amount of necessary upstream amplification（and the signal－to－noise ratio deterioration）is directly proportional to the capacitance value．The MAX4236／MAX4237 high－impedance，low－

SOT23, Very High Precision, 3V/5V Rail-To-Rail Op Amps

current, low-noise inputs allow a minimum of capacitance to be used.
Piezoresistive transducers applications require many of the same qualities. For those applications the MAX4236/MAX4237 high CMRR, PSRR, and offset stability are also a good match.
A typical application for a piezoresistive transducer instrumentation amplifier design using the MAX4236/MAX4237 is shown in the Typical Application Circuit.

In general, the MAX4236/MAX4237 are good components for any application in which an amplifier with an almost zero input current is required, including highprecision, long time-constant integrators and electrochemical sensors.

Power Supplies
The MAX4236/MAX4237 can operate from a single +2.4 V to +5.5 V power supply, or from $\pm 1.2 \mathrm{~V}$ to $\pm 2.75 \mathrm{~V}$ power supplies. The power supply pin(s) must be bypassed to ground with a $0.1 \mu \mathrm{~F}$ capacitor as close to the pin as possible.

Layout and Physical Design

A good layout improves performance by decreasing the amount of parasitic and stray capacitance, inductance and resistance at the amplifier's inputs, outputs, and power-supply connections. Since parasitics might be unavoidable, minimize trace lengths, resistor leads, and place external components as close to the pins as possible.
In high impedance, low input current applications, input lines guarding and shielding, special grounding, and other physical design and layout techniques, are mandatory if good results are expected.
The negative effects of crosstalk, EMI and other forms of interference and noise (thermal, acoustic, etc.) must be accounted for and prevented beforehand for good performance in the type of sensitive circuitry in which the MAX4236/MAX4237 are likely to be used.

Selector Guide

PART	GRADE	MINIMUM STABLE GAIN	TOP MARK
MAX4236EUT	-	1	AAUV
MAX4236AEUA	A	1	-
MAX4236BEUA	B	1	-
MAX4236AESA	A	1	-
MAX4236BESA	B	1	-
MAX4237EUT	-	5	AAUW
MAX4237AEUA	A	5	-
MAX4237BEUA	B	5	-
MAX4237AESA	A	5	-
MAX4237BESA	B	5	-

Typical Application Circuit

Chip Information
TRANSISTOR COUNTS: 224
PROCESS: BiCMOS

SOT23, Very High Precision, 3V/5V Rail-To-Rail Op Amps

SOT23, Very High Precision, 3V/5V Rail-To-Rail Op Amps

\qquad

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Precision Amplifiers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
561681F LT6005HGN\#PBF LT6238CGN\#PBF LT6238HGN\#PBF OP05CN8\#PBF OP227GN\#PBF LT6020IDD\#PBF LT6020IDD-1\#PBF LT1124CS8\#TR NCS21802MUTBG LT1637MPS8 LT1498IS8 LT1492CS8 TLC27L7CP TLV2473CDR LMP2234AMA/NOPB LMP7707MA/NOPB 5962-8859301M2A LMP2231AMAE/NOPB LMP2234AMTE/NOPB LMP8672MA/NOPB LMC6022IM/NOPB LMC6024IM/NOPB LMC6081IMX/NOPB LMP2011MA/NOPB LMP2231AMFE/NOPB LMP2232BMA/NOPB LMP2234AMAE/NOPB LMP7715MFE/NOPB LMP7717MAE/NOPB LMV2011MA/NOPB TL034ACDR TLC2201AMDG4 TLE2024BMDWG4 TLV2474AQDRG4Q1 TLV2472QDRQ1 TLC4502IDR TLC27M2ACP TLC2652Q-8DG4 OPA2107APG4 TL054AIDR AD8619WARZR7 TLC272CD AD8539ARMZ LTC6084HDD\#PBF LTC1050CN8\#PBF LT1024CN\#PBF LT1996AIDD\#PBF LTC2055CDD\#PBF LTC1152CS8\#PBF

