

General Description

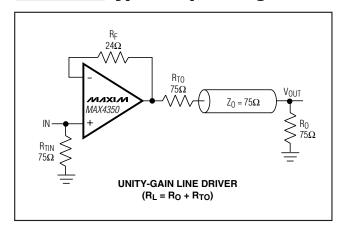
The MAX4350 single and MAX4351 dual op amps are unity-gain-stable devices that combine high-speed performance with rail-to-rail outputs. Both devices operate from dual ±5V supplies. The common-mode input voltage range extends to the negative power-supply rail.

The MAX4350/MAX4351 require only 6.9mA of guiescent supply current per op amp while achieving a 210MHz -3dB bandwidth and a 485V/us slew rate. Both devices are excellent solutions in low-power systems that require wide bandwidth, such as video, communications, and instrumentation.

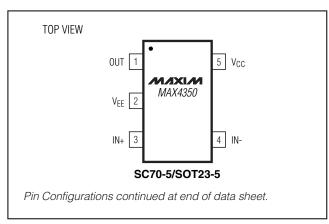
The MAX4350 is available in an ultra-small 5-pin SC70 package and the MAX4351 is available in a spacesaving 8-pin SOT23 package.

Applications

Set-Top Boxes Surveillance Video Systems Video Line Drivers Analog-to-Digital Converter Interface **CCD Imaging Systems** Video Routing and Switching Systems Digital Cameras


Features

- ♦ Ultra-Small 5-Pin SC70, 5-Pin SOT23, and 8-Pin SOT23 Packages
- **♦ Low Cost**
- ♦ High Speed 210MHz -3dB Bandwidth 55MHz 0.1dB Gain Flatness 485V/us Slew Rate
- ♦ Rail-to-Rail Outputs
- ♦ Input Common-Mode Range Extends to VEE
- ♦ Low Differential Gain/Phase: 0.02%/0.08°
- ♦ Low Distortion at 5MHz -65dBc SFDR
 - -63dB Total Harmonic Distortion


Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	TOP MARK	
MAX4350EXK-T	-40°C to +85°C	5 SC70-5	ACF	
MAX4350EUK-T	-40°C to +85°C	5 SOT23-5	ADRA	
MAX4351EKA-T	-40°C to +85°C	8 SOT23-8	AAIC	
MAX4351ESA	-40°C to +85°C	8 SO	_	

Typical Operating Circuit

Pin Configurations

NIXIN

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC to VEE)	+12V
IN, IN_+, OUT(VEE - 0.3V) to (VC	
Output Short-Circuit Current to VCC or VEE	150mÁ
Continuous Power Dissipation (TA = +70°C)	
5-Pin SC70 (derate 2.5mW/°C above +70°C)	200mW
5-Pin SOT23 (derate 7.1mW/°C above +70°C)	571mW

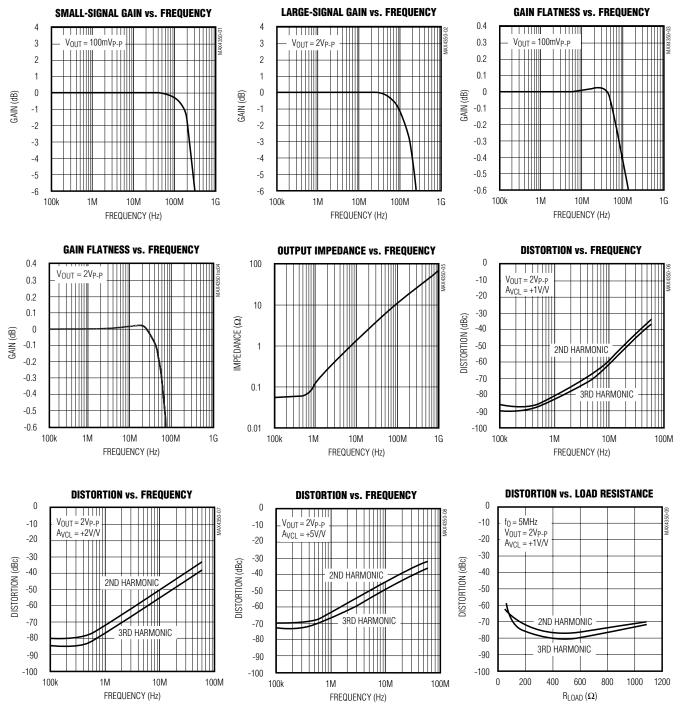
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(V_{CC} = +5V, V_{EE} = -5V, R_L = ∞ to 0V, V_{OUT} = 0, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note

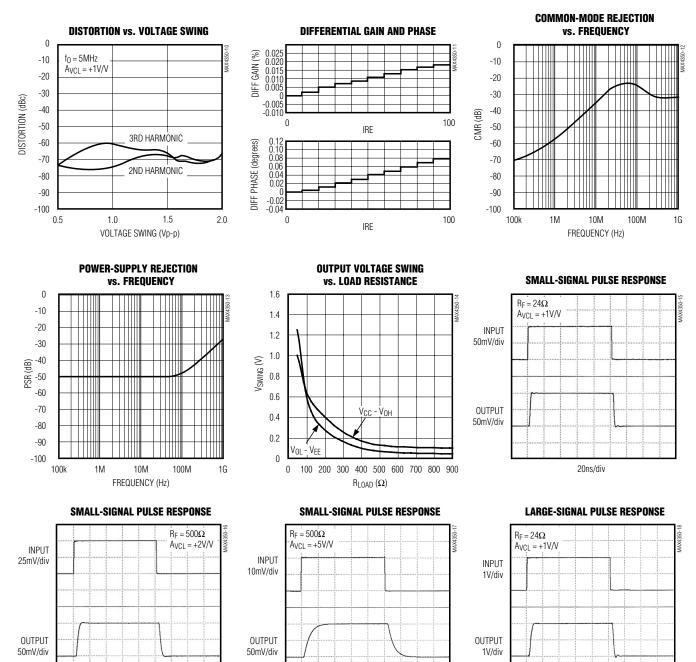
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Common-Mode Voltage Range	V _{CM}	Guaranteed by CMRR test		VEE		V _{CC} - 2.25	V
Input Offset Voltage	Vos				1	26	mV
Input Offset Voltage Matching		MAX4351 only			1		mV
Input Offset Voltage Temperature Coefficient	TC _{VOS}				8		μV/°C
Input Bias Current	ΙΒ				7.5	20	μΑ
Input Offset Current	los				0.5	4	μΑ
Input Resistance	Б	Differential mode (-1V ≤ V _{IN} ≤ +1V)			70		kΩ
Input nesistance	R _{IN}	Common mode (-5V	\leq V _{CM} \leq +2.75V)		3		ΜΩ
Common-Mode Rejection Ratio	CMRR	$V_{EE} \le V_{CM} \le (V_{CC} - 2)$	2.25V)	70	95		dB
		$-4.5V \le V_{OUT} \le +4.5V$, $R_L = 2k\Omega$		50	60		
Open-Loop Gain	Avol	$-4.25V \le V_{OUT} \le +4.25V, R_L = 150\Omega$		48	58		dB
		$-3.75V \le V_{OUT} \le +3.75V, R_L = 75\Omega$			57		
	Vouт	$R_L = 2k\Omega$	VCC - VOH		0.125	0.350	V
			V _{OL} - V _{EE}		0.065	0.170	
Output Voltage Swing		$R_L = 150\Omega$	VCC - VOH		0.525	0.750	
Output Voltage Swing			V _{OL} - V _{EE}		0.370	0.550	
		$R_L = 75\Omega$	V _{CC} - V _{OH}		0.925	1.550	
			V _{OL} - V _{EE}		0.750	1.7	
Output Ourroat		5	Sourcing	55	80		0
Output Current	lout	$R_L = 50\Omega$	Sinking		75		mA
Output Short-Circuit Current	Isc	Sinking or sourcing			±120		mA
Open-Loop Output Resistance	Rout				8		Ω
Power-Supply Rejection Ratio	PSRR	$V_S = \pm 4.5 V \text{ to } \pm 5.5 V$		52	66		dB
Operating Supply-Voltage Range	Vs	VCC, VEE		±4.5		±5.5	V
Quiescent Supply Current (Per Amplifier)	Is				6.9	9.0	mA

AC ELECTRICAL CHARACTERISTICS


 $(V_{CC} = +5V, V_{EE} = -5V, V_{CM} = 0V, R_F = 24\Omega, R_L = 100\Omega$ to 0, $A_{VCL} = +1V/V, T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS		
Small-Signal -3dB Bandwidth	BWSS	V _{OUT} = 100mV _{P-P}			210		MHz		
Large-Signal -3dB Bandwidth	BWLS	V _{OUT} = 2V _{P-P}			175		MHz		
Bandwidth for 0.1dB Gain	D\\/	$V_{OUT} = 100 \text{mV}_{P-P}$	$V_{OUT} = 100 \text{mV}_{P-P}$		P-P 55			NAL I-	
Flatness	BW _{0.1dB}	V _{OUT} = 2V _{P-P}			40		MHz		
Slew Rate	SR	V _{OUT} = 2V step			485		V/µs		
Settling Time to 0.1%	ts	V _{OUT} = 2V step	V _{OUT} = 2V step 16			ns			
Rise/Fall Time	t _R , t _F	$V_{OUT} = 100 \text{mV}_{P-P}$			4		ns		
Spurious-Free Dynamic Range	SFDR	$f_C = 5MHz, V_{OUT} = 2$	2V _{P-P}		-65		dBc		
	HD	f _C = 5MHz, V _{OUT} = 2V _{P-P}	2nd harmonic		-65		dBc		
Harmonia Distortion			3rd harmonic		-58				
Harmonic Distortion			Total harmonic distortion		-63				
Two-Tone, Third-Order Intermodulation Distortion	IP3	f1 = 4.7MHz, f2 = 4.8MHz, V _{OUT} = 1V _{P-P}			66		dBc		
Channel-to-Channel Isolation	CH _{ISO}	Specified at DC, MAX4351 only			102		dB		
Input 1dB Compression Point		$f_C = 10MHz$, $A_{VCL} = +2V/V$			14		dBm		
Differential Phase Error	DP	NTSC, $R_L = 150\Omega$			0.08		degrees		
Differential Gain Error	DG	NTSC, $R_L = 150\Omega$		NTSC, $R_L = 150\Omega$			0.02		%
Input Noise-Voltage Density	eN	f = 10kHz		f = 10kHz			10		nV/√Hz
Input Noise-Current Density	iΝ	f = 10kHz			1.8		pA/√Hz		
Input Capacitance	CIN			1			рF		
Output Impedance	Z _{OUT}	f = 10MHz			1.5		Ω		

Note 1: All devices are 100% production tested at $T_A = +25$ °C. Specifications over temperature limits are guaranteed by design.

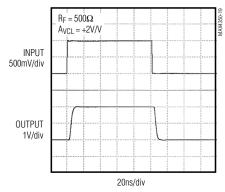

Typical Operating Characteristics

 $(V_{CC} = +5V, V_{EE} = -5V, V_{CM} = 0V, A_{VCL} = +1V/V, R_F = 24\Omega, R_L = 100\Omega$ to 0, $T_A = +25$ °C, unless otherwise noted.)

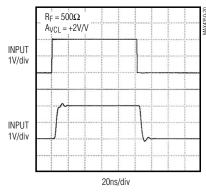
Typical Operating Characteristics (continued)

 $(V_{CC} = +5V, V_{EE} = -5V, V_{CM} = 0V, A_{VCL} = +1V/V, R_F = 24\Omega, R_L = 100\Omega$ to 0, $T_A = +25^{\circ}C$, unless otherwise noted.)

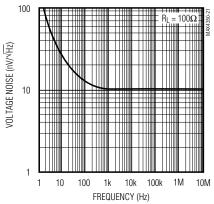
20ns/div


20ns/div

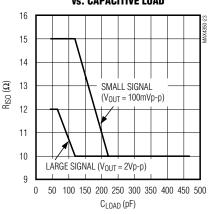
20ns/div

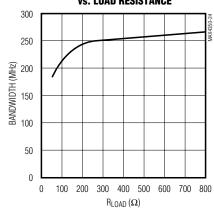

Typical Operating Characteristics (continued)

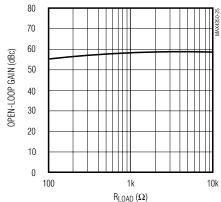

 $(V_{CC} = +5V, V_{EE} = -5V, V_{CM} = 0V, A_{VCL} = +1V/V, R_F = 24\Omega, R_L = 100\Omega \text{ to 0, } T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

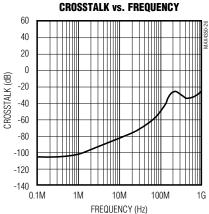

LARGE-SIGNAL PULSE RESPONSE

LARGE-SIGNAL PULSE RESPONSE




CURRENT NOISE vs. FREQUENCY


ISOLATION RESISTANCE vs. Capacitive Load


SMALL-SIGNAL BANDWIDTH vs. Load resistance

OPEN-LOOP GAIN vs. LOAD RESISTANCE

MAX4351

Pin Description

PIN		NAME	FUNCTION				
MAX4350	MAX4351	NAME	FUNCTION				
1	_	OUT	Amplifier Output				
2	4	VEE	Negative Power Supply or Ground (in single- supply operation)				
3	_	IN+	Noninverting Input				
4	_	IN-	Inverting Input				
5	8	Vcc	Positive Power Supply				
_	1	OUTA	Amplifier A Output				
_	2	INA-	Amplifier A Inverting Input				
_	3	INA+	Amplifier A Noninverting Input				
_	7	OUTB	Amplifier B Output				
_	6	INB-	Amplifier B Inverting Input				
_	5	INB+	Amplifier B Noninverting Input				

Detailed Description

The MAX4350/MAX4351 are single-supply, rail-to-rail, voltage-feedback amplifiers that employ current-feedback techniques to achieve 485V/µs slew rates and 210MHz bandwidths. Excellent harmonic distortion and differential gain/phase performance make these amplifiers an ideal choice for a wide variety of video and RF signal-processing applications.

The output voltage swings to within 125mV of each supply rail. Local feedback around the output stage ensures low open-loop output impedance to reduce gain sensitivity to load variations. The input stage permits common-mode voltages beyond the negative supply and to within 2.25V of the positive supply rail.

Applications Information

Choosing Resistor Values

Unity-Gain Configuration

The MAX4350/MAX4351 are internally compensated for unity gain. When configured for unity gain, a 24Ω resistor (RF) in series with the feedback path optimizes AC performance. This resistor improves AC response by reducing the Q of the parallel LC circuit formed by the parasitic feedback capacitance and inductance.

Inverting and Noninverting Configurations

Select the gain-setting feedback (RF) and input (RG) resistor values to fit your application (Figures 1a and 1b). Large resistor values increase voltage noise and interact with the amplifier's input and PC board capacitance. This can generate undesirable poles and zeros and decrease bandwidth or cause oscillations. For example, a noninverting gain-of-two configuration (RF = RG) using $1k\Omega$ resistors, combined with 1pF of amplifier input capacitance and 1pF of PC board capacitance, causes a pole at 159MHz. Since this pole is within the amplifier bandwidth, it jeopardizes stability. Reducing the $1k\Omega$ resistors to 100Ω extends the pole frequency to 1.59GHz, but could limit output swing by adding 200Ω in parallel with the amplifier's load resistor.

Layout and Power-Supply Bypassing

These amplifiers operate from dual $\pm 5V$ supplies. Bypass each supply with a $0.1\mu F$ capacitor to ground.

Maxim recommends using microstrip and stripline techniques to obtain full bandwidth. To ensure that the PC board does not degrade the amplifier's performance, design it for a frequency greater than 1GHz. Pay care-

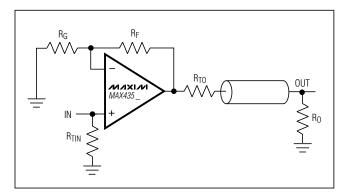


Figure 1a. Noninverting Gain Configuration

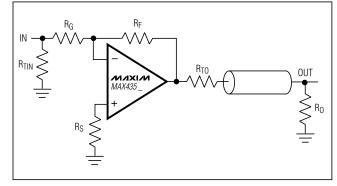


Figure 1b. Inverting Gain Configuration

ful attention to inputs and outputs to avoid large parasitic capacitance. Whether or not you use a constant-impedance board, observe the following design guidelines:

- Don't use wire-wrap boards; they are too inductive.
- Don't use IC sockets; they increase parasitic capacitance and inductance.
- Use surface-mount instead of through-hole components for better high-frequency performance.
- Use a PC board with at least two layers; it should be as free from voids as possible.
- Keep signal lines as short and as straight as possible. Do not make 90° turns; round all corners.

Rail-to-Rail Outputs, Ground-Sensing Input

The input common-mode range extends from VEE to (VCC - 2.25V) with excellent common-mode rejection. Beyond this range, the amplifier output is a nonlinear function of the input, but does not undergo phase reversal or latchup. The output swings to within 125mV of either power-supply rail with a $2k\Omega$ load.

Output Capacitive Load and Stability

The MAX4350/MAX4351 are optimized for AC performance. They are not designed to drive highly reactive loads, which decrease phase margin and may produce excessive ringing and oscillation. Figure 2 shows a circuit that eliminates this problem. Figure 3 is a graph of the Isolation Resistance (RISO) vs. Capacitive Load. Figure 4 shows how a capacitive load causes excessive peaking of the amplifier's frequency response if the capacitor is not isolated from the amplifier by a resistor. A small isolation resistor (usually 20Ω to 30Ω) placed before the reactive load prevents ringing and oscillation. At higher capacitive loads, AC performance is controlled by the interaction of the load capacitance and the isolation resistor. Figure 5 shows the effect of a 27Ω isolation resistor on closed-loop response.

Coaxial cable and other transmission lines are easily driven when properly terminated at both ends with their characteristic impedance. Driving back-terminated transmission lines essentially eliminates the line's capacitance.

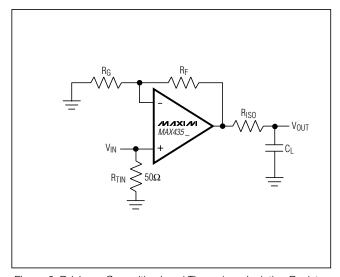


Figure 2. Driving a Capacitive Load Through an Isolation Resistor

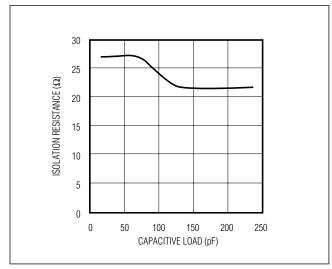


Figure 3. Isolation Resistance vs. Capacitive Load

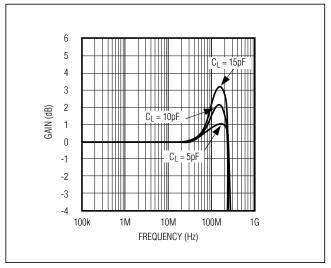


Figure 4. Small-Signal Gain vs. Frequency with Load Capacitance and No Isolation Resistor

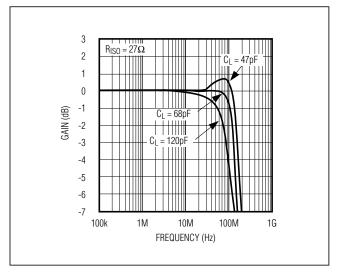
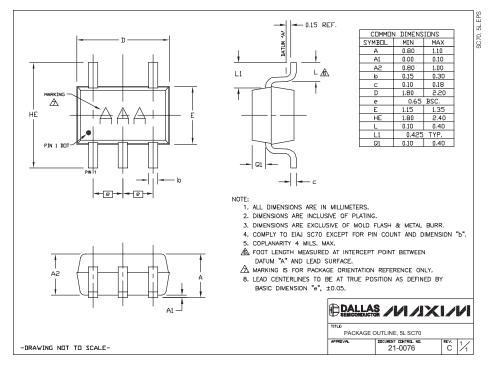
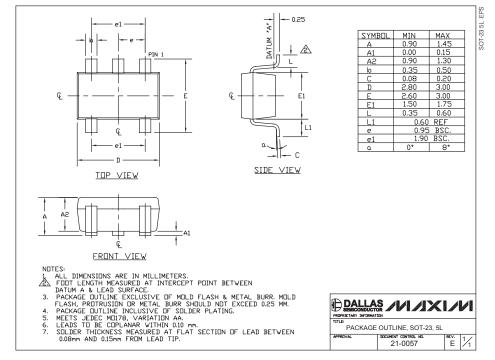


Figure 5. Small-Signal Gain vs. Frequency with Load Capacitance and 27 Ω Isolation Resistor

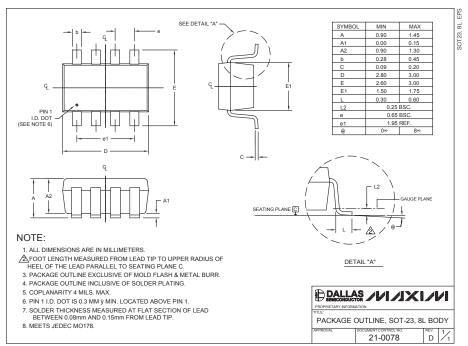
Pin Configurations (continued)

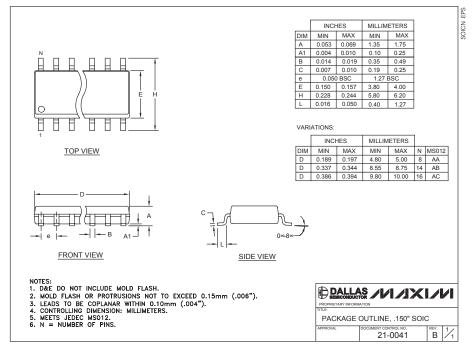

OUTA 1 8 Vcc 7 OUTB 6 INB- 5 INB+ SOT23-8/SO


_Chip Information

MAX4350 TRANSISTOR COUNT: 86 MAX4351 TRANSISTOR COUNT: 170

Package Information


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)



Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for High Speed Operational Amplifiers category:

Click to view products by Maxim manufacturer:

Other Similar products are found below:

LT1809IS6#TRM NJU7047RB1-TE2 LTC6226IS8#PBF LT1058ACN LT1206CR LT1058ISW THS4222DGNR JM38510/11905BPA

OPA2677IDDAR THS6042ID THS4221DBVR THS4081CD ADA4858-3ACPZ-R7 LT6202IS5#TRMPBF LT1206CR#PBF

LT1813CDD#PBF LT1037IN8#PBF LTC6401CUD-20#PBF LT1192CN8#PBF LT1037ACN8#PBF LTC6253CTS8#TRMPBF

LT1399HVCS#PBF LT1993CUD-2#PBF LT1722CS8#PBF LT1208CN8#PBF LT1007ACN8#PBF LT1222CN8#PBF LT6203IDD#PBF

LT6411IUD#PBF LTC6400CUD-26#PBF LTC6400CUD-8#PBF LT6211IDD#PBF LT1810IMS8#PBF OP37EN8#PBF LT1360CS8

OPA2132PAG4 OPA2353UA/2K5 OPA2691I-14D OPA4353UA/2K5 OPA690IDRG4 LMH6723MFX/NOPB ADP5302ACPZ-3-R7

AD8000YRDZ AD8007AKSZ-REEL7 AD8008ARMZ AD8009JRTZ-REEL7 AD8010ANZ AD8012ARMZ AD8014ARTZ-REEL7

AD8016AREZ