ADSL Drivers/Receivers for Customer Premise Equipment

General Description

The MAX4361/MAX4362/MAX4363 are a family of highperformance ADSL drivers and drivers/receivers ideal for the upstream transmit path and the downstream receive path of customer premise equipment. These devices operate from a single 5V supply and deliver up to 12.5 dBm average line power for DMT modulated signals, meeting the requirements of full-rate ADSL. Spurious-free dynamic range (SFDR) at full output power is typically -75 dBC at 100 kHz .
The MAX4361 is a differential IN/differential OUT driver with a fixed gain of $3.1 \mathrm{~V} / \mathrm{V}$. The MAX4362 is a dual amplifier with shutdown intended for use as a differential IN/differential OUT driver with gain set with external resistors. The MAX4363 is a quad amplifier with shutdown intended for use as a differential $\mathrm{IN} /$ differential OUT driver/receiver combination with gain set with external resistors
The MAX4361 is offered in a space-saving 8-pin μ MAX package.

Applications
ADSL Line Interface
HDSL Line Driver

Features

- Low-Noise Driver
$4.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Voltage-Noise Density
1.5pA $/ \sqrt{\mathrm{Hz}}$ Current-Noise Density
- Full-Rate ADSL ATU-R Line Drivers and Receivers
- Single 5V Supply
- -75dBc SFDR at Full Output Power at 100kHz
- -95dB Driver-to-Receiver Crosstalk (MAX4363)
- +12.5dBm Average Line Power (DMT)
- 280mA (min) Peak Output Current
- Rail-to-Rail ${ }^{\circledR}$ Output Swing
- Thermal and Short-Circuit Protection

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4361EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX4361ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4362EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$
MAX4362ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO
MAX4363EUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP
MAX4363ESP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SO

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

ADSL Drivers/Receivers for Customer Premise Equipment

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V+ to GND) .	-0.3V to +6V
Analog Input Voltage	(GND - 0.3V) to (V+ + 0.3V)
SHDN Input Voltage.	(GND - 0.3V) to (V+ + 0.3V)
Output Short-Circuit Duration	.10s
Driver Output Current.	1A
Receiver Output Current	150 mA
Continuous Power Dissipation	+ $70^{\circ} \mathrm{C}$)
8-Pin μ MAX (derate 4.5 mW	ove $+70^{\circ} \mathrm{C}$)362mW
10-Pin $\mu \mathrm{MAX}$ (derate 5.6m	ove $+70^{\circ} \mathrm{C}$) 444 mW

Pin SO (derate $5.88 \mathrm{~mW} / /^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	W
14-Pin SO (derate $8.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).	667mW
20-Pin SO (derate $10.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).	800mW
20-Pin TSSOP (derate $10.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above +70	$\left.0^{\circ} \mathrm{C}\right)879 \mathrm{~mW}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature Ra	C to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Driver

$\left(\mathrm{V}+=5 \mathrm{~V}, G N D=0, \mathrm{~V}_{C M}=2.5 \mathrm{~V}, R_{L}=12.5 \Omega, S H D N=0, T_{A}=T_{M I N}\right.$ to $T_{M A X}$, unless otherwise noted. Typical values specified at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range (Note 1)	$\mathrm{V}_{\text {CC }}$			4.5		5.5	V
Supply Current	IQ	MAX4361, $\mathrm{RL}_{\mathrm{L}}=\infty$			22	33	mA
		MAX4362, RL $=\infty$	SHDN $=0$		22	33	mA
			SHDN $=5 \mathrm{~V}$		60	200	$\mu \mathrm{A}$
		MAX4363, measured at $V+(T X), R_{L}=\infty$	SHDN $=0$		22	33	mA
			SHDN $=5 \mathrm{~V}$		60	200	$\mu \mathrm{A}$
		MAX4363, measured at $V+(R X), R L=\infty$	SHDN $=0$		4	6.5	mA
			SHDN $=5 \mathrm{~V}$		70	200	$\mu \mathrm{A}$
Maximum Average Output Power (Notes 2, 3)	Pout	DMT modulation		15.5			dBm
		CAP modulation		18			
Gain	G	MAX4361 ($0.7 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq(\mathrm{V}+$) - 0.7V)		3.0	3.1	3.2	V/V
Open-Loop Gain	Avol	MAX4362/MAX4363 ($0.7 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq(\mathrm{V}+$) - 0.7V)		68	81		dB
Second Harmonic Distortion (Notes 3, 4)		$\left.\mathrm{G}=3.1, \mathrm{f}=100 \mathrm{kHz}, \mathrm{VOUT}_{\text {(DIFF }}\right)=7.1 \mathrm{~V}_{\text {P-P }}$		-66	-76		dBc
Third Harmonic Distortion (Notes 3, 4)		$\mathrm{G}=3.1, \mathrm{f}=100 \mathrm{kHz}, \mathrm{V}_{\text {OUT }}$ (DIFF) $=7.1 \mathrm{~V}_{\text {P-P }}$		-68	-79		dBc
Peak Output Current	IOUT	Inferred from Output Voltage Swing test		280	330		mA
Input Offset Voltage	Vos				± 0.5	± 10	mV
Input Bias Current	IB				1.6	4.5	$\mu \mathrm{A}$
Input Offset Current	los	MAX4361			± 30	± 600	nA
		MAX4362/MAX4363			± 10	± 500	
Differential Input Resistance	RIN(DIFF)	MAX4361			25		$\mathrm{M} \Omega$
		MAX4362/MAX4363			40		$\mathrm{k} \Omega$

ADSL Drivers/Receivers for Customer Premise Equipment

ELECTRICAL CHARACTERISTICS—Driver (continued)

$\left(\mathrm{V}+=5 \mathrm{~V}, G N D=0, \mathrm{~V}_{C M}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=12.5 \Omega, \mathrm{SHDN}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values specified at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Common-Mode Voltage Range	VCM	Inferred from CMRR test		1.25		4.50	V
Common-Mode Rejection Ratio	CMRR	$1.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 4.5 \mathrm{~V}$	MAX4361	60	73		dB
			MAX4362/MAX4363	70	85		
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}+=4.5 \mathrm{~V}$ to 5.5 V	MAX4361	60	89		dB
			MAX4362/MAX4363	60	74		
AC Power-Supply Rejection Ratio	PSRRAC	$\mathrm{f}=100 \mathrm{kHz}$	MAX4361		63		dB
			MAX4362/MAX4363		49		
Differential Output-Voltage Swing (Note 4)	Vout(DIFF)	Inferred from Output Voltage Swing test		7.4	8.2		VP-P
Output-Voltage Swing (Note 4)	V_{OH}, VoL	$R \mathrm{~L}=100 \Omega$	$\left(\mathrm{V}+\right.$) - V_{OH}		215	550	mV
			VOL		230	550	
		$\begin{aligned} & \text { MAX4362/MAX4363 } \\ & \mathrm{R}_{\mathrm{L}}=12.5 \Omega \end{aligned}$	(V+) - VOH		400	600	
			VOL		430	650	
		$\begin{aligned} & \text { MAX4361, } \mathrm{RL}=12.5 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=-20^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	$(\mathrm{V}+$) - VOH		400	600	
			VOL		430	650	
Output Short-Circuit Current	ISC			± 650			mA
Output Resistance	Rout	MAX4361			0.3		Ω
		MAX4362/MAX4363, G = 1		0.001			
SHDN Logic Low	VIL					0.8	V
SHDN Logic High	V_{IH}			2.0			V
SHDN Input Current	$\mathrm{IIH}_{\mathrm{H}} \mathrm{I}$ IL	SHDN $=0$ or SHDN $=$ V				± 10	$\mu \mathrm{A}$
Shutdown Output Impedance	ZOUT(SD)	$\mathrm{f}=1 \mathrm{MHz}$			1.8		$\mathrm{k} \Omega$
-3dB Bandwidth	BW	MAX4361			40		MHz
		MAX4362/MAX4363, G = 1			60		
Slew Rate	SR	$\mathrm{V}_{\text {OUT }}$ (DIFF) $=7.1 \mathrm{~V}_{\text {P-P }}$ step			30		V/us
Settling Time (1\%)	ts	$\begin{aligned} & \text { VOUT }(\text { DIFF })=7.1 \mathrm{VP}_{\mathrm{P}-\mathrm{P}} \\ & \text { step } \end{aligned}$	MAX4361		115		ns
			$\begin{aligned} & \text { MAX4362/MAX4363, } \\ & G=3 \end{aligned}$		165		
Voltage-Noise Density	e_{n}	$\mathrm{f}=100 \mathrm{kHz}$ to 1.1 MHz			4.8		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Current-Noise Density	in_{n}	$\mathrm{f}=100 \mathrm{kHz}$ to 1.1 MHz			1.5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Capacitive-Load Stability					10		nF
Shutdown Delay Time	tSHDN				400		ns
Enable Delay Time	tenable				2.8		$\mu \mathrm{s}$

ADSL Drivers/Receivers for Customer Premise Equipment

ELECTRICAL CHARACTERISTICS—Receiver (MAX4363 only)

$\left(V_{+}=5 \mathrm{~V}, G N D=0, V_{C M}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty, S H D N=0, T_{A}=T_{\text {MIN }}\right.$ to $T_{M A X}$, unless otherwise noted. Typical values specified at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Spurious-Free Dynamic Range	SFDR	$\mathrm{G}=1, \mathrm{f}=1 \mathrm{MHz}$, VOUT $=1 \mathrm{~V}_{\text {P-P }}$		-75			dBc
Gain-Bandwidth Product	GBW			190			MHz
Open-Loop Gain	Avol	$1.5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 3.5 \mathrm{~V}$		65	77		dB
Peak Output Current	Iout	$R L=50 \Omega$, inferred from Output-Voltage Swing test		18	25		mA
Input Offset Voltage	Vos				± 0.5	± 10	mV
Input Bias Current	IB				-0.75	-2	$\mu \mathrm{A}$
Input Offset Current	los				± 20	± 250	nA
Input Capacitance	CIN				1.6		pF
Differential Input Resistance	RIN(DIFF)				76		k Ω
Input Common-Mode Voltage Range	VCM	Inferred from CMRR test		0.25		3.80	V
Common-Mode Rejection Ratio	CMRR	$0.25 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 3.8 \mathrm{~V}$		70	87		dB
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}+=4.5 \mathrm{~V}$ to 5.5 V		60	75		dB
AC Power-Supply Rejection Ratio	PSRRAC	$\mathrm{f}=1 \mathrm{MHz}$			47		dB
Output-Voltage Swing	VOH, VOL	$R \mathrm{~L}=\infty$	$(\mathrm{V}+)$ - VOH		0.64	1	V
			VOL		0.73	1	
		$R \mathrm{~L}=50 \Omega$	(V+) - VOH		1.27	1.5	
			VOL		1.37	1.6	
Output Short-Circuit Current	Isc				± 130		mA
Output Resistance	Rout	$\mathrm{G}=1$			0.001		Ω
Slew Rate	SR	VOUT $=1 \mathrm{~V}_{\text {P-P }}$ step			160		V/us
Settling Time (1\%)	ts	Vout $=100 \mathrm{mV}$ P-P step, $\mathrm{G}=1$			40		ns
Voltage-Noise Density	e_{n}	$\mathrm{f}=1 \mathrm{MHz}$			8.5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Current-Noise Density	in_{n}	$\mathrm{f}=1 \mathrm{MHz}$			0.5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Driver-Receiver Crosstalk	XTALK	$\mathrm{f}=100 \mathrm{kHz}$			95		dB

Note 1: Guaranteed by the Power-Supply Rejection Ratio (PSRR) test.
Note 2: Implied by worst-case output-voltage swing (VOUT(DIFF)), crest factor (C_{r}) and load resistance (R_{L}):
PDriver $=10 \log \left(\left(250 \times(\text { VOUT(DIFF) })^{\wedge} 2 /\left(\left(C_{r}\right)^{\wedge} 2 \times R L\right)\right) d B m W\right.$
Note 3: Guaranteed by design.
Note 4: May exceed absolute maximum ratings for power dissipation if unit is subject to full-scale sinusoids for long periods (see Applications Information section)

ADSL Drivers/Receivers for Customer Premise Equipment

Typical Operating Characteristics
$\left(\mathrm{V}+=5 \mathrm{~V}, G N D=0, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=12.5 \Omega, \mathrm{SHDN}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)$

ADSL Drivers/Receivers for Customer Premise Equipment

ADSL Drivers/Receivers for Customer Premise Equipment

Pin Descriptions
MAX4361

PIN	NAME	FUNCTION
1,4	GND	Ground
2	IN +	First Driver Input
3	IN-	Second Driver Input
5	OUT-	Second Driver Output
6,7	V+	Positive Power-Supply Voltage. Bypass V+ to GND with a 0.1 $\mu \mathrm{F}$ capacitor.
8	OUT +	First Driver Output

MAX4362

PIN		NAME	
$\boldsymbol{\mu}$ MAX	SO		
1	2	T1IN +	First Driver Noninverting Input
2	3	T1IN-	First Driver Inverting Input
3	4	SHDN	Shutdown. Connect to GND for normal operation.
4	5	T2IN-	Second Driver Inverting Input
5	6	T2IN +	Second Driver Noninverting Input
6,10	9,13	GND	Ground
7	10	T2OUT	Second Driver Output
8	11	V+	Positive Power-Supply Voltage. Bypass V+ to GND with a 0.1 μ F capacitor.
9	12	T1OUT	First Driver Output
-	$1,7,8,14$	N.C.	No Connection. Not internally connected.

ADSL Drivers/Receivers for Customer Premise Equipment

\qquad
MAX4363

PIN	NAME	
1	T1IN+	FUNCTION
2	T1IN-	First Driver Inverting Input
3	SHDN	Shutdown. Connect to GND for normal operation.
4	T2IN-	Second Driver Inverting Input
5	T2IN+	Second Driver Noninverting Input
6	GND	Ground
7	R1IN+	First Receiver Noninverting Input
8	R1IN-	First Receiver Inverting Input
9	R2IN-	Second Receiver Inverting Input
10	R2IN+	Second Receiver Noninverting Input
11	R2OUT	Second Receiver Output
12	R1OUT	First Receiver Output
13	GND (RX)	Ground for Receiver Amplifiers
14	V+ (RX)	Positive Power-Supply Voltage for Receiver Amplifiers. Bypass V+ (RX) to GND (RX) with a separate 0.1 1 F capacitor.
15	N.C.	No Connection. Not internally connected.
16,20	GND (TX)	Ground for Driver Amplifier
17	T2OUT	Second Driver Output
18	V+ (TX)	Positive Power-Supply Voltage for Driver Amplifiers. Bypass V+ (TX) to GND (TX) with a separate 0.1 4 F capacitor.
19	T1OUT	First Driver Output

Detailed Description

The MAX4361/MAX4362/MAX4363 are a family of highperformance ADSL drivers and drivers/receivers ideal for the upstream transmit path and the downstream receive path of customer premise equipment. These devices operate from a single 5 V supply and deliver up to 12.5 dBm average line power for DMT modulated signals, meeting the requirements of full-rate ADSL. SFDR at full output power is typically -75 dBc at 100 kHz .

Differential In/Differential Out ADSL Driver

(MAX4361)
The MAX4361 is a differential line driver with a fixed gain of $3.1 \mathrm{~V} / \mathrm{V}$. The gain is set by three internal resistors.

Uncommitted Dual Amplifier for ADSL Driver (MAX4362)

The MAX4362 is a dual amplifier with shutdown intended for use as a differential IN/differential OUT driver with gain set with external resistors

Uncommitted Quad Amplifier for ADSL Driver/Receiver (MAX4363)

The MAX4363 is a quad amplifier with shutdown intended for use as a differential IN/differential OUT driver/receiver combination with gain set with external resistors.

Shutdown

The MAX4362/MAX4363 feature a low-power shutdown mode. When the SHDN pin is pulled high, the supply current drops to $70 \mu \mathrm{~A}$, and the amplifier's outputs are placed in a high-impedance disable mode. Connect SHDN to GND for normal operation.

ADSL Drivers／Receivers for Customer Premise Equipment

Applications Information

Power Supply and Decoupling The MAX4361／MAX4362／MAX4363 should be powered from a well－regulated，low－noise， 4.5 V to 5.5 V supply in order to optimize the ADSL upstream drive capability to +12.5 dBm and maintain the best SFDR．

High－quality capacitors with low equivalent series resis－ tance（ESR）such as multilayer ceramic capacitors （MLCCs）should be used to minimize supply voltage ripple and power dissipation．A larger capacitor located in proximity to the MAX4361／MAX4362／MAX4363 improves decoupling for lower frequency signals．
In addition， $0.1 \mu \mathrm{~F}$ MLCC decoupling capacitors should be located as close as possible to each of the power－ supply pins，no more than $1 / 8$ inch away．An additional large $(4.7 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F})$ tantalum capacitor should be placed on the board near the supply terminals to sup－ ply current for fast，large－signal changes at the MAX4361／MAX4362／MAX4363 outputs．

MAX4361／MAX4362

The MAX4361／MAX4362 require a single $0.1 \mu \mathrm{~F}$ bypass from $V+$ to ground located as close as possible to the IC leads．

MAX4363

The MAX4363 features separate supply and ground pins for the receiver and driver amplifiers．Bypass the $V+(R X)$ supply to the GND（RX）pin with a $0.1 \mu \mathrm{~F}$ capaci－ tor．Bypass the V_{+}（TX）supply to the GND（TX）pin with a separate $0.1 \mu \mathrm{~F}$ capacitor．Both capacitors should be placed as close as possible to their respective IC leads．

USB Applications

The 5 V supplied at the universal serial bus（USB）port may be poorly regulated or unable to supply the peak currents required by an ADSL modem．Improving the quality of the supply will optimize the performance of the MAX4361／MAX4362／MAX4363 in a USB－supplied CPE ADSL modem．This can be accomplished through the use of a step－up DC－to－DC converter or switching power supply followed by a low－dropout（LDO）regula－ tor．Careful attention must be paid to decoupling the power supply at the output of the DC－to－DC converter， the output of the LDO regulator and the supply pins of the MAX4361／MAX4362／MAX4363．

Driving a Capacitive Load

The MAX4361／MAX4362／MAX4363 are capable of dri－ ving capacitive loads up to $2 n F$ ．Most hybrid circuits are well under this limit．For additional capacitive－drive capability use isolation resistors between the output

Figure 1．Driving Capacitive Load

Figure 2．Voltage－Divider Reference
and the load to reduce ringing on the output signal．In a typical hybrid the back－matching resistors provide suffi－ cient isolation for most any capacitive－loading condition （see Figure 1）．

Method for Generating a Midsupply Voltage

To operate an amplifier on a single－voltage supply，a voltage midway between the supply and ground must be generated to properly bias the inputs and the outputs．
A voltage divider can be created with two equal－value resistors（Figure 2）．There is a trade－off between the power consumed by the divider and the voltage drop across these resistors due to the positive input bias currents．Selecting $2.7 \mathrm{k} \Omega$ for R1 and R2 will create a voltage divider that draws less than 1 mA from a 5 V supply．Use a decoupling capacitor $(0.1 \mu \mathrm{~F})$ at the node where $V_{\text {REF }}$ is generated．

Power Dissipation
It is important to consider the total power dissipation of the MAX4361／MAX4362／MAX4363 in order to properly size the heat sink area of an application．With some simplifying assumptions we can estimate the total power dissipated in the driver（see Typical Operating

ADSL Drivers/Receivers for Customer Premise Equipment

Circuit). If the output current is large compared to the quiescent current, computing the dissipation in the output devices and adding it to the quiescent power dissipation will give a close approximation of the total power dissipation in the package.
For a 12.5 dBm average line power on a 100Ω line, the RMS current is 13.4 mA . With a one-to-four transformer the driver therefore supplies 53.6 mA RMS. It can be shown for a DMT signal the ratio of RMS current to the average rectified current is 0.8 . The total power consumption is approximately

$$
\text { PCONS }=0.8 \times 53.6 \times 5 \mathrm{~V}=214 \mathrm{~mW}
$$

of which 18 mW is delivered as line power and 18 mW is dissipated in the back-matching resistors. Hence the average power consumption of the IC is approximately $178 \mathrm{~mW}+$ quiescent power (110 mW), or 288 mW . For the MAX4361 in an 8-pin $\mu \mathrm{MAX}$ package, this corresponds to a temperature rise of $64^{\circ} \mathrm{C}$. With an ambient temperature of $+85^{\circ} \mathrm{C}$ this corresponds to a junction temperature of $+148^{\circ} \mathrm{C}$, just below the absolute maximum of $+150^{\circ} \mathrm{C}$.
Please note the part is capable of over 200mA RMS, which could cause thermal shutdown in applications with elevated ambient temperatures and/or signals with low crest factors. See Figure 3 for a guide to power derating for each of the MAX4361/MAX4362/MAX4363 packages.

Transformer Selection

Full-rate, customer premise ADSL requires the transmission of a $+12.5 \mathrm{dBm}(18 \mathrm{~mW})$ DMT signal. The DMT signal has a typical crest factor of 5.3 , requiring the line driver to provide peak line power of $27.5 \mathrm{dBm}(560 \mathrm{~mW})$. The 27.5 dBm peak line power translates into a 28.4 V peak-to-peak differential voltage on the 100Ω telephone line. The maximum low-distortion output swing available from the MAX4361/MAX4362/MAX4363 line driver on a 5 V supply is 3.8 V and, taking into account the power lost due to the back-matching resistance, a step-up transformer with turns ratio of 3.8 or greater is needed. In the Typical Operating Circuit, the MAX4363 is coupled to the phone line through a step-up transformer with a 1:4 turns ratio. R1 and R2 are back-matching resistors, each $3.1 \Omega\left(100 \Omega /\left(2 \times 4^{2}\right)\right)$, where 100Ω is the approximate phone-line impedance. The total differential load for the MAX4361/MAX4362/MAX4363, including the termination resistors, is therefore 12.5Ω. Even under these conditions the MAX4361/MAX4362/ MAX4363 provide low distortion signals to within 0.6 V of the power rails.

Figure 3. Maximum Power Dissipation vs. Temperature

Receive Channel Considerations

A transformer used at the output of the differential line driver to step up the differential output voltage to the line has the inverse effect on signals received from the line. A voltage reduction or attenuation equal to the inverse of the turns ratio is realized in the receive channel of a typical bridge hybrid. The turns ratio of the transformer may also be dictated by the ability of the receive circuitry to resolve low-level signals in the noisy, twisted-pair telephone plant. Higher turns-ratio transformers effectively reduce the received signal-to-noise ratio due to the reduction in the received signal strength.
The MAX4363 includes an amplifier with typical voltage noise of only $8.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ and a low-supply current of 2 mA /amplifier to be used as the receive channel.

Layout Considerations
Good layout techniques optimize performance by decreasing the amount of stray capacitance at the amplifier's inputs and outputs. Excess capacitance will produce peaking in the amplifier's frequency response. To decrease stray capacitance, minimize trace lengths by placing external components as close to the amplifier as possible.

Chip Information

[^0]
ADSL Drivers/Receivers for Customer Premise Equipment

ADSL Drivers/Receivers for Customer Premise Equipment

FRONT VIEW
SIDE VIEW
NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 mm (.006").
3. CONTROLLING DIMENSION: MILLIMETERS.
4. MEETS JEDEC MO187.

ADSL Drivers/Receivers for Customer Premise Equipment

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Operational Amplifiers category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
LT1809IS6\#TRM NJU7047RB1-TE2 LTC6226IS8\#PBF LT1058ACN LT1206CR LT1058ISW THS4222DGNR JM38510/11905BPA OPA2677IDDAR THS6042ID THS4221DBVR THS4081CD ADA4858-3ACPZ-R7 LT6202IS5\#TRMPBF LT1206CR\#PBF LT1813CDD\#PBF LT1037IN8\#PBF LTC6401CUD-20\#PBF LT1192CN8\#PBF LT1037ACN8\#PBF LTC6253CTS8\#TRMPBF LT1399HVCS\#PBF LT1993CUD-2\#PBF LT1722CS8\#PBF LT1208CN8\#PBF LT1007ACN8\#PBF LT1222CN8\#PBF LT6203IDD\#PBF LT6411IUD\#PBF LTC6400CUD-26\#PBF LTC6400CUD-8\#PBF LT6211IDD\#PBF LT1810IMS8\#PBF OP37EN8\#PBF LT1360CS8 OPA2132PAG4 OPA2353UA/2K5 OPA2691I-14D OPA4353UA/2K5 OPA690IDRG4 LMH6723MFX/NOPB ADP5302ACPZ-3-R7 AD8000YRDZ AD8007AKSZ-REEL7 AD8008ARMZ AD8009JRTZ-REEL7 AD8010ANZ AD8012ARMZ AD8014ARTZ-REEL7 AD8016AREZ

[^0]: MAX4361 TRANSISTOR COUNT: 1400
 MAX4362 TRANSISTOR COUNT: 1400
 MAX4363 TRANSISTOR COUNT: 1750
 PROCESS: Bipolar

