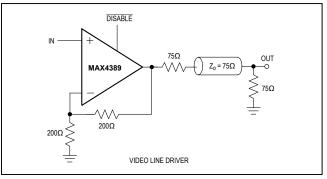
MAX4389/MAX4390/ MAX4392-MAX4396

Ultra-Small, Low-Cost, 85MHz Op Amps with Rail-to-Rail Outputs and Disable

General Description

The MAX4389/MAX4390/MAX4392—MAX4396 family of op amps are unity-gain stable devices that combine high-speed performance, rail-to-rail outputs, and disable mode. These devices are targeted for applications where an input or an output is exposed to the outside world, such as video and communications.

The MAX4389/MAX4390/MAX4392—MAX4396 operate from a single 4.5V to 11V supply or from dual ±2.25V to ±5.5V supplies. The common-mode input voltage range extends to the negative power-supply rail (ground in single-supply applications). The MAX4389/MAX4390/MAX4392—MAX4396 consume only 5.5mA of quiescent supply current per amplifier while achieving a 85MHz -3dB bandwidth, 27MHz 0.1dB gain flatness, and a 500V/μs slew rate. Disable mode sets the outputs to high impedance while consuming only 450μA of current.


The MAX4389 single, MAX4393 dual, MAX4394 triple, and MAX4396 quad include disable capabilities. The MAX4389 and MAX4390 are available in ultra-small, 6-pin SC70 packages.

Applications

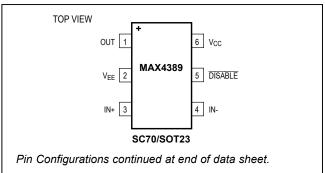
- Set-Top Boxes
- Surveillance Video Systems
- Analog-to-Digital Converter Interface
- CCD Imaging Systems
- Digital Cameras
- Video-on-Demand
- Video Line Driver

µMAX is a registered trademark of Maxim Integrated Products, Inc.

Typical Operating Circuit

Features

- Low Cost
- High Speed
- 85MHz -3dB Bandwidth
 - 27MHz 0.1dB Gain Flatness
 - 500V/µs Slew Rate
- Single 4.5V to 11V or Dual ±2.25V to ±5.5V Operation
- Rail-to-Rail Outputs
- Input Common-Mode Range Extends to V_{FF}
- Low Differential Gain/Phase: 0.015%/0.015°
- Low Distortion at 5MHz
 - -59dBc Spurious-Free Dynamic Range
- High Output Drive: ±50mA
- 450µA Disable Capability (MAX4389/MAX4393/MAX4394/MAX4396)
- Space-Saving SC70, SOT23, µMAX®, or TSSOP Packages


Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4389EXT+T	-40°C to +85°C	6 SC70	ABF
MAX4389EUT+T	-40°C to +85°C	6 SOT23	ABDC
MAX4390EXT+T	-40°C to +85°C	6 SC70	ABE
MAX4390EUK+T	-40°C to +85°C	5 SOT23	ADZM

⁺Denotes a lead(Pb)-free/RoHs-compliant package.

Ordering Information continued at end of data sheet. Selector Guide appears at end of data sheet.

Pin Configurations

T = Tape and reel.

Absolute Maximum Ratings

Supply \	Voltage (V _{CC} to V _{EE})	0.3V to +12V
IN_+, IN	I, OUT_, DISABLE(V	$'_{EE}$ - 0.3V) to (V_{CC} + 0.3V)
Different	tial Input Voltage	±2.5V
Current	into Input Pins	±20mA
Output S	Short-Circuit Duration to	
V _{CC} (or V _{EE} (Note 1)	Continuous
Continue	ous Power Dissipation (T _A =	+70°C)
5-Pin	SOT23 (derate 7.1mW/°C al	oove +70°C)571mW
6-Pin	SOT23 (derate 8.7mW/°C al	oove +70°C)696mW
6-Pin	SC70 (derate 3.1mW/°C abo	ove +70°C)245mW

8-Pin SO (derate 5.88mW/°C above +70°C)	471mW
8-Pin µMAX (derate 4.5mW/°C above +70°C)	362mW
10-Pin µMAX (derate 5.6mW/°C above +70°C)	444mW
14-Pin SO (derate 8.33mW/°C above +70°C)	667mW
14-Pin TSSOP (derate 10mW/°C above +70°C)	727mW
20-Pin TSSOP (derate 10.9mW/°C above +70°C)	879mW
Operating Temperature Range40°0	C to +85°C
Junction Temperature	+150°C
Storage Temperature Range65°C	
Lead Temperature (soldering, 10s)	+300°C

Note 1: Continuous power dissipation must also be observed.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Electrical Characteristics—Single Supply

 $(V_{CC} = 5V, V_{EE} = 0V, V_{CM} = V_{CC}/2, V_{OUT} = V_{CC}/2, R_L = \infty \text{ to } V_{CC}/2, \overline{DISABLE} = V_{CC} \text{ (MAX4389/MAX4393/MAX4394/MAX4396)}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.} \text{ (Note 2)}$

PARAMETER	SYMBOL		MIN	TYP	MAX	UNITS		
Input Common-Mode Voltage Range	V _{CM}	Guaranteed by	Guaranteed by CMRR test			V _{CC} - 2.25	V	
Input Offeet Veltage	\/	T _A = +25°C			5	18	mV	
Input Offset Voltage	Vos	$T_A = -40^{\circ}C$ to	+85°C			26	IIIV	
Input Offset Voltage Matching		MAX4392-MA	X4396		1		mV	
Input Offset Voltage Tempco	TC _{VOS}				15		μV/°C	
Input Bias Current	I _B				2.5	15	μΑ	
Input Offset Current	Ios				0.2	5	μΑ	
Innut Decistores		Differential mo	de (-1V ≤ V _{IN} ≤ +1V)		70		kΩ	
Input Resistance	R _{IN}	Common mode	$e (-0.2V \le V_{CM} \le +2.75V)$		3		ΜΩ	
Common-Mode Rejection Ratio	CMRR	(V _{EE} - 0.2V) ≤	$(V_{EE} - 0.2V) \le V_{CM} \le (V_{CC} - 2.25V)$				dB	
Open-Loop Gain		$0.25V \le V_{OUT} \le 4.75V, R_L = 2k\Omega$		50	70			
	A _{VOL}	$0.8V \le V_{OUT} \le 4.5V, R_L = 150\Omega$		50	60		dB	
		1V ≤ V _{OUT} ≤ 4		58]		
		V _{CC} - V _{OH}			0.065	0.25		
		$R_L = 2k\Omega$	V _{OL} - V _{EE}		0.05	0.15	0.5	
		D 4500	V _{CC} - V _{OH}		0.3	0.5		
0 (1)/ " 0 :	.,	$R_L = 150\Omega$	V _{OL} - V _{EE}		0.25	0.5		
Output Voltage Swing	V _{OUT}	D 750	V _{CC} - V _{OH}		0.5	0.8	V	
		$R_L = 75\Omega$	V _{OL} - V _{EE}		0.45	0.8	1	
		$R_{\rm I} = 75\Omega$ to	V _{CC} - V _{OH}		1	1.7	1	
		ground	V _{OL} - V _{EE}		0.025	0.1	1	
0.1.10		Sinking from R	$L = 75\Omega$ to V _{CC}	40	55			
Output Current	lout		$R_L = 75\Omega$ to V_{EE}	40	50		mA	
Output Short-Circuit Current	I _{SC}	Sinking or sour			±100		mA	

DC Electrical Characteristics—Single Supply (continued)

 $(V_{CC} = 5V, V_{EE} = 0V, V_{CM} = V_{CC}/2, V_{OUT} = V_{CC}/2, R_L = \infty \text{ to } V_{CC}/2, \overline{DISABLE} = V_{CC} \text{ (MAX4389/MAX4393/MAX4394/MAX4396)}, \\ T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.) \text{ (Note 2)}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Open-Loop Output Resistance	R _{OUT}			8		Ω
Power-Supply Rejection Ratio	PSRR	$V_{EE} = 0V, V_{CC} = 4.5V \text{ to } 5.5V$	48	65		dB
Operating Supply Voltage Range	Vs	Guaranteed by PSRR	4.5		11	V
Disabled Output Resistance	R _{OUT(OFF})	V _{DISABLE} = 0V, 0 ≤ V _{OUT} ≤ 5V	40	95		kΩ
DISABLE_ Logic-Low Threshold	V _{IL}				V _{CC} - 3	V
DISABLE_ Logic-High Threshold	V _{IH}		V _{CC} - 1	.25		V
DISABLE_ Logic-Input Low Current	I _{IL}	V _{DISABLE_} = 0V		20	60	μA
DISABLE_ Logic-Input High Current	I _{IH}	DISABLE_ = V _{CC}		5	40	μA
Quiescent Supply Current		DISABLE_ = V _{CC}		3.2	5	m A
(Per Amplifier)	I _S	V _{DISABLE} = 0V		0.3	0.4	mA

DC Electrical Characteristics—Dual Supply

(V_{CC} = 5V, V_{EE} = -5V, V_{CM} = 0V, V_{OUT} = 0V, R_L = ∞ to 0, $\overline{DISABLE}$ = V_{CC} (MAX4389/MAX4393/MAX4394/MAX4396), T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Common-Mode Voltage	V _{CM}	Guaranteed by CMRR test	V _{EE}	V	CC - 2.25	V
Input Offset Voltage	V	T _A = +25°C		7	20	mV
Input Offset Voltage	Vos	T _A = -40°C to +85°C			28	IIIV
Input Offset Voltage Matching		MAX4392-MAX4396		1		mV
Input Offset Voltage Tempco	TC _{VOS}			20		μV/°C
Input Bias Current	I _B			5	15	μΑ
Input Offset Current	los			0.5	5	μΑ
Innut Desigtance	В	Differential mode (-1V ≤ V _{IN} ≤ +1V)		70		kΩ
Input Resistance	R _{IN}	Common mode (-0.2V ≤ V _{CM} ≤ +2.75V)		3		МΩ
Common-Mode Rejection Ratio	CMRR	$V_{EE} \le V_{CM} \le (V_{CC} - 2.25V)$	70	90		dB
Open-Loop Gain	Δ	$-4.5V \le V_{OUT} \le 4.5V$, $R_L = 2k\Omega$	65	80		dB
Open-Loop Gain	A _{VOL}	$-4.25V \le V_{OUT} \le 4.25V, R_L = 150\Omega$	50	60		uБ

DC Electrical Characteristics—Dual Supply (continued)

(V_{CC} = 5V, V_{EE} = -5V, V_{CM} = 0V, V_{OUT} = 0V, R_L = ∞ to 0, $\overline{DISABLE}_-$ = V_{CC} (MAX4389/MAX4393/MAX4394/MAX4396), T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	co	MIN	TYP	MAX	UNITS	
		$R_1 = 2k\Omega$	V _{CC} - V _{OH}		0.175	0.3	
		KL - 2K12	V _{OL} - V _{EE}		0.075	0.2	
Output Voltage Swing	V	D. = 1500	V _{CC} - V _{OH}		0.575	0.85	
Output Voltage Swing	V _{OUT}	$R_L = 150\Omega$	V _{OL} - V _{EE}		0.4	1.5	V
		D = 750	V _{CC} - V _{OH}		1.5	2.35	
	KL - 7322	$R_L = 75\Omega$	V _{OL} - V _{EE}		0.75	1.6	
Output Current		Sinking from $R_L = 75\Omega$ to V_{CC}		50	95		mΛ
Output Current	IOUT	Sourcing into R _L	= 75Ω to V _{EE}	50	75		mA
Output Short-Circuit Current	I _{SC}	Sinking or sourcir	ng		±100		mA
Open-Loop Output Resistance	R _{OUT}				8		Ω
Power-Supply Rejection Ratio	PSRR	V _{EE} = 0V, V _{CC} =	4.5V to 5.5V	48	60		dB
Operating Supply Voltage Range	VS	Guaranteed by P	SRR	4.5		11	V
Disabled Output Resistance	R _{OUT(OFF)}	V _{DISABLE} = 0V,	-5V ≤ V _{OUT} ≤ +5V	40	95		kΩ
DISABLE_ Logic-Low Threshold	V _{IL}					V _{CC} - 3	V
DISABLE_ Logic-High Threshold	V _{IH}			V _{CC} - 1.	25		V
Quiescent Supply Current		DISABLE_ = V _{CC}	;		6	10	A
(Per Amplifier)	I _S	V _{DISABLE} = 0V			0.45	0.8	mA

AC Electrical Characteristics—Single Supply

 $(V_{CC} = 5V, \ V_{EE} = 0V, \ V_{CM} = 1.5V, \ R_L = 100\Omega \ \ to \ \ V_{CC}/2, \ \overline{DISABLE} = V_{CC} \ \ (MAX4389/MAX4393/MAX4394/MAX4396), \\ V_{OUT} = V_{CC}/2, \ A_{VCL} = 1V/V, \ T_A = +25^{\circ}C, \ unless \ otherwise \ noted.)$

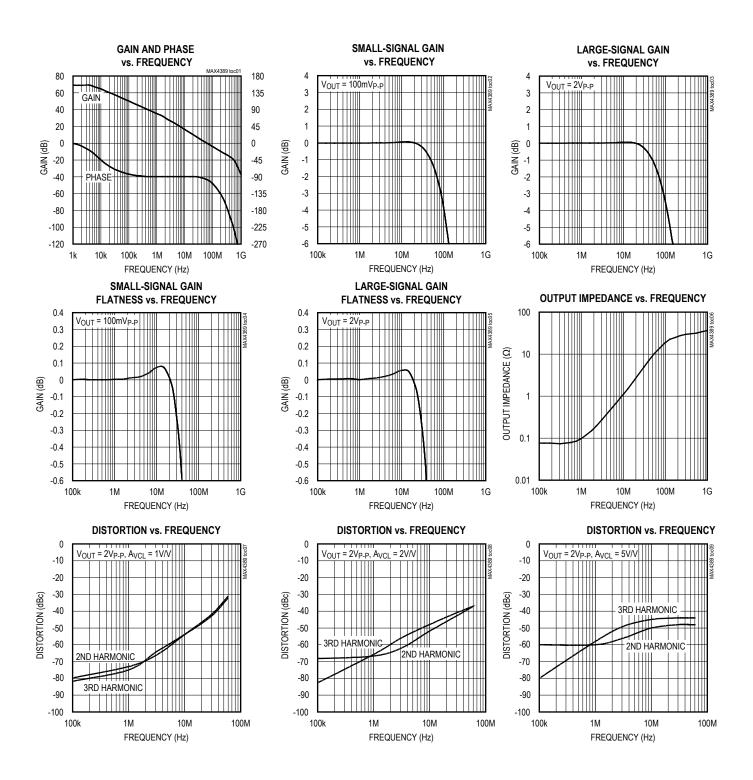
PARAMETER	PARAMETER SYMBOL		MIN TYP	MAX	UNITS
Small-Signal -3dB Bandwidth	BW _{SS}	$V_{OUT} = 100 \text{mV}_{P-P}$	72		MHz
Large-Signal -3dB Bandwidth	BW _{LS}	V _{OUT} = 2V _{P-P}	80		MHz
Small-Signal 0.1dB Gain Flatness	BW _{0.1dBSS}	V_{OUT} = 100m V_{P-P}	30		MHz
Large-Signal 0.1dB Gain Flatness	BW _{0.1dBLS}	V _{OUT} = 2V _{P-P}	30		MHz
Slew Rate	SR	V _{OUT} = 2V step	500		V/µs
Settling Time to 0.1%	t _s	V _{OUT} = 2V step	28		ns
Rise/Fall Time	t _R /t _F	$V_{OUT} = 100 \text{mV}_{P-P}$	4		ns
Spurious-Free Dynamic Range	SFDR	f _C = 5MHz, V _{OUT} = 2V _{P-P}	-59		dBc

AC Electrical Characteristics—Single Supply (continued)

 $(V_{CC} = 5V, \ V_{EE} = 0V, \ V_{CM} = 1.5V, \ R_L = 100\Omega \ to \ V_{CC}/2, \ \overline{DISABLE} = V_{CC} \ (MAX4389/MAX4393/MAX4394/MAX4396), \\ V_{OUT} = V_{CC}/2, \ A_{VCL} = 1V/V, \ T_A = +25^{\circ}C, \ unless \ otherwise \ noted.)$

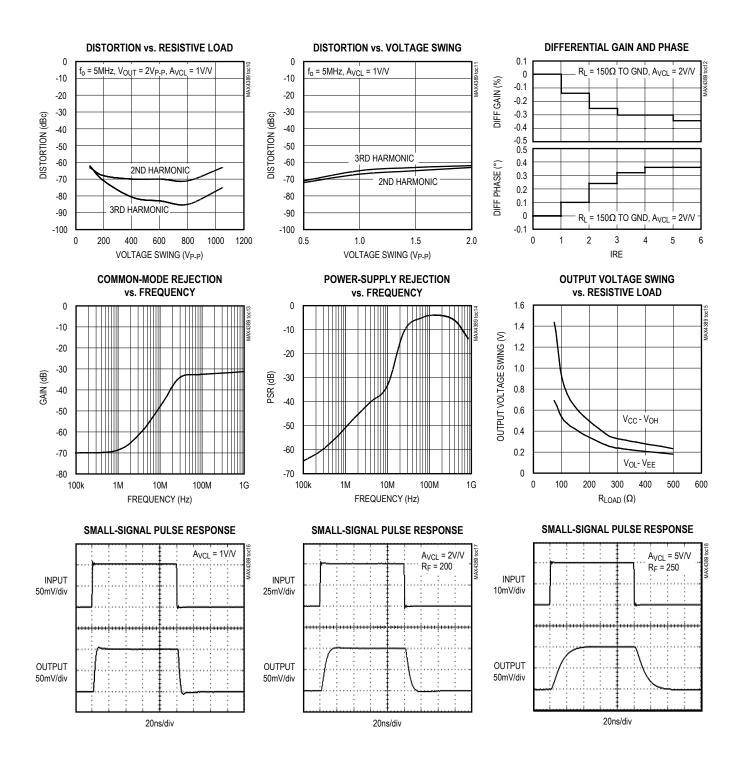
PARAMETER	PARAMETER SYMBOL CONDITIONS		MIN	TYP	MAX	UNITS
Differential Phase Error	DP	NTSC, $R_L = 150\Omega$		0.015		degrees
Differential Gain Error	DG	NTSC, $R_L = 150\Omega$		0.015		%
Input Noise-Voltage Density	e _n	f = 10kHz		13		nV/√ Hz
Input Noise-Current Density	in	f = 10kHz		2.1		pA/√Hz
Input Capacitance	C _{IN}			1		pF
Output Impedance	Z _{OUT}	f = 5MHz		0.6		Ω
Disable OFF Time		MAX4389/MAX4393/MAX4394/MAX4396		80		ns
Disable ON Time		MAX4389/MAX4393/MAX4394/MAX4396		40		ns
Channel-to-Channel Isolation	CH _{ISO}	MAX4392–MAX4396, specified at DC		-97		dB

AC Electrical Characteristics — Dual Supply

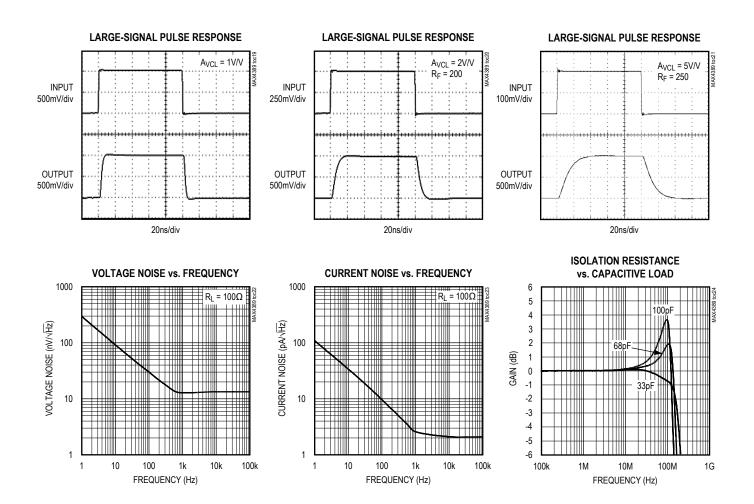

 $(V_{CC} = 5V, V_{EE} = -5V, R_L = \infty \text{ to GND, GND} = 0, V_{OUT} = 0V, Gain = 1V/V, \overline{DISABLE} = V_{CC}, and T_A = T_{MIN} \text{ to } T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)$

PARAMETER	SYMBOL	CONDITIONS	MIN TYP MA	XX UNITS
Small-Signal -3dB Bandwidth	BW _{SS}	$V_{OUT} = 100 \text{mV}_{P-P}$	85	MHz
Large-Signal -3dB Bandwidth	BW _{LS}	V _{OUT} = 2V _{P-P}	90	MHz
Small-Signal Bandwidth for 0.1dB Gain Flatness	BW _{0.1dBss}	V _{OUT} = 100mV _{P-P}	27	MHz
Large-Signal Bandwidth for 0.1dB Gain Flatness	BW _{0.1dBLS}	V _{OUT} = 2V _{P-P}	24	MHz
Slew Rate	SR	V _{OUT} = 2V step	500	V/µs
Settling Time to 0.1%	t _S	V _{OUT} = 2V step	21	ns
Rise/Fall Time	t _R /t _F	$V_{OUT} = 100 \text{mV}_{P-P}$	4	ns
Spurious-Free Dynamic Range	SFDR	f _C = 5MHz, V _{OUT} = 2V _{P-P}	-59	dBc
Differential Phase Error	DP	NTSC, $R_L = 150\Omega$	0.015	degrees
Differential Gain Error	DG	NTSC, $R_L = 150\Omega$	0.015	%
Input Noise-Voltage Density	e _n	f = 10kHz	13	nV/√ Hz
Input Noise-Current Density	i _n	f = 10kHz	2.1	pA/√ Hz
Input Capacitance	C _{IN}		1	pF
Output Impedance	Z _{OUT}	f = 5MHz	f = 5MHz 0.6	
Disable OFF Time		MAX4389/MAX4393/MAX4394/MAX4396	80	ns
Disable ON Time		MAX4389/MAX4393/MAX4394/MAX4396 40		ns
Channel-to-Channel Isolation	CH _{ISO}	MAX4392/MAX4393/MAX4394/MAX4395/ MAX4396, specified at DC	-97	dB

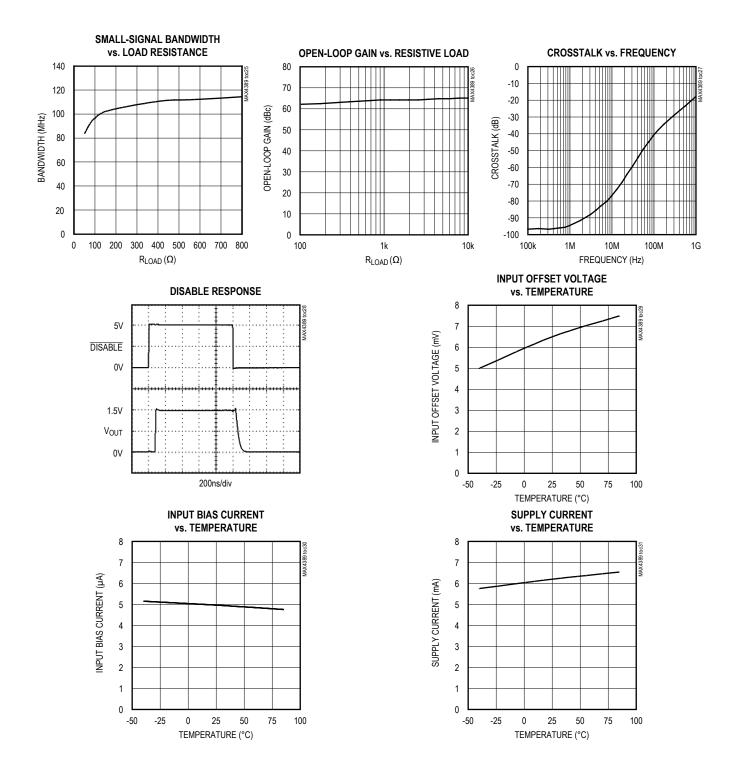
Note 2: All devices are 100% production tested at $T_A = +25$ °C. Specifications over temperature limits are guaranteed by design.


Typical Operating Characteristics

 $(V_{CC} = 5V, V_{EE} = -5V, V_{CM} = 0V, A_{VCL} = 1V/V, R_L = 100\Omega \text{ to GND, GND} = 0, T_A = +25^{\circ}C, unless \text{ otherwise noted.})$


Typical Operating Characteristics (continued)

 $(V_{CC}$ = 5V, V_{EE} = -5V, V_{CM} = 0V, A_{VCL} = 1V/V, R_L = 100 Ω to GND, GND = 0, T_A = +25°C, unless otherwise noted.)


Typical Operating Characteristics (continued)

 $(V_{CC} = 5V, V_{EE} = -5V, V_{CM} = 0V, A_{VCL} = 1V/V, R_L = 100\Omega$ to GND, GND = 0, $T_A = +25$ °C, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{CC} = 5V, V_{EE} = -5V, V_{CM} = 0V, A_{VCL} = 1V/V, R_L = 100\Omega$ to GND, GND = 0, $T_A = +25$ °C, unless otherwise noted.)

Pin Description

				PIN					
MAX4389	MAX	X4390	MAX4392	MAX4393	MAX4394	MAX4395	MAX4396	NAME	FUNCTION
SC70/SOT23	SC70	SOT23	μMAX/SO	μМΑХ	SO/TSSOP	SO/TSSOP	TSSOP		
1	1	1	_	_	_	_	_	OUT	Amplifier Output
2	2	2	4	4	11	11	16	V _{EE}	Negative Power Supply. Connect a 0.1µF capacitor to GND.
3	3	3	_	_	_	_	_	IN+	Noninverting Input
4	4	4	_	_	_	_	_	IN-	Inverting Input
5	_	_	_	_	_	_	_	DISABLE	Disable. Connect to V _{CC} to enable.
6	6	5	8	10	4	4	5	Vcc	Positive Power Supply. Connect a 0.1µF capacitor to GND.
_	5	_	_	_	_	_	10, 11	N.C.	No Connection. Not internally connected.
_	_	_	3	3	5	3	4	INA+	Amplifier A Noninverting Input
_	_	_	2	2	6	2	3	INA-	Amplifier A Inverting Input
_	_	_	1	1	7	1	2	OUTA	Amplifier A Output
_	_	_	_	5	1	_	1	DISABLEA	Shutdown Amplifier A. Connect to V _{CC} to enable.
_	_	_	5	7	10	5	6	INB+	Amplifier B Noninverting Input
_	_	_	6	8	9	6	7	INB-	Amplifier B Inverting Input
_	_	_	7	9	8	7	8	OUTB	Amplifier B Output

Pin Description (continued)

				PIN					
MAX4389	MAX	K 4390	MAX4392	MAX4393	MAX4394	MAX4395	MAX4396	NAME	FUNCTION
SC70/SOT23	SC70	SOT23	μMAX/SO	μМΑХ	SO/TSSOP	SO/TSSOP	TSSOP		
_	_	_	ı	6	3	_	9	DISABLEB	Shutdown Amplifier B. Connect to V _{CC} to enable.
_	_	_	_	_	12	10	15	INC+	Amplifier C Noninverting Input
_	_	_	_	_	13	9	14	INC-	Amplifier C Inverting Input
_	_	_	_	_	14	8	13	OUTC	Amplifier C Output
_	_	_	_	_	2	_	12	DISABLEC	Shutdown Amplifier C. Connect to V _{CC} to enable.
_	_	_	_	_	_	12	17	IND+	Amplifier D Noninverting Input
_	_	_	_	_	_	13	18	IND-	Amplifier D Inverting Input
_	_	_	_	_	_	14	19	OUTD	Amplifier D Output
_	_	_	_	_	_	_	20	DISABLED	Shutdown Amplifier D. Connect to V _{CC} to enable.

Detailed Description

The MAX4389/MAX4390/MAX4392–MAX4396 are dual-supply, rail-to-rail, voltage-feedback amplifiers that employ current-feedback techniques to achieve 500V/µs slew rates and 85MHz bandwidths. Excellent harmonic distortion and differential gain/phase performance make these amplifiers an ideal choice for a wide variety of video and RF signal-processing applications.

Applications Information

The output voltage swings to within 200mV of each supply rail. Local feedback around the output stage ensures low open-loop output impedance to reduce gain sensitivity to

load variations. The input stage permits common-mode voltages to the negative supply and to within 2.25V of the positive supply rail.

Choosing Resistor Values

Unity-Gain Configuration

The MAX4389/MAX4390/MAX4392–MAX4396 are internally compensated for unity gain. When configured for unity gain, a 24 Ω resistor (RF) in series with the feedback path optimizes AC performance. This resistor improves AC response by reducing the Q of the parallel LC circuit formed by the parasitic feedback capacitance and inductance.

Video Line Driver

The MAX4389/MAX4390/MAX4392–MAX4396 are low-power, voltage-feedback amplifiers featuring large-signal $(2V_{P-P})$ bandwidths of 90MHz and 0.1dB large-signal gain flatness of 24MHz. They are designed to minimize differential-gain error and differential-phase error to 0.015% and 0.015°, respectively. They have a 21ns settling time to 0.1%, $500V/\mu s$ slew rates, and output-current-drive capability of up to 50mA making them ideal for driving video loads.

Inverting and Noninverting Configurations

Select the gain-setting feedback (R_F) and input (R_G) resistor values to fit your application. Large resistor values increase voltage noise and interact with the amplifier's input and PCB capacitance. This can generate undesirable poles and zeros and decrease bandwidth or cause oscillations. For example, a noninverting gain-of-two configuration ($R_F = R_G$) using $2k\Omega$ resistors, combined with 1pF of amplifier input capacitance and 1pF of PCB capacitance, causes a pole at 79.6MHz. Since this pole is within the amplifier bandwidth, it jeopardizes stability. Reducing the $2k\Omega$ resistors to 100Ω extends the pole frequency to 1.59GHz, but could limit output swing by adding 200Ω in parallel with the amplifier's load resistor (Figures 1a and 1b).

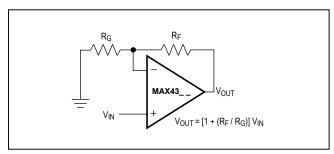


Figure 1a. Noninverting Gain Configuration

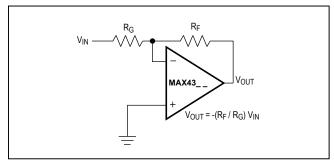


Figure 1b. Inverting Gain Configuration

Layout and Power-Supply Bypassing

The MAX4389/MAX4390/MAX4392–MAX4396 operate from single 4.5V to 11V or from dual ± 2.25 V to ± 5.5 V supplies. Bypass each supply with a 0.1μ F capacitor as close to the pin as possible.

Maxim recommends using microstrip and stripline techniques to obtain full bandwidth. To ensure that the PCB does not degrade the amplifier's performance, design it for a frequency greater than 1GHz. Pay careful attention to inputs and outputs to avoid large parasitic capacitance. Whether or not you use a constant-impedance board, observe the following design guidelines:

- Do not use wire-wrap boards; they are too inductive.
- Do not use IC sockets; they increase parasitic capacitance and inductance.
- Use surface-mount instead of through-hole components for better, high-frequency performance.
- Use a PCB with at least two layers; it should be as free from voids as possible.
- Keep signal lines as short and as straight as possible.
 Do not make 90° turns; round all corners.

Low-Power Disable Mode

The MAX4389/MAX4393/MAX4394/MAX4396 feature a disable function that allows the amplifiers to be placed in a low-power, high-output impedance state. When the disable pin (DISABLE) is active, the amplifier's output impedance is 95kΩ. This high resistance and the low 2pF output capacitance make the MAX4389/MAX4390/MAX4392–MAX4396 in RF/video multiplexer or switch applications. For larger arrays, pay careful attention to capacitive loading (see the *Output Capacitive Loading and Stability* section).

Output Capacitive Loading and Stability

The MAX4389/MAX4390/MAX4392–MAX4396 are optimized for AC performance. They are not designed to drive highly reactive loads, which decrease phase margin and may produce excessive ringing and oscillation. Figure 2 shows a circuit that eliminates this problem. Figure 3 is a graph of the Optimal Isolation Resistor (R_S) vs. Capacitive Load. Figure 4 shows how a capacitive load causes excessive peaking of the amplifier's frequency response if the capacitor is not isolated from the amplifier by a resistor. A small isolation resistor (usually 10Ω to 15Ω) placed before the reactive load prevents ringing and oscillation. At higher capacitive loads, AC performance is controlled by the interaction of the load capacitance and the isolation resistor. Figure 5 shows the effect of a 15Ω isolation resistor on closed-loop response.

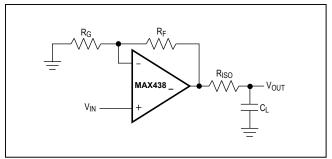


Figure 2. Driving a Capacitive Load Through an Isolation Resistor

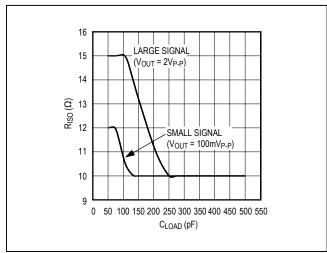


Figure 3. Isolation Resistance vs. Capacitive Load

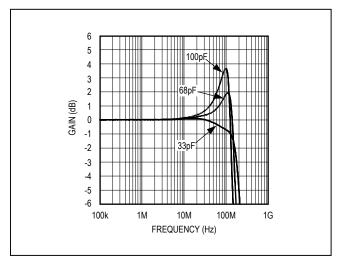
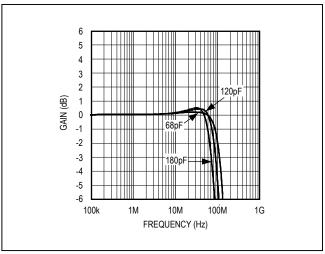
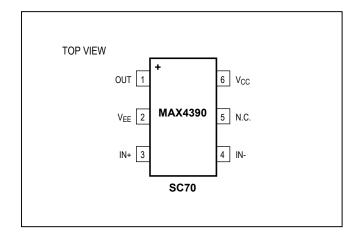
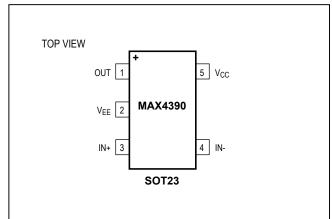
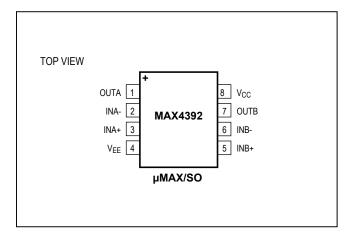
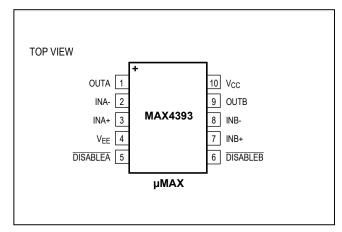


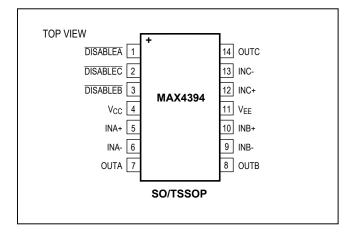
Figure 4. Small-Signal Gain vs. Frequency with Load Capacitance and No Isolation Resistor

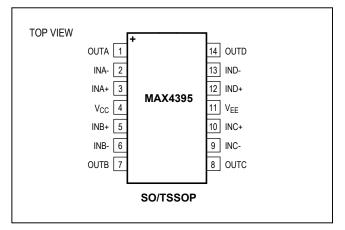



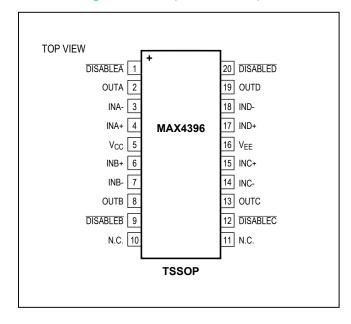

Figure 5. Small-Signal Gain vs. Frequency with Load Capacitance and 27Ω Isolation Resistor


Chip Information


PROCESS: BICMOS


Pin Configurations (continued)





Pin Configurations (continued)

Ordering Information (continued)

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4392ESA+T	-40°C to +85°C	8 SO	_
MAX4392EUA+T	-40°C to +85°C	8 µMAX	_
MAX4393EUB+T	-40°C to +85°C	10 μMAX	_
MAX4394ESD+T	-40°C to +85°C	14 SO	_
MAX4394EUD+T	-40°C to +85°C	14 TSSOP	_
MAX4395ESD+T	-40°C to +85°C	14 SO	_
MAX4395EUD+T	-40°C to +85°C	14 TSSOP	_
MAX4396EUP+T	-40°C to +85°C	20 TSSOP	_

⁺Denotes a lead(Pb)-free/RoHs-compliant package.

Selector Guide

PART	NO. OF AMPS	DISABLE
MAX4389	1	Yes
MAX4390	1	No
MAX4392	2	No
MAX4393	2	Yes
MAX4394	3	Yes
MAX4395	4	No
MAX4396	4	Yes

[/]V denotes an automotive qualified part.

T = Tape and reel.

MAX4389/MAX4390/ MAX4392-MAX4396

Ultra-Small, Low-Cost, 85MHz Op Amps with Rail-to-Rail Outputs and Disable

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
6 SC70	X6SN+1	21-0077	90-0189
6 SOT23	U6SN+1	21-0058	90-0175
5 SOT23	U5+1	21-0057	90-0174
8 μMAX	U8+1	21-0036	90-0092
10 μMAX	U10+2	21-0061	90-0330
8 S0	S8+2	21-0041	90-0096
14 SO	S14+1	21-0041	90-0112
14 TSSOP	U14+1	21-0066	90-0113
20 TSSOP	U20+3	21-0066	90-0116

MAX4389/MAX4390/ MAX4392-MAX4396

Ultra-Small, Low-Cost, 85MHz Op Amps with Rail-to-Rail Outputs and Disable

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
4	11/09	Added automotive qualified parts	2, 15
5	5/14	Revised package codes	16
6	4/15	Removed automotive packages from data sheet	1, 15

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for High Speed Operational Amplifiers category:

Click to view products by Maxim manufacturer:

Other Similar products are found below:

LT1809IS6#TRM NJU7047RB1-TE2 LTC6226IS8#PBF LT1058ACN LT1206CR LT1058ISW THS4222DGNR JM38510/11905BPA

OPA2677IDDAR THS6042ID THS4221DBVR THS4081CD ADA4858-3ACPZ-R7 LT6202IS5#TRMPBF LT1206CR#PBF

LT1813CDD#PBF LT1037IN8#PBF LTC6401CUD-20#PBF LT1192CN8#PBF LT1037ACN8#PBF LTC6253CTS8#TRMPBF

LT1399HVCS#PBF LT1993CUD-2#PBF LT1722CS8#PBF LT1208CN8#PBF LT1007ACN8#PBF LT1222CN8#PBF LT6203IDD#PBF

LT6411IUD#PBF LTC6400CUD-26#PBF LTC6400CUD-8#PBF LT6211IDD#PBF LT1810IMS8#PBF OP37EN8#PBF LT1360CS8

OPA2132PAG4 OPA2353UA/2K5 OPA2691I-14D OPA4353UA/2K5 OPA690IDRG4 LMH6723MFX/NOPB ADP5302ACPZ-3-R7

AD8000YRDZ AD8007AKSZ-REEL7 AD8008ARMZ AD8009JRTZ-REEL7 AD8010ANZ AD8012ARMZ AD8014ARTZ-REEL7

AD8016AREZ