MAX4400-MAX4403

Single/Dual/Quad, Low-Cost, Single-Supply, Rail-to-Rail Op Amps with Shutdown

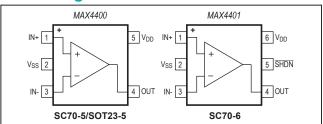
General Description

The MAX4400–MAX4403 low-cost, general-purpose op amps offer rail-to-rail outputs, draw only $320\mu\text{A}$ of quiescent current, and operate from a single +2.5V to +5.5V supply. For additional power conservation, the MAX4401 offers a low-power shutdown mode that reduces supply current to $1\mu\text{A}$ (max) and puts the amplifier's output in a high-impedance state. These devices deliver $\pm 1.4\text{mA}$ of output current and are unity-gain stable with a 1MHz gain-bandwidth product driving capacitive loads up to 400pF. The MAX4400–MAX4403 are specified to +125°C, making them suitable for use in a variety of harsh environments, such as automotive applications.

The MAX4400 single amplifier is available in ultra-small 5-pin SC70 and space-saving 5-pin SOT23 packages. The single MAX4401 includes the shutdown feature and is available in a 6-pin SC70. The MAX4402 is a dual amplifier available in 8-pin SOT23, μ MAX®, and SO packages. The MAX4403 quad amplifier is packaged in a 14-pin TSSOP or SO.

Applications

- Single-Supply, Zero-Crossing Detectors
- Instruments and Terminals
- Portable Communications
- Electronic Ignition Modules
- Infrared Receivers
- Sensor Signal Detection
- Automotive


Selector Guide

PART	NO. OF AMPLIFIERS PER PACKAGE	SHUTDOWN MODE
MAX4400	1	No
MAX4401	1	Yes
MAX4402	2	No
MAX4403	4	No

Benefits and Features

- Single +2.5V to +5.5V Supply Voltage Range
- 320µA Quiescent Current per Amplifier
- 1µA (max) Shutdown Mode (MAX4401)
- Available in Space-Saving Packages 5-Pin SC70 (MAX4400)
 6-Pin SC70 (MAX4401)
 8-Pin SOT23/µMAX (MAX4402)
- 110dB A_{VOL} with 2kΩ Load
- 0.015% THD with 2kΩ Load
- Rail-to-Rail Output Voltage Swing
- 1.4mA of Sink and Source Load Current
- Unity-Gain Stable up to C_{I OAD} = 400pF
- Ground-Sensing Inputs
- AEC-Q100 Qualified (MAX4402AKA/V+ and MAX4402AUA/V+ Only)

Pin Configurations

Pin Configurations continued at end of data sheet.

µMAX is a registered trademark of Maxim Integrated Products, Inc.

Absolute Maximum Ratings

Power-Supply Voltage (V _{DD} to V _{SS})	0.3V to +6V
All Other Pins(V _{SS} - 0	0.3V) to (V _{DD} + 0.3V)
Output Short-Circuit Duration	
OUT Shorted to V _{SS} or V _{DD}	Continuous
Continuous Power Dissipation (T _A = +70°0	C)
5-Pin SC70 (derate 3.10mW/°C above +	
5-Pin SOT23 (derate 3.90mW/°C above	+70°C)312.60mW
6-Pin SC70 (derate 3.10mW/°C above +	⊦70°C)245mW
8-Pin SOT23 (derate 5.10mW/°C above	+70°C)408.2mW

8-Pin μMAX (derate 4.5mW/°C above +70°C	;) 362mW
8-Pin SO (derate 5.88mW/°C above +70°C).	471mW
14-Pin TSSOP (derate 8.33mW/°C above +7	70°C) 727.30mW
14-Pin SO (derate 9.10mW/°C above +70°C) 667mW
Operating Temperature Range	-40°C to +125°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

5 SC70

PACKAGE CODE	X5+1
Outline Number	21-0076
Land Pattern Number	90-0188
Thermal Resistance, Single-Layer Board:	
Junction to Ambient (θ _{JA})	324°C/W
Junction to Case (θ_{JC})	115°C/W
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ _{JA})	324°C/W
Junction to Case (θ _{JC})	115°C/W

5 SOT23

PACKAGE CODE	U5+1
Outline Number	21-0057
Land Pattern Number	90-0174
Thermal Resistance, Single-Layer Board:	
Junction to Ambient (θ _{JA})	324.30°C/W
Junction to Case (θ _{JC})	82°C/W
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ _{JA})	255.90°C/W
Junction to Case (θ_{JC})	81°C/W

6 SC70

PACKAGE CODE	X6SN+1
Outline Number	21-0077
Land Pattern Number	90-0189
Thermal Resistance, Single-Layer Board:	
Junction to Ambient (θ _{JA})	326°C/W
Junction to Case (θ_{JC})	115°C/W
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ _{JA})	326.50°C/W
Junction to Case (θ_{JC})	115°C/W

Package Information (continued)

8 SOT23

PACKAGE CODE	K8+5, K8+5A
Outline Number	21-0078
Land Pattern Number	90-0176
Thermal Resistance, Single-Layer Board	
Junction to Ambient (θ _{JA})	N/A
Junction to Case (θ_{JC})	800°C/W
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ _{JA})	196°C/W
Junction to Case (θ _{JC})	70°C/W

$8 \mu MAX$

PACKAGE CODE	U8+1
Outline Number	21-0036
Land Pattern Number	90-0092
Thermal Resistance, Single-Layer Board:	
Junction to Ambient (θ _{JA})	221°C/W
Junction to Case (θ _{JC})	42°C/W
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ _{JA})	206.30°C/W
Junction to Case (θ_{JC})	42°C/W

8 SO

PACKAGE CODE	S8+2
Outline Number	21-0041
Land Pattern Number	90-0096
Thermal Resistance, Single-Layer Board:	
Junction to Ambient (θ _{JA})	170°C/W
Junction to Case (θ_{JC})	40°C/W
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ _{JA})	136°C/W
Junction to Case (θ _{JC})	38°C/W

14 TSSOP

PACKAGE CODE	U14+1	
Outline Number	21-0066	
Land Pattern Number	90-0113	
Thermal Resistance, Single-Layer Boar	ı:	
Junction to Ambient (θ _{JA})	110°C/W	
Junction to Case (θ _{JC})	30°C/W	
Thermal Resistance, Four-Layer Board		
Junction to Ambient (θ _{JA})	100.40°C/W	
Junction to Case (θ _{JC})	30°C/W	

Package Information (continued)

14 SO

PACKAGE CODE	S14+1
Outline Number	21-0041
Land Pattern Number	90-0112
Thermal Resistance, Single-Layer Board:	
Junction to Ambient (θ _{JA})	120°C/W
Junction to Case (θ _{JC})	37°C/W
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ _{JA})	84°C/W
Junction to Case (θ _{JC})	34°C/W

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

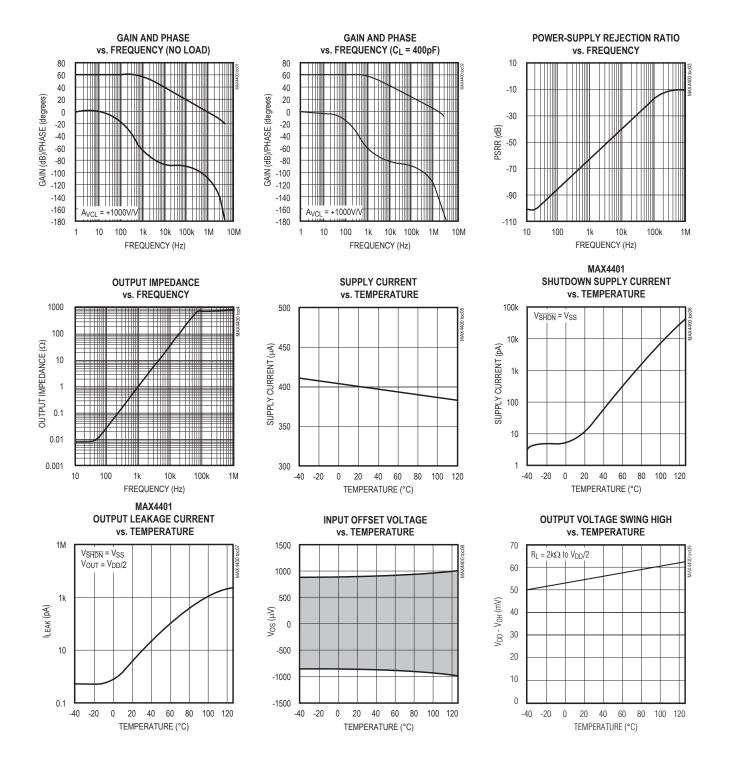
 $(V_{DD}$ = +5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = $V_{DD}/2$, R_L = ∞ connected to $V_{DD}/2$, \overline{SHDN} = V_{DD} (MAX4401 only), T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	COND	MIN	TYP	MAX	UNITS	
Supply Voltage Range	V _{DD}	Inferred from PSRR test		2.5		55	V
C		$I_{DD} = V_{DD} = 2.5V$ $V_{DD} = 5.0V$			320		
Supply Current per Amplifier	'DD				410	700	μΑ
Supply Current in Shutdown	ISHDN	SHDN = V _{SS} (Note 1)		0.00002	1	μA
lament Officet Voltage		MAX4400/MAX4401		±0.8 ±	±4.5		
Input Offset Voltage	V_{OS}	MAX4402/MAX4403			±1.0	±5.5	mV
Input Bias Current	Ι _Β	(Note 2)			±0.1	±100	рА
Input Offset Current	Ios	(Note 2)			±0.1	±100	pА
Input Resistance	R _{IN}	Differential or commo	n mode		1000		GΩ
Input Common-Mode Voltage Range	V _{CM}	Inferred from CMRR to	est	V _{SS}		V _{DD} - 1.4	V
Common-Mode Rejection Ratio	CMRR	$V_{SS} \le V_{CM} \le V_{DD} - 1$	1.4V	68	84		dB
Power-Supply Rejection Ratio	PSRR	2.5V ≤ V _{DD} ≤ 5.5V		78	100		dB
Large Signal Voltage Cain	۸	V _{SS} + 0.3V ≤	R _L = 100kΩ		120		٩D
Large-Signal Voltage Gain	A_{VOL}	$V_{OUT} \le V_{DD} - 0.3V$	$R_L = 2k\Omega$	90	110		dB
O. d d) / -	\/	Specified as	R _L = 100kΩ		3		.,
Output Voltage High	V _{OH}	IV _{DD} - V _{OH} I	$R_L = 2k\Omega$		55	200	mV
Output Voltage Law	\/	Specified as	R _L = 100kΩ		2		ma\/
Output Voltage Low	V _{OL}	V _{SS} - V _{OL}	$R_L = 2k\Omega$		30	75	- mV
Output Short-Circuit Current		Sourcing			12		mΛ
Output Short-Circuit Current		Sinking			30		mA
Shutdown Mode Output Leakage	I _{OUTSHDN}	Device in shutdown mode, SHDN = SS, V _{SS} < V _{OUT} < V _{CC} (Note 1)				±1.0	μΑ
SHDN Logic-Low	V _{IL}	(Note 1)	,			0.3 × V _{DD}	V
SHDN Logic-High	V _{IH}	(Note 1)		0.7 × V _{DD}		00	V
SHDN Input Current	I _{IL} , I _{IH}	SHDN = V _{DD} or V _{SS}	(Note 1)		±0.001	±500	nA
Gain-Bandwidth Product	GBW	22 00			800		kHz
Phase Margin	φМ				70		0
Gain Margin					20		dB
Slew Rate	SR				1		V/µs
Input Voltage-Noise Density	e _n	f = 10kHz			36		nV/√Hz
Input Current-Noise Density	i _n	f = 10kHz			1		fA/√Hz
Capacitive-Load Stability	C _{LOAD}	A _V = +1V/V			400		pF
Shutdown Delay Time	t _{SHDN}	A _V = +1V/V			0.4		μs
Enable Delay Time	t _{EN}	(Note 1)			6		μs
Power-On Time	t _{ON}				5		μs
Input Capacitance	C _{IN}				2.5		pF
Total Harmonic Distortion	THD	f = 10kHz, V _{OUT} = 2V _{P-P} , A _V = +1V/V	$R_L = 100k\Omega$ $R_L = 2k\Omega$		0.009 0.015		%
Settling Time to 0.1%	t _S	V _{OUT} = 2V step	· · L · · · · · · · · · · · · · · · ·		7		μs

Electrical Characteristics

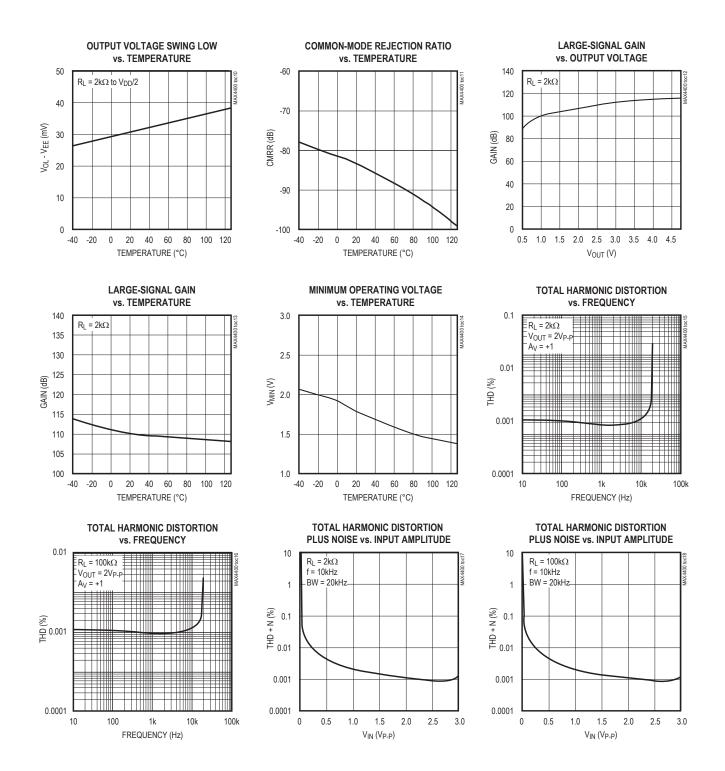
 $(V_{DD}$ = +5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = $V_{DD}/2$, R_L = ∞ connected to $V_{DD}/2$, T_A = -40°C to +125°C, unless otherwise noted.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	V _{DD}	Inferred by PSRR test		2.5		5.5	V
Supply Current per Amplifier	I _{DD}					800	μA
Supply Suiterit per Ampliner		MAX4400/MAX4401				±6.5	μ, τ
Input Offset Voltage	Vos	MAX4402/MAX4403				±8.0	mV
Input Offset Voltage Drift	TC _{VOS}				±1		μV/°C
Input Bias Current	I _B	(Note 2)				±100	рА
Input Offset Current	Ios	(Note 2)				±100	рА
Input Common-Mode Voltage Range	V _{CM}	Inferred from CMRR test		V _{SS}	V_{DD}	- 1.5	V
Common-Mode Rejection Ratio	CMRR	$V_{SS} \le V_{CM} \le V_{DD} - 1.5V$		65			dB
		$V_{SS} \le V_{CM} \le V_{DD} - 1.0 V T_A = -20 ^{\circ} C \text{ to } +125 ^{\circ} C$		50			
Power-Supply Rejection Ratio	PSRR	$2.5V \le V_{CC} \le 5.5V$		74			dB
Shutdown Mode Output Leakage	I _{OUTSHDN}	Device in shutdown mode, SHDN = V _{SS} , V _{SS} < V _{OUT} < V _{DD} (Note 1)	T _A = -40°C to +85°C			±1.0	μΑ
			$T_A = +85^{\circ}C \text{ to } +125^{\circ}C$			±5.0	μ/ τ
SHDN Logic-Low	V _{IL}	(Note 1)			0.3	$\times V_{DD}$	V
SHDN Logic-High	V _{IH}	(Note 1)		0.7 × V _I	OD		V
SHDN Input Current	I _{IL} , I _{IH}	SHDN = V _{DD} or V _{SS} (Notes 1, 2)				±1000	nA
Large-Signal Voltage Gain	A _{VOL}	$V_{SS} + 0.3V \le V_{OUT} \le V_{DD} - 0.3V$, $R_L = 2k\Omega$		85			dB
Output Voltage High	V _{OH}	Specified as $ V_{DD} - V_{OH} $, $R_L = 2k\Omega$				250	mV
Output Voltage Low	V _{OL}	Specified as $ V_{SS} - V_{OL} $, $R_L = 2k\Omega$				100	mV

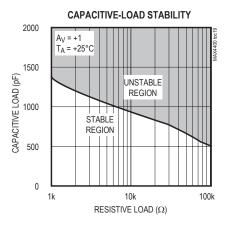

Note 1: Shutdown mode is only available in the 6-pin SC70 single op amp (MAX4401).

Note 2: Guaranteed by design.

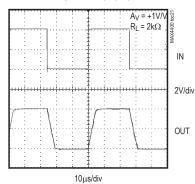
Note 3: Specifications are 100% tested at $T_A = +25$ °C (exceptions noted). All temperature limits are guaranteed by design.


Typical Operating Characteristics

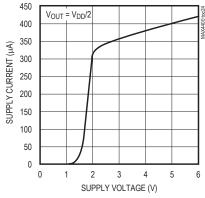
 $(V_{DD}$ = +5V, V_{SS} = 0V, V_{CM} = $V_{DD}/2$, $V_{\overline{SHDN}}$ = 5V, R_L = ∞ connected to $V_{DD}/2$, T_A = +25°C, unless otherwise noted.)

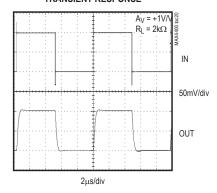

Typical Operating Characteristics (continued)

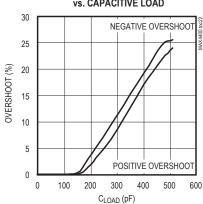
 $(V_{DD}$ = +5V, V_{SS} = 0V, V_{CM} = $V_{DD}/2$, $V_{\overline{SHDN}}$ = 5V, R_L = ∞ connected to $V_{DD}/2$, T_A = +25°C, unless otherwise noted.)

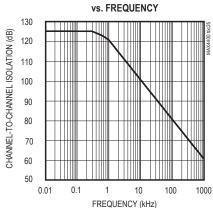


Typical Operating Characteristics (continued)


 $(V_{DD} = +5V, V_{SS} = 0V, V_{CM} = V_{DD}/2, V_{\overline{SHDN}} = 5V, R_L = \infty$ connected to $V_{DD}/2, T_A = +25$ °C, unless otherwise noted.)


NONINVERTING LARGE-SIGNAL TRANSIENT RESPONSE


SUPPLY CURRENT vs. SUPPLY VOLTAGE


NONINVERTING SMALL-SIGNAL TRANSIENT RESPONSE

PERCENT OVERSHOOT vs. CAPACITIVE LOAD

MAX4402/MAX4403 CHANNEL-TO-CHANNEL ISOLATION

Pin Description

PIN		NAME	FUNCTION				
MAX4400	MAX4401	MAX4402	MAX4403	NAME	FUNCTION		
1	1	_	_	IN+	Noninverting Amplifier Input		
_	_	3	3	INA+	Noninverting Amplifier Input A		
_	_	5	5	INB+	Noninverting Amplifier Input B		
_	_	_	10	INC+	Noninverting Amplifier Input C		
_	_	_	12	IND+	Noninverting Amplifier Input D		
2	2	4	11	V _{SS}	Negative Supply. Connect to ground for single- supply operation.		
3	3	_	_	IN-	Inverting Amplifier Input		
_	_	2	2	INA-	Inverting Amplifier Input A		
_	_	6	6	INB-	Inverting Amplifier Input B		
_	_	_	9	INC-	Inverting Amplifier Input C		
_	_	_	13	IND-	Inverting Amplifier Input D		
4	4	_	_	OUT	Amplifier Output		
_	_	1	1	OUTA	Amplifier Output A		
_	_	7	7	OUTB	Amplifier Output B		
_	_	_	8	OUTC	Amplifier Output C		
_	_	_	14	OUTD	Amplifier Output D		
5	6	8	4	V _{DD}	Positive Supply		
_	5	_	_	SHDN	Active-Low Shutdown Input. Connect to $V_{\mbox{\scriptsize DD}}$ for normal operation. Do not leave unconnected.		

Detailed Description

Rail-to-Rail Output Stage

The MAX4400–MAX4403 can drive a $2k\Omega$ load and still typically swing within 55mV of the supply rails. Figure 1 shows the output voltage swing of the MAX4400 configured with $A_V = +10V/V$.

Driving Capacitive Loads

Driving a capacitive load can cause instability in many op amps, especially those with low quiescent current. The MAX4400–MAX4403 are unity-gain stable for a range of capacitive loads to above 400pF. Figure 2 shows the response of the MAX4400 with an excessive capacitive load. Adding a series resistor between the output and the load capacitor (Figure 3) improves the circuit's response by isolating the load capacitance from the op amp's output.

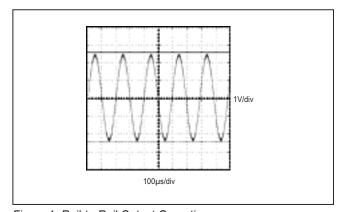


Figure 1. Rail-to-Rail Output Operation

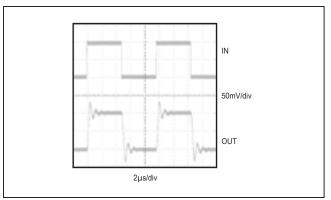


Figure 2. Small-Signal Transient Response with Excessive Capacitive Load

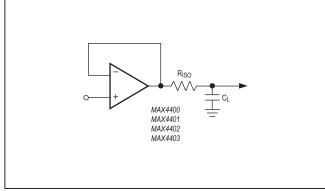


Figure 3. Capacitive-Load-Driving Circuit

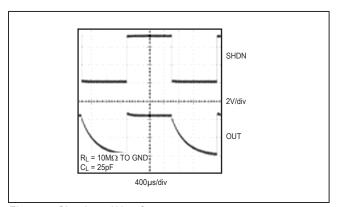


Figure 4. Shutdown Waveform

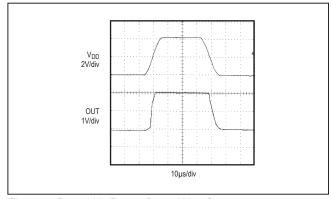


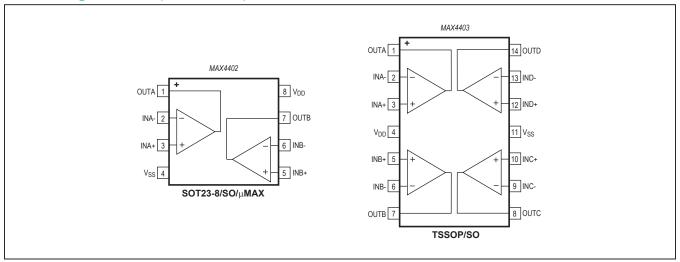
Figure 5. Power-Up/Power-Down Waveform

Applications Information

Shutdown Mode

The MAX4401 features a low-power shutdown mode. When SHDN goes low, the supply current drops to 20pA (typ) and the output enters a high-impedance state. Pull SHDN high to enable the amplifier. Do not leave SHDN unconnected. Figure 4 shows the shutdown waveform.

Power-Up


The MAX4400–MAX4403 outputs typically settle within 5µs after power-up. Figure 5 shows the output voltage on power-up and power-down.

Power Supplies and Layout

The MAX4400–MAX4403 operate from a single +2.5V to +5.5V power supply. Bypass the power supply with a $0.1\mu F$ capacitor to ground.

Good layout techniques optimize performance by decreasing the amount of stray capacitance at the op amp's inputs and outputs. To decrease stray capacitance, minimize trace lengths by placing external components close to the op amp's pins.

Pin Configurations (continued)

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4400AXK+T	-40°C to +125°C	5 SC70	AAG
MAX4400AUK+T	-40°C to +125°C	5 SOT23	ADNP
MAX4401AXT+T	-40°C to +125°C	6 SC70	AAB
MAX4402AKA+T	-40°C to +125°C	8 SOT23	AADI
MAX4402AKA/V+T	-40°C to +125°C	8 SOT23	AETR
MAX4402AUA+	-40°C to +125°C	8 µMAX	_
MAX4402AUA/V+T	-40°C to +125°C	8 µMAX	_
MAX4402ASA+	-40°C to +125°C	8 SO	_
MAX4403AUD+	-40°C to +125°C	14 TSSOP	_
MAX4403ASD+	-40°C to +125°C	14 SO	_

⁺Denotes a lead(Pb)-free/RoHS-compliant package. /V denotes an automotive qualified part.

Maxim Integrated | 12 www.maximintegrated.com

T = Tape and reel.

MAX4400-MAX4403

Single/Dual/Quad, Low-Cost, Single-Supply, Rail-to-Rail Op Amps with Shutdown

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	1/00	Initial Release	_
1	11/00	Release of MAX4402.	1, 2, 9
2	7/00	Release of MAX4403.	1, 6, 7
3	9/01	Added µMAX package to data sheet.	1, 2, 9
4	7/12	Added automotive package for MAX4402 to data sheet.	1
5	6/14	Added MAX4402AKA/V+T automotive package to data sheet.	1
6	10/17	Added AEC qualfication statement to Benefits and Features section	1
7	3/18	Added Package Information section and updated Absolute Maximum Ratings section	2
8	1/19	Updated Applications and Package Information sections	1, 2–4, 12

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by Maxim manufacturer:

Other Similar products are found below:

LM258AYDT LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC259G2-A NTE925 AZV358MTR-G1

AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV20034DR2G LM324EDR2G

LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MCP6V36UT-E/LTY

MXD8011HF MCP6V17T-E/MS SCY6358ADR2G LTC2065HUD#PBF NJM2904CRB1-TE1 2SD965T-R RS6332PXK BDM8551

BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR ASOPD4580S-R RS321BKXF

ADA4097-1HUJZ-RL7 NCV4333DTBR2G EL5420CRZ-T7A AS324MTR-E1 AS358MMTR-G1 MCP6491T-ELTY