Single-Supply, 150MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps

General Description

The MAX4434/MAX4435 single and MAX4436/MAX4437 dual operational amplifiers feature wide bandwidth, 16-bit settling time in $23 n$, and low-noise/low-distortion operation. The MAX4434/MAX4436 are compensated for unitygain stability and have a small-signal -3dB bandwidth of 150 MHz . The MAX4435/MAX4437 are compensated for closed-loop gains of +5 or greater and have a smallsignal, -3 dB bandwidth of 150 MHz .
The MAX4434-MAX4437 op amps require only 15 mA of supply current per amplifier while achieving 115dB open-loop gain. Voltage noise density is a low $2.2 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ and provides 97 dB spurious-free dynamic range (SFDR) at 1 MHz . These characteristics make these op amps ideal for driving modern, high-speed 14-and 16-bit analog-to-digital converters (ADCs).
These high-speed op amps feature wide-output voltage swings and a high-current output drive up to 65 mA . Using a voltage feedback architecture, the MAX4434-MAX4437 meet the requirements of many applications that previously depended on current feedback amplifiers.
The MAX4434/MAX4435 are available in space-saving 5-pin SOT23 packages and the MAX4436/MAX4437 are available in 8-pin $\mu \mathrm{MAX}{ }^{\circledR}$ packages.

Applications

- High-Speed 14- and 16-Bit ADC Preamplifiers
- Low-Noise Preamplifiers
- IF/RF Amplifiers
- Low-Distortion Active Filters
- High-Performance Receivers
- Precision Instrumentation
$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

Pin Configurations

Features

- 16-Bit Accurate Settling in 23ns (MAX4435/MAX4437)
- 97 dB SFDR at $1 \mathrm{MHz}, 4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ Output
- $2.2 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Input Voltage-Noise Density
- 100dB (min) Open-Loop Gain
- 388V/ μ s Slew Rate (MAX4435/MAX4437)
- 65mA High Output Drive
- Available in Space-Saving Packages
- 5-Pin SOT23 (MAX4434/MAX4435)
- 8-Pin μ MAX (MAX4436/MAX4437)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4434EUK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23
MAX4434ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4435EUK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23
MAX4435ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4436EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8μ MAX
MAX4436ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4437EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8μ MAX
MAX4437ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO

+Denotes lead (Pb)-free/RoHS-compliant package.
-Denotes a package containing lead(Pb).

Selector Guide appears at end of data sheet.

Typical Operating Circuit

Single-Supply, 150MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps

Absolute Maximum Ratings
Supply Volage (VCC
Differential Input Voltage
Input Voltage Range................... $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$ to ($\left.\mathrm{V}_{\mathrm{EE}}-0.3 \mathrm{~V}\right)$
Current into Any Input Pin .. $\pm 25 \mathrm{~mA}$
Output Short-Circuit Duration to $\mathrm{V}_{\text {CC }}$ or $\mathrm{V}_{\mathrm{EE}} \ldots($ (Note 1)
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
$5-\mathrm{Pin}$ SOT23 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 571

Note 1: The MAX4434-MAX4437 are not protected for output short-circuit conditions.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Common-Mode Voltage Range	$\mathrm{V}_{\text {CM }}$	Guaranteed by CMRR test		$V_{\text {EE }}$		$\mathrm{V}_{\mathrm{CC}}-1$	V
Input Offset Voltage	V_{OS}			1			mV
Input Offset Voltage Temperature Coefficient	TCV ${ }_{\text {os }}$				4		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Voltage Matching		MAX4436/MAX4437		0.25			mV
Input Bias Current	I_{B}				14	22	$\mu \mathrm{A}$
Input Offset Current	IOS				1	5	$\mu \mathrm{A}$
Input Resistance	R_{IN}	Differential Mode $-10 \mathrm{mV} \leq \mathrm{V}_{\text {IN }} \leq+10 \mathrm{mV}$			1		k Ω
		Common Mode $0 \leq \mathrm{V}_{\mathrm{CM}} \leq\left(\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}\right)$			1.7		$\mathrm{M} \Omega$
Common-Mode Rejection Ratio	CMRR	$\mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{CM}} \leq\left(\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}\right)$		75	100		dB
Open-Loop Gain	$A_{\text {VOL }}$	$\begin{aligned} & \left(\mathrm{V}_{\mathrm{EE}}+0.25\right) \leq \mathrm{V}_{\mathrm{OUT}} \leq\left(\mathrm{V}_{\mathrm{CC}}-0.25\right) \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$		100	115		
		$\begin{aligned} & \left(V_{E E}+0.5\right) \leq V_{\mathrm{OUT}} \leq\left(\mathrm{V}_{\mathrm{CC}}-0.5\right) \\ & R_{\mathrm{L}}=500 \Omega \end{aligned}$		96	110		
Output Voltage Swing	$\mathrm{V}_{\text {OUT }}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OH}}$		65	200	mV
			$\mathrm{V}_{\mathrm{OL}}-\mathrm{V}_{\mathrm{EE}}$		15	70	
Output Current	Iout	$R_{L}=20 \Omega \text { to }$ Ground	Sinking	40	65		mA
			Sourcing	35	60		
Output Short-Circuit Current	$\mathrm{I}_{\text {SC }}$	Sinking or sourcing			± 70		mA
DC Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{CC}}=+4.5 \mathrm{~V}$ to +5.5 V		85	110		dB
Operating Supply Voltage	V_{S}	Guaranteed by PSRR test		+4.5		+5.5	V
Quiescent Supply Current (Per Amplifier)	Is				15	18	mA

Note 2: All devices are 100% production tested at $+25^{\circ} \mathrm{C}$. Specifications over temperature limits are guaranteed by design.

AC Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~A}_{\mathrm{VCL}}=+1\right.$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Small-Signal -3dB Bandwidth	BWSS	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=20 \mathrm{mVp-p} \\ & \text { MAX4434/MAX4436 } \end{aligned}$	150		MHz
		$\begin{aligned} & \mathrm{V}_{\text {OUT }}=20 \mathrm{mVp}-\mathrm{p} \\ & \text { MAX } 4435 / \mathrm{MAX} 4437 \quad\left(\mathrm{~A}_{\mathrm{VCL}}=+5\right) \end{aligned}$	150		
Large-Signal -3dB Bandwidth	BW ${ }_{\text {LS }}$	$\begin{aligned} & V_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p} \\ & \text { MAX4434/MAX4436 } \end{aligned}$	28		MHz
		$\begin{aligned} & \mathrm{V}_{\text {OUT }}=4 \mathrm{Vp-p} \\ & \text { MAX4435/MAX4437 (} \left.\mathrm{A}_{\mathrm{VCL}}=+5\right) \end{aligned}$	25		
Small-Signal 0.1dB Gain Flatness	$\mathrm{BW}_{0.1 \mathrm{dBSS}}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=20 \mathrm{mVp-p} \\ & \text { MAX } 4434 / \text { MAX4436 } \end{aligned}$	80		MHz
		$\begin{aligned} & \mathrm{V}_{\text {OUT }}=20 \mathrm{mVp}-\mathrm{p} \\ & \text { MAX4435/MAX4437 (AVCL }=+5) \end{aligned}$	80		
Large-Signal 0.1 dB Gain Flatness	$\mathrm{BW}_{0.1 \mathrm{dBLS}}$	$\begin{aligned} & \text { VOUT }=2 \mathrm{Vp}-\mathrm{p} \\ & \text { MAX } 4434 / \text { MAX4436 } \end{aligned}$	15		MHz
		$\begin{aligned} & \text { Vout }=4 \mathrm{Vp-p} \\ & \text { MAX4435/MAX4437 (AVCL }=+5) \end{aligned}$	20		
Slew Rate	SR	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$ step MAX4434/MAX4436	133		$\mathrm{V} / \mathrm{\mu s}$
		$\begin{aligned} & \mathrm{V}_{\text {OUT }}=4 \mathrm{~V} \text { step } \\ & \text { MAX } 4435 / \mathrm{MAX} 4437 \quad\left(\mathrm{~A}_{\mathrm{VCL}}=+5\right) \end{aligned}$	388		
Rise/Fall Time	$t_{\text {R }}, t_{F}$	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$ step MAX4434/MAX4436	17		ns
		$\begin{aligned} & \mathrm{V}_{\text {OUT }}=4 \mathrm{~V} \text { step } \\ & \text { MAX } 4435 / \mathrm{MAX} 4437 \quad\left(\mathrm{~A}_{\mathrm{VCL}}=+5\right) \end{aligned}$	10		
Settling Time to 16 -Bit (0.0015\%)	${ }^{\text {t }} \mathbf{5 0 . 0 0 1 5 \%}$	$\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V}$ to 3.5 V step MAX4434/MAX4436	35		ns
		$V_{\text {OUT }}=1.5 \mathrm{~V}$ to 3.5 V step MAX4435/MAX4437 ($\mathrm{A}_{\mathrm{VCL}}=+5$)	23		
		$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ to 4 V step MAX4434/MAX4436	42		
Output "Glitch" Settling to 16-Bit (0.0015\%)		5 pF load, C_{L} charged from 1 V to 4 V	41		ns
Output Overload Recovery Time		50\% overdrive, settling to 10\% accuracy	100		ns
AC Common-Mode Rejection Ratio	CMRR	$\mathrm{f}_{\mathrm{C}}=100 \mathrm{kHz}$	-92		dB

AC Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~A}_{\mathrm{VCL}}=+1\right.$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
AC Power-Supply Rejection Ratio	PSRR	$\mathrm{f}_{\mathrm{C}}=100 \mathrm{kHz}$		-101		dB
Spurious-Free Dynamic Range	SFDR	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	$\mathrm{f}_{\mathrm{C}}=100 \mathrm{kHz}$	-97		dBc
		$\mathrm{V}_{\mathrm{CC}} / 2$	$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$	-98		
		$\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {p-p }}$ centered at $\mathrm{V}_{\mathrm{CC}} / 2$	$\mathrm{f}_{\mathrm{C}}=100 \mathrm{kHz}$	-130		
			$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$	-99		
		$\mathrm{V}_{\text {OUT }}=4 \mathrm{~V}_{\text {p-p }}$ centered at $\mathrm{V}_{\mathrm{CC}} / 2$	$\mathrm{f}_{\mathrm{C}}=100 \mathrm{kHz}$	-112		
			$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$	-97		
Input Noise Voltage Density	e_{n}	$\mathrm{f}_{\mathrm{C}}=100 \mathrm{kHz}$		2.2		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current Density	i_{n}	$\mathrm{f}_{\mathrm{C}}=100 \mathrm{kHz}$		2.0		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Input Capacitance	$\mathrm{C}_{\text {IN }}$			2.3		pF
Maximum Capacitive Load Without Sustained Oscillations				30		pF
Output Impedance	Z OUT	$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}$		0.05		Ω
Crosstalk		$\mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}, \mathrm{MAX} 4436 / \mathrm{MAX} 4437$		-80		dB

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

MAX4435/MAX4437
SMALL-SIGNAL PULSE RESPONSE

MAX4435/MAX4437 LARGE-SIGNAL GAIN vs. FREQUENCY (AvCL $=+5 \mathrm{~V} / \mathrm{V}$)

MAX4434/MAX4436
LARGE-SIGNAL PULSE RESPONSE

MAX4434/MAX4436 SMALL-SIGNAL PULSE RESPONSE

MAX4435/MAX4437 LARGE-SIGNAL PULSE RESPONSE

Typical Operating Characteristics (continued)
 $\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

MAX4435/MAX4437 LARGE-SIGNAL PULSE RESPONSE

POWER-SUPPLY REJECTION RATIO vs. FREQUENCY

CLOSED-LOOP OUTPUT IMPEDANCE vs. FREQUENCY

COMMON-MODE REJECTION RATIO vs. FREQUENCY

GAIN AND PHASE vs. FREQUENCY

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Pin Description

PIN		NAX4434/MAX4435	FUNCTION
	SO		
SOT23	6	OUT	
1	4	$\mathrm{~V}_{\mathrm{EE}}$	Ground
2	3	$\mathrm{IN}+$	Noninverting Input
3	2	$\mathrm{IN}-$	Inverting Input
4	7	$\mathrm{~V}_{\mathrm{CC}}$	Positive Power Supply
5	$1,5,8$	N.C.	No Connection. Not internally connected.
-			

PIN	NAME	FUNCTION
MAX4436/MAX4437		
SO/uMAX		
1	OUTA	Amplifier A Output
2	INA-	Amplifier A Inverting Input
3	INA+	Amplifier A Noninverting Input
4	V_{EE}	Ground
5	INB+	Amplifier A Noninverting Input
6	INB-	Amplifier A Inverting Input
7	OUTB	Amplifier A Output
8	V_{CC}	Positive Power Supply

Single-Supply, 150MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps

Detailed Description

The MAX4434-MAX4437 are wide-bandwidth, ultra-low -distortion, voltage-feedback amplifiers. The MAX4434/ MAX4436 are internally compensated for unity gain. The MAX4435/MAX4437 are internally compensated for gains of $+5 \mathrm{~V} / \mathrm{V}$ or greater.
These amplifiers have ultra-fast 35ns (MAX4434/ MAX4436) 16 -bit settling times, -97 dB SFDR at 1 MHz , and $4 \mathrm{Vp}-\mathrm{p}$ output swing with minimum 115 dB open-loop gain.

High-Speed ADC Input Driver Application

The MAX4434-MAX4437 op amps are ideal for drivin-ghigh-speed 14- to 16 -bit ADCs. In most cases, these ADCs operate with a charge balance scheme, with capacitive loads internally switched on and off from the input. The driver used must withstand these changing capacitive loads while holding the signal amplitude stability consistent with the ADC's resolution and, at the same time, have a frequency response compatible with the sampling speed of the ADC (Figure 1).

Inverting and Noninverting Configurations

The circuits typically used for the inverting and noninverting configurations of the MAX4434-MAX4437 are shown in Figure 2a and Figure 2b. The minimum uncondition-

Figure 1. Typical Application Circuit

Figure 2a. Noninverting Configuration
ally stable gain values are 1 for the MAX4434/MAX4436 and 5 for the MAX4435/MAX4437. Use care in selecting the value for the resistor marked R_{S} in both circuits. From dynamic stability considerations (based on the part's frequency response and the input capacitance of the MAX4434-MAX4437), the maximum recommended value for R_{S} is 500Ω. In general, lower R_{S} values will yield a higher bandwidth and better dynamic stability, at the cost of higher power consumption, higher power dissipation in the IC, and reduced output drive availability For a minimum R_{S} value, take into consideration that the current indicated as I_{F} is supplied by the output stage and must be discounted from the maximum output current to calculate the maximum current available to the load. I_{F} can be found using the following equation:

$$
\mathrm{I}_{\mathrm{F}}=\mathrm{V}_{\mathrm{IN}(\mathrm{MAX})} / \mathrm{R}_{\mathrm{S}}
$$

If DC thermal stability is an important design concern, the Thevenin resistance seen by both inputs at DC must be balanced. This includes the resistance of the signal source and termination resistors if the amplifier signal input is fed from a transmission line. The capacitance associated with the feedback resistors must also be considered as a possible limitation to the available bandwidth or to the dynamic stability. Only resistors with small parallel capacitance specifications should be considered.

Applications Information

Layout and Power-Supply Bypassing

The MAX4434-MAX4437 have wide bandwidth and consequently require careful board layout. To realize the full AC performance of these high-speed amplifiers, pay careful attention to power-supply bypassing and board layout. The PC board should have a large low-impedance ground plane that is as free of voids as possible. Do not use commercial breadboards. Keep signal lines as short and straight as possible. Observe high-frequency bypass-

Figure 2b. Inverting Configuration

Figure 3. Capacitive-Load Driving Circuit
ing techniques to maintain the amplifier's accuracy and stability. In general, use sur-face-mount components since they have shorter bodies and lower parasitic reactance. This will result in improved performance over through-hole components. The bypass capacitors should include 1 nF and/or $0.1 \mu \mathrm{~F}$ surface-mount ceramic capacitors between V_{CC} and the ground plane, located as close to the package as possible. Place a $10 \mu \mathrm{~F}$ tantalum capacitor at the power supply's point of entry to the PC board to ensure the integrity of the incoming supplies. Input termination resistors and output back-termination resistors, if used, should be surface-mount types and should be placed as close to the IC pins as possible.

Driving Capacitive Loads

The MAX4434-MAX4437 can drive capacitive loads. However, excessive capacitive loads may cause ringing or instability at the output as phase margin is reduced. Adding a small isolation resistor in series with the output capacitive load helps reduce the ringing but slightly increases gain error (see Typical Operating Characteristics and Figure 3).

Selector Guide

PART	AMPS	MIN GAIN STABLE (V/V)	BW $(\mathbf{M H z)}$	SETTLING TIME TO $\mathbf{0 . 0 0 1 5 \% ~ (n s) ~}$
MAX4434	1	+1	150	35
MAX4435	1	+5	150	23
MAX4436	2	+1	150	35
MAX4437	2	+5	150	23

Pin Configurations (continued)

```
TOP VIEW
```


Chip Information

Single-Supply, 150MHz, 16-Bit Accurate,

 Ultra-Low Distortion Op Amps
Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.	LAND PATTERN NO.
5 SOT23	U5-1	$\underline{21-0057}$	$\underline{90-0174}$
8 SO	$\mathrm{S} 8-2$	$\underline{21-0041}$	$\underline{90-0096}$
$8 \mu \mathrm{MAX}$	$\mathrm{U8}-1$	$\underline{21-0036}$	$\underline{90-0092}$

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$10 / 01$	Initial release	-
1	$12 / 08$	Added automotive part number	1
2	$4 / 15$	Removed automotive reference from data sheet	1

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Operational Amplifiers category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
LT1809IS6\#TRM NJU7047RB1-TE2 LTC6226IS8\#PBF LT1058ACN LT1206CR LT1058ISW THS4222DGNR JM38510/11905BPA OPA2677IDDAR THS6042ID THS4221DBVR THS4081CD ADA4858-3ACPZ-R7 LT6202IS5\#TRMPBF LT1206CR\#PBF LT1813CDD\#PBF LT1037IN8\#PBF LTC6401CUD-20\#PBF LT1192CN8\#PBF LT1037ACN8\#PBF LTC6253CTS8\#TRMPBF LT1399HVCS\#PBF LT1993CUD-2\#PBF LT1722CS8\#PBF LT1208CN8\#PBF LT1007ACN8\#PBF LT1222CN8\#PBF LT6203IDD\#PBF LT6411IUD\#PBF LTC6400CUD-26\#PBF LTC6400CUD-8\#PBF LT6211IDD\#PBF LT1810IMS8\#PBF OP37EN8\#PBF LT1360CS8 OPA2132PAG4 OPA2353UA/2K5 OPA2691I-14D OPA4353UA/2K5 OPA690IDRG4 LMH6723MFX/NOPB ADP5302ACPZ-3-R7 AD8000YRDZ AD8007AKSZ-REEL7 AD8008ARMZ AD8009JRTZ-REEL7 AD8010ANZ AD8012ARMZ AD8014ARTZ-REEL7 AD8016AREZ

