Ultra－High－Speed，Low－Distortion，Differential－ to－Single－Ended Line Receivers with Enable

General Description

The MAX4444／MAX4445 differential line receivers offer unparalleled high－speed，low－distortion performance． Using a three op amp instrumentation amplifier archi－ tecture，these ICs have symmetrical differential inputs and a single－ended output．They operate from $\pm 5 \mathrm{~V}$ supplies and are capable of driving a 100Ω load to $\pm 3.7 \mathrm{~V}$ ．The MAX4444 has an internally set closed－loop gain of $+2 \mathrm{~V} / \mathrm{V}$ ，while the MAX4445 is compensated for gains of $+2 V / V$ or greater，set by an external resistor．A low－power enable mode reduces current consumption to 3.5 mA ．
Using current－feedback techniques，the MAX4444／ MAX4445 achieve a 550 MHz bandwidth while maintain－ ing up to a $5000 \mathrm{~V} / \mu$ s slew rate．Excellent differential gain／phase and noise specifications make these ampli－ fiers ideal for a wide variety of video and RF signal－pro－ cessing applications．An evaluation kit is available to speed design．

Applications

Differential－to－Single－Ended Conversion
Twisted－Pair to Coaxial Converter
High－Speed Instrumentation Amplifier
Data Acquisition
Medical Instrumentation
High－Speed Differential Line Receiver
5000V／us Slew Rate（MAX4444）
＋2V／V Internally Fixed Gain（MAX4444）
External Gain Selection
（MAX4445，AvcL $\geq+2 \mathrm{~V} / \mathrm{V}$ ）
550MHz－3dB Bandwidth
L－60dB SFDR at 5 MHz
Low Differential Gain $/$ Phase： $0.07 \% / 0.05^{\circ}$
Low－Power $25 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at fin＝100kHz
Current to 3.5 mA
－5000V／us Slew Rate（MAX4444）
－＋2V／V Internally Fixed Gain（MAX4444）
－External Gain Selection
（MAX4445，Avcl $\geq+2 \mathrm{~V} / \mathrm{V}$ ）
－ $550 \mathrm{MHz}-3 \mathrm{~dB}$ Bandwidth
－－60dB SFDR at 5MHz
－Low Differential Gain／Phase：0．07\％／0．05
－Low Noise： $25 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at $\mathrm{f} \mathrm{f}=100 \mathrm{kHz}$
－Low－Power Disable Mode Reduces Quiescent Current to 3.5 mA

ハーム

Ultra-High-Speed, Low-Distortion, Differential-to-Single-Ended Line Receivers with Enable

ABSOLUTE MAXIMUM RATINGS

VCC to VEE \qquad
Voltage on $\operatorname{IN}+$, IN-, EN, OUT+,
OUT-, RG, REF..................... \qquad $\left(V_{E E}-0.3 V\right)$ to $\left(V_{C C}+0.3 V\right)$
Output Short-Circuit Duration \qquad
\qquad ..Indefinite to GND

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
16-Pin Narrow SO (derate $20 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) ... 1600 mW Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10sec) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=\geq 2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{REF}=\mathrm{GND}, \mathrm{AVCL}=+2 \mathrm{~V} / \mathrm{V}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

Ultra－High Speed，Low－Distortion，Differential－ to－Single－Ended Line Receivers with Enable

AC ELECTRICAL CHARACTERISTICS
$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{REF}=\mathrm{GND}, \mathrm{AvCL}=+2 \mathrm{~V} / \mathrm{V}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ ，unless otherwise noted．$)$

PARAMETER	SYMBOL	CONDITION		MIN TYP	MAX	UNITS
Small－Signal－3dB Bandwidth	BWSS	VOUT $=100 \mathrm{mVp}-\mathrm{p}$		550		MHz
Large－Signal－3dB Bandwidth	BWLS	Vout $=2 \mathrm{Vp}-\mathrm{p}$		500		MHz
0.1 dB Gain Flatness		VOUT $=100 \mathrm{mVp}-\mathrm{p}$		80		MHz
Slew Rate（Note 1）	SR	$\mathrm{V}_{\text {OUT }}=4 \mathrm{~V}$ step	MAX4444	5000		V／$/ \mathrm{s}$
			MAX4445	3800		
		$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$ step	MAX4444	2400		
			MAX4445	2000		
		Vout $=1 \mathrm{~V}$ step		1200		
		$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ step		600		
Rise Time（Note 1）	trise			650		ps
Fall Time（Note 1）	tFALL	VOUT $=4 \mathrm{~V}$ step		825		ps
		Vout $=2 \mathrm{~V}$ step		700		
		Vout $=1 \mathrm{~V}$ step		700		
		$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ step		700		
Settling Time		Settle to 0.1% ，VOUT $=2 \mathrm{~V}$ step		12		ns
SFDR		VOUT $=2 \mathrm{Vp}-\mathrm{p}$	$\mathrm{f}_{\mathrm{C}}=100 \mathrm{kHz}$	－65		dBc
			$\mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}$	－60		
			$\mathrm{fC}=20 \mathrm{MHz}$	－55		
			$\mathrm{fC}=100 \mathrm{MHz}$	－35		
2nd－Harmonic Distortion		VOUT $=2 \mathrm{Vp}-\mathrm{p}$	$\mathrm{fC}=100 \mathrm{kHz}$	－65		dBc
			$\mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}$	－62		
			$\mathrm{fC}=20 \mathrm{MHz}$	－50		
			$\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$	－35		
3rd－Harmonic Distortion		VOUT $=2 \mathrm{Vp}-\mathrm{p}$	$\mathrm{fC}=100 \mathrm{kHz}$	－90		dBc
			$\mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}$	－72		
			$\mathrm{fc}^{\text {c }}=20 \mathrm{MHz}$	－62		
			$\mathrm{fC}=100 \mathrm{MHz}$	－55		
Differential Phase Error	DP	NTSC，RL＝150 ${ }^{\text {a }}$		0.05		degrees
Differential Gain Error	DG	NTSC，R $\mathrm{R}_{\mathrm{L}}=150 \Omega$		0.07		\％
Input Noise Voltage Density	eN	$\mathrm{f}=100 \mathrm{kHz}$（Note 2）		25		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current Density	in	$\mathrm{f}=100 \mathrm{kHz}$		1.8		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Output Impedance	Zout	$\mathrm{f}=10 \mathrm{MHz}$		0.7		Ω
Enable Time	tshdn（ON）	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V}$ ， $\mathrm{V}_{\text {OUT }}$ settle to within 10%		80		ns
Disable Time	tSHDN（OFF）	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}$ settle to within 10%		200		ns
Power－Up Time	ton	V IN $=1 \mathrm{~V}$ ，Vout settle to within 10%		0.5		$\mu \mathrm{s}$
Power－Down Time	toff	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V}$ ， $\mathrm{V}_{\text {OUT }}$ settle to within 10%		0.3		$\mu \mathrm{s}$

Note 1：Input step voltage has＜100ps rise（fall）time．Measured at the output from 10% to 90%（ 90% to 10% ）level．
Note 2：Includes the current noise contribution through the on－die feedback resistor．

Ultra-High-Speed, Low-Distortion, Differential-to-Single-Ended Line Receivers with Enable

MAX4445 GAIN FLATNESS vs. FREQUENCY

MAX4444

MAX4445
SM ALL-SIGNAL GAIN vs. FREQUENCY

MAX4444
LARGE-SIGNAL GAIN vs. FREQUENCY

MAX4445
SM ALL-SIGNAL PULSE RESPONSE

MAX4444
GAIN FLATNESS vs. FREQUENCY

MAX4445 LARGE-SIGNAL GAIN vs. FREQUENCY

MAX4444 LARGE-SIGNAL PULSE RESPONSE

Ultra-High-Speed, Low-Distortion, Differential-to-Single-Ended Line Receivers with Enable

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IN}}+-\mathrm{V}_{\mathrm{IN}}-, \mathrm{R}_{\mathrm{L}}=100 \Omega\right.$, REF $=\mathrm{GND}, \mathrm{AV}_{\mathrm{V}}=+2 \mathrm{~V} / \mathrm{V}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

MAX4444

MAX4445

Ultra-High-Speed, Low-Distortion, Differential-to-Single-Ended Line Receivers with Enable

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IN}}+-\mathrm{V}_{\mathrm{IN}}-, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{REF}=\mathrm{GND}, \mathrm{A}_{\mathrm{V}}=+2 \mathrm{~V} / \mathrm{V}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

POWER-SUPPLY REJECTION RATIO

Ultra－High－Speed，Low－Distortion，Differential－ to－Single－Ended Line Receivers with Enable

Pin Description

PIN		NAME	
MAX4444	MAX4445		FUNCTION
1,2	1,2	VCC	Positive Power－Supply Input．Bypass with a 0．1 μ F capacitor to GND．
3	3	IN－	Inverting Amplifier Input
4,5	-	N．C．	No Connection．Not internally connected．Connect to GND for best AC perfor－ mance．
-	4,5	RG	Resistor Gain Input．Connect a resistor between these pins to set closed－loop gain（Figure 1）．
6	6	IN＋	Noninverting Amplifier Input
$7,8,11-14$	$7,8,11-14$	VEE $_{\text {EE }}$	Negative Supply Input．Bypass with a 0．1 μ F capacitor．
9	9	EN	Active－High Enable Input．Connect to VCC for normal operation．Connect to GND for disable mode．
10	10	REF	Reference Input．Connect to midpoint of the two power supplies．
15	15	OUT	Amplifier Output
16	16	GND	Ground

Ultra-High-Speed, Low-Distortion, Differential-to-Single-Ended Line Receivers with Enable

Figure 1. Setting the Amplifier Gain

Detailed Description

The MAX4444/MAX4445 differential-to-single-ended line receivers offer high-speed and low-distortion performance, and are ideally suited for video and RF sig-nal-processing applications. These receivers offer a small-signal bandwidth of 550 MHz and have a high slew rate of up to $5000 \mathrm{~V} / \mu \mathrm{s}$. Their 120 mA output capability allows them to be directly coupled to data acquisition systems.

Applications Information

Grounding Bypassing
Use the following high-frequency design techniques when designing the PC board for the MAX4444/ MAX4445.

- Use a multilayer board with one layer dedicated as the ground plane.
- Do not use wire wrap or breadboards due to high inductance.
- Avoid IC sockets due to high parasitic capacitance and inductance.
- Bypass supplies with a $0.1 \mu \mathrm{~F}$ capacitor. Use sur-face-mount capacitors to minimize lead inductance.
- Keep signal lines as short and straight as possible. Do not make 90° turns. Use rounded corners. Do not cross signal paths if possible.
- Ensure that the ground plane is free from voids.

Low-Power Enable Mode
The MAX4444/MAX4445 are disabled when EN goes low. This reduces supply current to only 3.5 mA . As the output becomes higher impedance, the effective impedance at the output for the MAX4444 is $1.8 \mathrm{k} \Omega$. The effective output impedance for the MAX4445 is $1.8 \mathrm{k} \Omega$ plus Rgain.

Figure 2. Using an Isolation Resistor for High Capacitive Loads
Setting Gain (MAX4445)
The MAX4445 is stable with a minimum gain configuration of $+2 \mathrm{~V} / \mathrm{V}$. Rgain, connected between the RG pins, sets the gain of this device as shown in Figure 1. Calculate the expected gain as follows:

$$
\text { Gain }=\left(1+600 / R_{\text {GAIN }}\right)
$$

Driving Capacitive Loads
The MAX4444/MAX4445 are designed to drive capacitive loads. However, excessive capacitive loads may cause ringing or instability at the output as the phase margin of the device reduces. Adding a small series isolation resistor at the output helps reduce the ringing but slightly increases gain error (Figure 2). For recommended values, see Typical Operating Characteristics.

Coaxial Line Driver

The MAX4444/MAX4445 are well suited to drive coaxial cables. Their high output current capability can easily drive the 75Ω characteristic impedance of common coaxial cables. Adjust the gain of the MAX4445 to compensate for cable losses to maintain the required levels at the input of the next stage.

Chip Information
TRANSISTOR COUNT: 254
SUBSTRATE CONNECTED TO VEE

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Instrumentation Amplifiers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
LT1102IN8\#PBF LT1168AIS8\#PBF AD694BRZ-REEL7 LT1101ISW JM38510/13502BGA AD521JDZ AD521KDZ AD521LDZ AD524ADZ AD524BD AD524BDZ AD524CDZ AD8293G80BRJZ-R7 AD620ANZ AD621BNZ AD621BR AD622ANZ AD623ANZ AD623BNZ AD624ADZ AD624CDZ AD624SD/883B AD625ADZ AD625BDZ AD625CDZ AD625JNZ AD625KNZ AD625SD AD627ANZ AD627BNZ AD693AD AD693AE AD693AQ AD694AQ AD694ARZ-REEL AD694JNZ AD8221ARMZ-R7 AD8222HACPZ-WP AD8222HBCPZ-WP AD8224ACPZ-R7 AD8224BCPZ-WP AD8228ARMZ AD8237ARMZ-R7 AD8293G80BRJZ-R2 AD8295BCPZ-WP AD8553ARMZ AD8553ARMZ-REEL AD8555ACPZ-REEL7 AD8556ACPZ-R2 AD8556ACPZ-REEL7

[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
 8

