Single/Dual/Quad, Low-Cost, Single-Supply, Rail-to-Rail Op Amps with Shutdown

General Description

The MAX4480–MAX4483 low-cost, general-purpose op amps offer rail-to-rail outputs, draw only 50µA of quiescent current, and operate from a single +2.5V to +5.5V supply. For additional power conservation, the MAX4481 offers a low-power shutdown mode that reduces supply current to 0.5µA (max) and puts the amplifier's output in a high-impedance state. These devices are unity-gain stable with capacitive loads up to 400pF. The MAX4480– MAX4483 are specified to +125°C, making them suitable for use in a variety of harsh environments.

The MAX4480 is a single amplifier offered in a tiny 5-pin SC70 package. The MAX4481 is a single amplifier with a low-power shutdown mode that reduces supply current to < 0.5µA and comes in a 6-pin SC70 package. The MAX4482 is a dual amplifier and comes in the space-saving 8-pin SOT23 or µMAX® package. The MAX4483 is a quad amplifier and comes in a 14-pin TSSOP package. All devices are specified for operation across the -40°C to +125°C automotive temperature range.

Applications

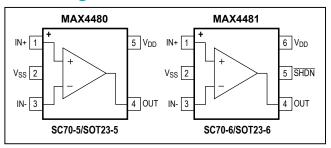
- Single-Supply Zero-Crossing Detectors
- Instruments and Terminals
- Portable Communications
- Electronic Ignition Modules
- Infrared Receivers
- Sensor Signal Detection

Selector Guide

PART	NO. OF AMPLIFIERS PER PACKAGE	SHUTDOWN MODE
MAX4480	1	No
MAX4481	1	Yes
MAX4482	2	No
MAX4483	4	No

µMAX is a registered trademark of Maxim Integrated Products, Inc.

Features


- Single +2.5V to +5.5V Supply Voltage Range
- 50µA Quiescent Current per Amplifier
- 0.5µA (max) Shutdown Mode (MAX4481)
- Available in Space-Saving Packages
 5-Pin SC70 (MAX4480)
- 6-Pin SC70 (MAX4480)
 6-Pin SC70 (MAX4481)
- 8-Pin SOT23 (MAX4482)
- 105dB AV_{OL} with 5kΩ Load
- 0.005% THD with 100kΩ Load
- Rail-to-Rail Output Voltage Swing
- 3.0mA of Sink and Source Load Current
- Unity-Gain Stable up to CI OAD = 400pF

Ordering Information

PART	TEMP RANGE	PIN- Package	top Mark
MAX4480 AXK+T	-40°C to +125°C	5 SC70	ABU
MAX4480AUK+T	-40°C to +125°C	5 SOT23	ADPJ
MAX4481AXT+T	-40°C to +125°C	6 SC70	AAN
MAX4481AUT+T	-40°C to +125°C	6 SOT23	AAOS
MAX4481MXT/PR3+	-55°C to +110°C	6 SC70	AEE
MAX4482 AKA+T	-40°C to +125°C	8 SOT23	AAEJ
MAX4482ASA+	-40°C to +125°C	8 SO	_
MAX4482AUA+	-40°C to +125°C	8 FMAX	_
MAX4483ASD+	-40°C to +125°C	14 SO	_
MAX4483AUD+	-40°C to +125°C	14 TSSOP	_

+Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel.

Pin Configurations

Pin Configurations continued at end of data sheet.

Single/Dual/Quad, Low-Cost, Single-Supply, Rail-to-Rail Op Amps with Shutdown

Absolute Maximum Ratings

Power-Supply Voltage (V _{DD} to V _{SS})
All Other Pins $(V_{SS} - 0.3V)$ to $(V_{DD} + 0.3V)$
Output Short-Circuit Duration
(OUT shorted to V _{SS} or V _{DD})Continuous
Continuous Power Dissipation (T _A = +70°C)
5-Pin SC70 (derate 3.1mW/°C above +70°C) 247mW
6-Pin SC70 (derate 3.1mW/°C above +70°C)245mW
5-Pin SOT23 (derate 3.1mW/°C above +70°C)247mW
6-Pin SOT23 (derate 8.7mW/°C above +70°C)696mW
8-Pin SOT23 (derate 5.1mW/°C above +70°C)408mW

8-Pin µMAX (derate 4.5mW/°C above +70°C)362mW
8-Pin SO (derate 5.9mW/°C above +70°C)471mW
14-Pin TSSOP (derate 9.1mW/°C above +70°C)727mW
14-Pin SO (derate 8.33mW/°C above +70°C)667mW
Operating Temperature Range40°C to +125°C
Military Operating Temperature Range55°C to +110°C
Junction Temperature150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (soldering, 10s)+3000°C
Soldering Temperature (reflow)+240°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

 $(V_{DD} = +5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = V_{DD}/2, R_L \ge 1M\Omega$ connected to $V_{DD}/2$, SHDN = V_{DD} (MAX4481 only), $T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
Supply Voltage Range	V _{DD}	Inferred from PSRR test		2.5		5.5	V	
		V _{DD} = 2.5V			45			
Supply Current per Amplifier	IDD	V _{DD} = 5.0V			50	100	μA	
Supply Current in Shutdown	I _{SHDN}	SHDN = V _{SS} (MAX44	81 only)		0.05	0.5	μA	
Input Offset Voltage	V _{OS}				±1	±5.5	mV	
Input Bias Current	Ι _Β	(Note 1)			±0.1	±100	pА	
Input Offset Current	I _{OS}	(Note 1)			±0.1	±100	pА	
Input Resistance	R _{IN}	Differential or commor	n mode		1000		MΩ	
Input Common-Mode Voltage Range	V _{CM}	Inferred from CMRR te	est	V _{SS}		V _{DD} - 1.3	V	
Common-Mode Rejection Ratio	CMRR	$V_{SS} \le V_{CM} \le V_{DD} - 1.$	3V	71	86		dB	
Power-Supply Rejection Ratio	PSRR	$2.5V \le V_{DD} \le 5.5V$		82	92		dB	
		$V_{SS} + 0.02V \le V_{OUT} \le V_{DD} - 0.03V$	R _L = 100kΩ		110			
Large-Signal Voltage Gain	A _{VOL}	V _{SS} + 0.10V ≤ V _{OUT} ≤ V _{DD} - 0.20V	$R_L = 5k\Omega$	94	105		dB	
Output Valtage Lligh	V _{OH}	Specified as V _{DD} - V _{OUT}	R _L = 100kΩ		4			
Output Voltage High			$R_L = 5k\Omega$		80	150	mV	
	N	Specified as	R _L = 100kΩ		1		mV	
Output Voltage Low	V _{OL}	V _{OUT} - V _{SS}	$R_L = 5k\Omega$		8	30	IIIV	
Output Short Circuit Current		Sourcing			3		m۸	
Output Short-Circuit Current	I _{SC}	Sinking			17		mA	
Shutdown Mode Output Leakage	IOUTSHDN	Device in shutdown mode, $\overline{SHDN} = V_{SS}$, V _{SS} < V _{OUT} < V _{CC} (MAX4481 only)			±0.01	±0.1	μA	
SHDN Logic Low	VIL	MAX4481 only				0.3 x V _{DD}	V	
SHDN Logic High	V _{IH}	MAX4481 only		0.7 x V _{DI}	C		V	
SHDN Input Current	I _{IL} , I _{IH}	$\overline{\text{SHDN}} = V_{\text{DD}} \text{ or } V_{\text{SS}} \text{ (MAX4481 only)}$		±0.001	±1	±500	nA	
Gain-Bandwidth Product	GBW				140		kHz	

Single/Dual/Quad, Low-Cost, Single-Supply, Rail-to-Rail Op Amps with Shutdown

Electrical Characteristics (continued)

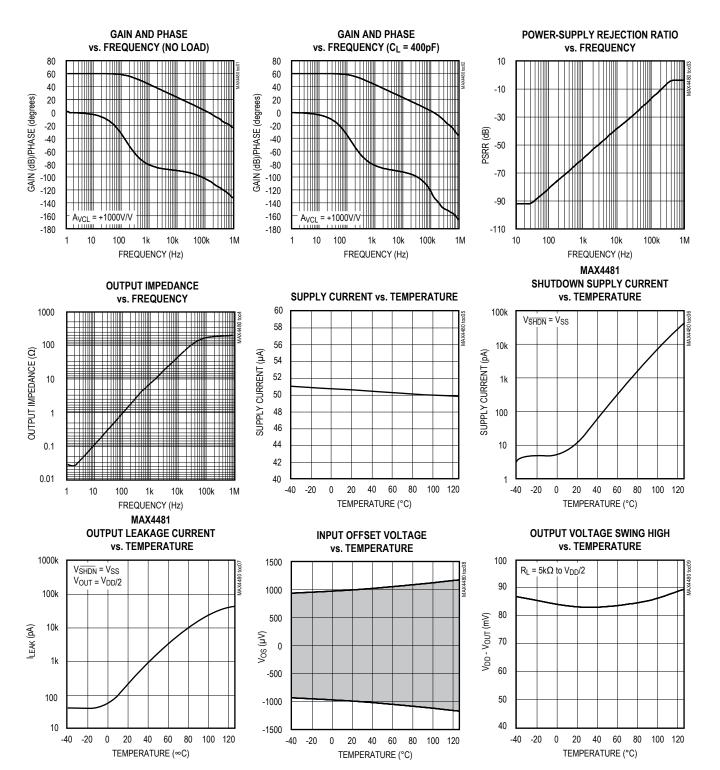
 $(V_{DD} = +5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = V_{DD}/2, R_L \ge 1M\Omega$ connected to $V_{DD}/2$, $\overline{SHDN} = V_{DD}$ (MAX4481 only), $T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONE	DITIONS	MIN	TYP	MAX	UNITS
Phase Margin	φΜ			70		degrees	
Gain Margin							dB
Slew Rate	SR				80		V/ms
Input Voltage Noise Density	e _n	f = 10kHz			100		nV/√Hz
Input Current Noise Density	in	f = 10kHz			1		nV/√Hz
Capacitive-Load Stability	C _{LOAD}	$A_V = +1V/V$			400		pF
Shutdown Delay Time	t _{SHDN}	MAX4481 only			0.4		μs
Enable Delay Time	t _{EN}	MAX4481 only			12		μs
Power-On Time	t _{ON}			15		μs	
Input Capacitance	C _{IN}						pF
Total Harmonic Distortion	THD	f = 1kHz, V _{OUT} = 2V _{P-P} , A _V = +1V/V	R _L = 100kΩ		0.005		%
Settling Time to 0.1%	t _S	V _{OUT} = 2V step			50		μs

Electrical Characteristics

 $(V_{DD} = +5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = V_{DD}/2, R_L \ge 1M\Omega$ connected to $V_{DD}/2$, $\overline{SHDN} = V_{DD}$ (MAX4481 only), TA = -40°C to +125°C, unless otherwise noted.)

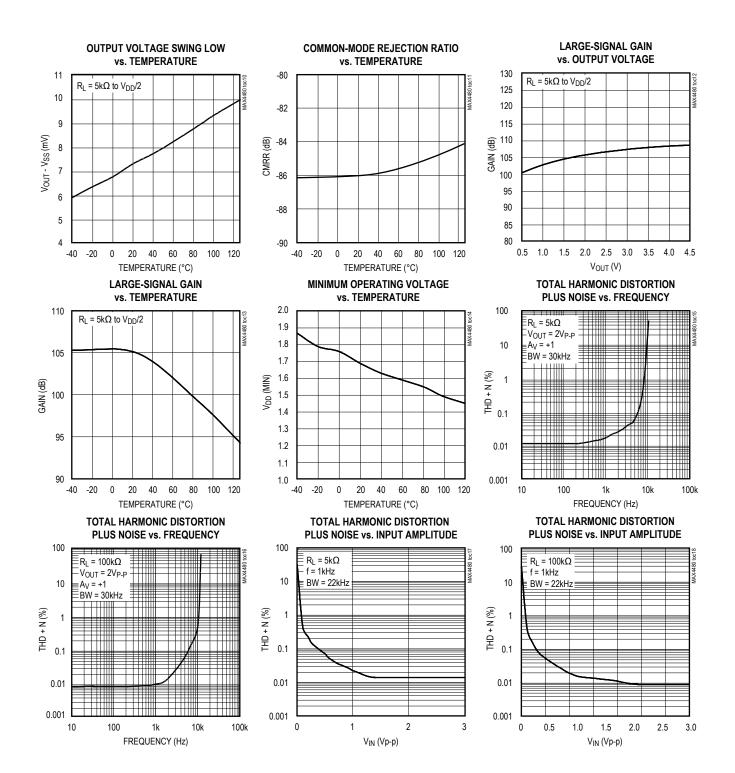
PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
Supply Voltage Range	V _{DD}	Inferred from PSRR te	Inferred from PSRR test			5.5	V
Supply Current per Amplifier	I _{DD}					120	μA
Supply Current in Shutdown	I _{SHDN}	$\overline{\text{SHDN}}$ = V _{SS} (MAX44)	81 only)			1.0	μA
Input Offset Voltage	V _{OS}					9	mV
Input Offset Voltage Drift	TCV _{OS}				±3		µV/°C
Input Bias Current	I _B	(Note 1)				±100	pА
Input Offset Current	I _{OS}	(Note 1)				±100	pА
Input Common-Mode Voltage Range	V _{CM}	Inferred from CMRR test		V _{SS}		V _{DD} - 1.4	V
Common-Mode Rejection Ratio	CMRR	$V_{SS} \le V_{CM} \le V_{DD} - 1.4$	$V_{SS} \le V_{CM} \le V_{DD} - 1.4V$				dB
Power-Supply Rejection Ratio	PSRR	2.5V ≤ V _{DD} ≤ 5.5V		77			dB
Shutdown Mada Output Lookaga	IOUTSHDN	Device in shutdown mode, $\overline{SHDN} = V_{SS}$,	-40°C to +85°C			±0.5	
Shutdown Mode Output Leakage		V _{SS} < V _{OUT} < V _{CC} (MAX4481 only)	+85°C to +125°C			±2.5	μA
SHDN Logic Low	VIL	MAX4481 only				0.3 x V _{DD}	V
SHDN Logic High	V _{IH}	MAX4481 only		0.7 x V _{DE})		V
SHDN Input Current	I _{IL} , I _{IH}	$\overline{\text{SHDN}}$ = V _{DD} or V _{SS} (MAX4481 only)				1	μA
Large-Signal Voltage Gain	A _{VOL}	V_{SS} + 0.1V $\leq V_{OUT} \leq V_{DD}$ - 0.20V, R _L = 5k Ω		84			dB
Output Voltage High	V _{OH}	Specified as V_{DD} - V_{OUT} , R_L = 5k Ω				200	mV
Output Voltage Low	V _{OL}	Specified as V _{OUT} - V	SS, R <mark>L</mark> = 5kΩ			50	mV


Note 1: Guaranteed by design.

Note 2: Specifications are 100% tested at $T_A = +25^{\circ}C$ (exceptions noted). All temperature limits are guaranteed by design.

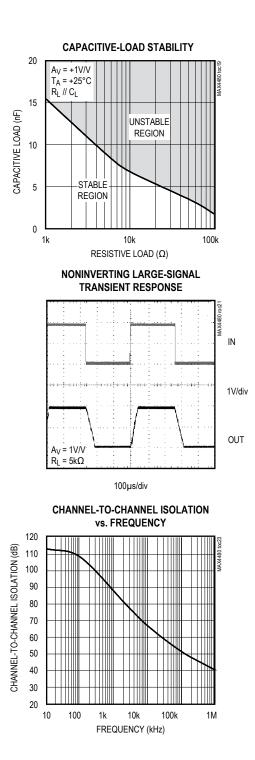
Single/Dual/Quad, Low-Cost, Single-Supply, Rail-to-Rail Op Amps with Shutdown

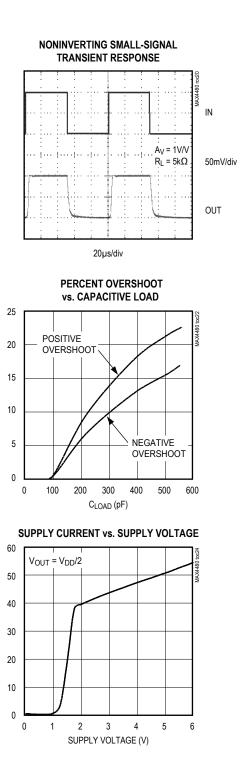
Typical Operating Characteristics


 $(V_{DD} = +5V, V_{SS} = 0V, V_{CM} = V_{DD}/2, V_{\overline{SHDN}} = 5V, R_L \ge 1M\Omega$ connected to $V_{DD}/2, T_A = +25^{\circ}C$, unless otherwise noted.)

Single/Dual/Quad, Low-Cost, Single-Supply, Rail-to-Rail Op Amps with Shutdown

Typical Operating Characteristics (continued)


 $(V_{DD} = +5V, V_{SS} = 0V, V_{CM} = V_{DD}/2, V_{\overline{SHDN}} = 5V, R_L \ge 1M\Omega$ connected to $V_{DD}/2, T_A = +25^{\circ}C$, unless otherwise noted.)



Single/Dual/Quad, Low-Cost, Single-Supply, Rail-to-Rail Op Amps with Shutdown

Typical Operating Characteristics (continued)

 $(V_{DD} = +5V, V_{SS} = 0V, V_{CM} = V_{DD}/2, V_{\overline{SHDN}} = 5V, R_L \ge 1M\Omega$ connected to $V_{DD}/2, T_A = +25^{\circ}C$, unless otherwise noted.)

OVERSHOOT (%)

SUPPLY CURRENT (mA)

Single/Dual/Quad, Low-Cost, Single-Supply, Rail-to-Rail Op Amps with Shutdown

Pin Description

	P	IN			FUNCTION
MAX4480	MAX4481	MAX4482	MAX4483	NAME	FUNCTION
1	1	_	_	IN+	Noninverting Amplifier Input
	—	3	3	INA+	Noninverting Amplifier Input A
_	_	5	5	INB+	Noninverting Amplifier Input B
	—	—	10	INC+	Noninverting Amplifier Input C
—	—	—	12	IND+	Noninverting Amplifier Input D
2	2	4	11	V _{SS}	Negative Supply. Connect to ground for single-supply operation. Use a 0.01µF bypass capacitor to GND.
3	3	—	—	IN-	Inverting Amplifier Input
	_	2	2	INA-	Inverting Amplifier Input A
	—	6	6	INB-	Inverting Amplifier Input B
_	—	—	9	INC-	Inverting Amplifier Input C
—	—	—	13	IND-	Inverting Amplifier Input D
4	4	—	—	OUT	Amplifier Output
	_	1	1	OUTA	Amplifier Output A
_	—	7	7	OUTB	Amplifier Output B
	—	—	8	OUTC	Amplifier Output C
	—	—	14	OUTD	Amplifier Output D
5	6	8	4	V _{DD}	Positive Supply. Use a 0.01µF bypass capacitor to GND.
	5	_	_	SHDN	Active-Low Shutdown Input. Connect to V_{DD} for normal operation. Do not leave floating.

Detailed Description

Rail-to-Rail Output Stage

The MAX4480–MAX4483 can drive a $5k\Omega$ load and still typically swing within 80mV of the supply rails. Figure 1 shows the MAX4480 output voltage swing configured with $A_V = +10V/V$.

Driving Capacitive Loads

Driving a capacitive load can cause instability in many op amps, especially those with low quiescent current. The MAX4480–MAX4483 are unity-gain stable for a range of capacitive loads to above 400pF. Figure 2 shows the MAX4480 response with an excessive capacitive load. Adding a series resistor between the output and the load capacitor (Figure 3) improves the circuit's response by isolating the load capacitance from the op amp's output.

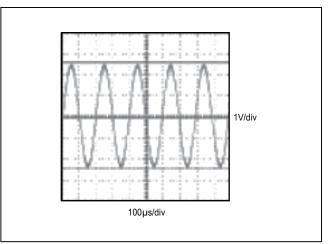


Figure 1. Rail-to-Rail Output Operation

Single/Dual/Quad, Low-Cost, Single-Supply, Rail-to-Rail Op Amps with Shutdown

Figure 2. Small-Signal Transient Response with Excessive Capacitive Load

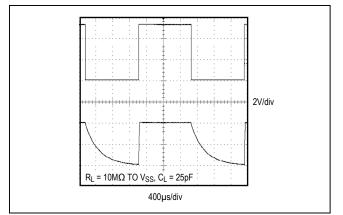


Figure 4. Shutdown Waveform

Applications Information

Shutdown Mode

The MAX4481 features a low-power shutdown mode. When \overline{SHDN} goes low, the supply current drops to $0.05\mu A$ (typ) and the output enters a high-impedance state. Pull \overline{SHDN} high to enable the amplifier. Do not leave \overline{SHDN} floating. Figure 4 shows the shutdown waveform.

Power-Up

The MAX4480–MAX4483 outputs typically settle within 50µs after power-up. Figure 5 shows the output voltage on power-up and power-down.

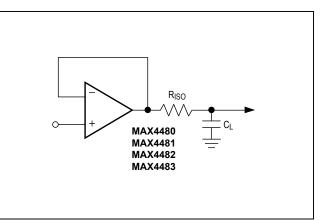


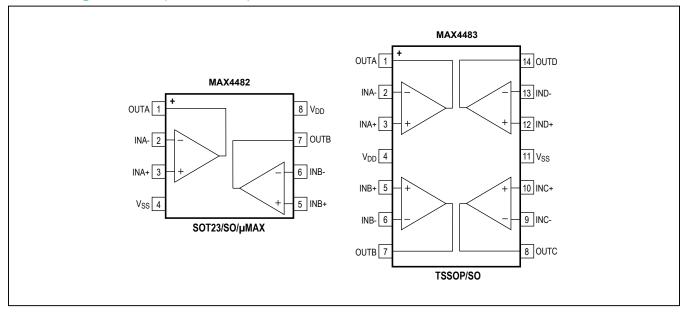
Figure 3. Capacitive-Load-Driving Circuit



Figure 5. Power-Up/Down Waveform

Power Supplies and Layout

The MAX4480–MAX4483 operate from a single +2.5V to +5.5V power supply. Bypass the power supply with a 0.1μ F capacitor to ground.


Good layout techniques optimize performance by decreasing the amount of stray capacitance at the op amp's inputs and outputs. To decrease stray capacitance, minimize trace lengths by placing external components close to the op amp's pins.

Chip Information

PROCESS: BICMOS

Single/Dual/Quad, Low-Cost, Single-Supply, Rail-to-Rail Op Amps with Shutdown

Pin Configurations (continued)

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
5 SC70	X5+1	<u>21-0076</u>	<u>90-0188</u>
5 SOT23	U5+1	<u>21-0057</u>	<u>90-0174</u>
6 SC70	X6SN+1	<u>21-0077</u>	<u>90-0189</u>
6 SOT23	U6SN+1	<u>21-0058</u>	<u>90-0175</u>
8 SOT23	K8+5	<u>21-0078</u>	90-0176
8 SO	S8+2	<u>21-0041</u>	<u>90-0096</u>
8 µMAX	U8+1	<u>21-0036</u>	90-0092
14 TSSOP	U14+1	<u>21-0066</u>	<u>90-0113</u>
14 SO	S14+1	<u>21-0041</u>	<u>90-0112</u>

Single/Dual/Quad, Low-Cost, Single-Supply, Rail-to-Rail Op Amps with Shutdown

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	10/00	Initial release	—
1	1/01	Released MAX4481, revised Electrical Characteristics and Figures 2 and 4.	1, 2, 3, 8
2	10/12	Added MAX4481MXT/PR2-W and lead-free notation to <i>Ordering Information</i> . Revised <i>Absolute Maximum Ratings</i> with military temp range.	1, 2
3	4/13	Removed –W from MAX4481MXT/PR2 in <i>Ordering Information</i> and revised <i>Absolute Maximum Ratings</i> and updated to MAX4481MXT/PR3+.	1, 2
4	5/14	Removed automotive reference from General Description	1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

LM258AYDT LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC259G2-A NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MCP6V36UT-E/LTY MXD8011HF MCP6V17T-E/MS SCY6358ADR2G LTC2065HUD#PBF NJM2904CRB1-TE1 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7 NCV4333DTBR2G EL5420CRZ-T7A AS324MTR-E1 AS358MMTR-G1 MCP6491T-ELTY