Fault-Protected, High-Voltage Signal-Line Protectors

Abstract

General Description The MAX4506/MAX4507 multiple, two-terminal signal-line protectors are pin-compatible with the industry-standard MAX366/MAX367. These new circuit protectors feature fault-protected inputs and Rail-to-Rail ${ }^{\circledR}$ signal handling capability. The input pins are protected from overvoltage faults up to $\pm 36 \mathrm{~V}$ with power on or $\pm 40 \mathrm{~V}$ with power off. During a fault condition, the input terminal becomes an open circuit and only nanoamperes of leakage current flow from the source; but the switch output (OUT_) furnishes typically 19 mA from the appropriate polarity supply to the load. This ensures unambiguous rail-to-rail outputs when a fault begins and ends. The MAX4506 contains three independent protectors while the MAX4507 contains eight independent protectors. They can protect both unipolar and bipolar analog signals using either unipolar (+9 V to +36 V) or bipolar ($\pm 8 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$) power supplies. These devices have no logic control inputs; the protectors are designed to be always-on when the supplies are on. On-resistance is 100Ω max and matched within 7Ω, and on-leakage is less than 0.5 nA at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. The MAX4506 is available in 8-pin SO/DIP packages. The MAX4507 is available in 20-pin SSOP and 18-pin SO/DIP packages.

Applications
Process-Control Systems
Hot-Insertion Boards/Systems
Data-Acquisition Systems
Redundant/Backup Systems
ATE Equipment
Sensitive Instruments
Typical Operating Circuit

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Features

- Overvoltage Protection
$\pm 40 \mathrm{~V}$ with Power Off
$\pm 36 \mathrm{~V}$ with Power On
- Open Signal Paths with Power Off
- Output Clamps to Either Rail with an Input Overvoltage
- Any On Channel Output is Not Affected by an Overvoltage to Any Other Channel
- 100Ω max On-Resistance
- 10ns Overvoltage Turn-On Delay
- No Latchup During Power Sequencing
- Rail-to-Rail Signal Handling
- 500Ω Output Clamp Resistance During Overvoltage

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4506CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX4506CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX4506C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX4506ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4506EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX4506MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP**

Ordering Information continued at end of data sheet.
*Contact factory for dice specifications.
**Contact factory for availability.
Pin Configurations

TOP VIEW

Pin Configurations continued at end of data sheet.

Fault-Protected, High-Voltage Signal-Line Protectors

ABSOLUTE MAXIMUM RATINGS

(Voltages Referenced to GND)

V+..-0.3V to +44.0V	
V-	-44.0V to +0.3V
V + to V -..-0.3V to +44.0 V	
IN or out	$\pm 44 \mathrm{~V}$
IN_ Overvoltage with Power On.	$\pm 36 \mathrm{~V}$
IN_ Overvoltage with Power Off.	$\pm 40 \mathrm{~V}$
Continuous Current into Any Terminal.............................. $\pm 30 \mathrm{~mA}$	
Peak Current into Any Terminal (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)................................ $\pm 70 \mathrm{~mA}$	
Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
8 -Pin Narrow SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$\left.70^{\circ} \mathrm{C}\right) . . .471 \mathrm{~mW}$
8-Pin Plastic DIP (derate 9.09mW	C) 727 mW

RECOMMENDED OPERATING GUIDELINES

V to GND ..-0.3V to +40V
V- to GND ...-32V to +0.3 V
V+ to V-
IN_.. $\pm 40 \mathrm{~V}$
OUT_ ...V+ to V-

Note 1: OUT_ pins are not fault protected. Signals on OUT_ exceeding V+ or V- are clamped by internal diodes. Limit forward-diode current to maximum current rating.
Note 2: IN _ pins are fault protected. Signals on $\mathrm{IN}_{\mathbf{\prime}}$ exceeding -36V to +36 V may damage the device. These limits apply with power applied to $\mathrm{V}+$ or V -, or $\pm 40 \mathrm{~V}$ with $\mathrm{V}+=\mathrm{V}$ - $=0$.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3$)$

PARAMETER	SYMBOL	CONDITIONS		T_{A}	MIN	TYP	MAX	UNITS
ANALOG SWITCH								
Fault-Free Analog Signal Range (Note 4)	VIN_	$\begin{aligned} & \text { V+ }=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \\ & \mathrm{~V}_{1 N_{-}}= \pm 15 \mathrm{~V} \end{aligned}$		C, E, M	V-		V+	V
Analog Signal-Path Resistance	R_{ON}	$\mathrm{V}_{1 \mathrm{~N}_{-}}= \pm 10 \mathrm{~V}, \mathrm{lOUT}_{-}=1 \mathrm{~mA}$		$+25^{\circ} \mathrm{C}$		65	100	Ω
				C, E			125	
				M			150	
Signal-Path Resistance Match (Note 6)	$\Delta \mathrm{RoN}$	$\mathrm{VIN}_{-}=\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$, IOUT $=1 \mathrm{~mA}$		$+25^{\circ} \mathrm{C}$		1	7	Ω
				C, E			10	
				M			12	
Signal-Path Leakage Current (Note 7)	lout_On	$\mathrm{V}_{\text {OUT_ }}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 10 \mathrm{~V}$ or floating		$+25^{\circ} \mathrm{C}$	-0.5		+0.5	nA
				C, E	-40		+40	
				M	-400		+400	
Input Capacitance	Cln	$\mathrm{V}_{\text {IN }}=0$	$=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$		20		pF
FAULT PROTECTION								
Fault-Protected Analog Signal Range	VIN_	$\begin{aligned} & \text { (Notes } \\ & 2,3) \end{aligned}$	Applies with power on	C, E, M	-36		+36	V
			Applies with power off	C, E, M	-40		+40	
Input Signal-Path Leakage Current, Supplies On	IIN_	$\mathrm{V}_{1 N_{-}}= \pm 25 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=$ open		$+25^{\circ} \mathrm{C}$	-1	0.1	+1	$\mu \mathrm{A}$
				C, E	-10		+10	
				M	-10		+10	$\mu \mathrm{A}$

Fault-Protected, High-Voltage Signal-Line Protectors

ELECTRICAL CHARACTERISTICS —Dual Supplies (continued)

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\left.\mathrm{TA}=+25^{\circ} \mathrm{C}.\right)($ Note 3$)$

PARAMETER	SYMBOL	CONDITIONS		T_{A}	MIN	TYP	MAX	UNITS
Input Signal-Path Leakage Current, Supplies Off	IIN_	$\begin{aligned} & \mathrm{VIN}_{-}= \pm 40 \mathrm{~V}, \mathrm{~V}_{\text {out }}=\text { open, } \\ & \mathrm{V}+=0, \mathrm{~V}-=0 \end{aligned}$		$+25^{\circ} \mathrm{C}$	-1	0.2	+1	$\mu \mathrm{A}$
				C, E	-10		+10	
				M	-10		+10	$\mu \mathrm{A}$
Output Clamp Current, Supplies On	Iout_	$\mathrm{VIN}_{\text {- }}=+25 \mathrm{~V}$		$+25^{\circ} \mathrm{C}$	13	19	26	mA
		$\mathrm{V}_{1 \mathrm{~N}_{-}=-25 \mathrm{~V}}$		$+25^{\circ} \mathrm{C}$	-26	-19	-13	
Output Clamp Resistance, Supplies On	Rout_	$\mathrm{IOUT}=1 \mathrm{~mA}$	$\mathrm{V}_{1 \mathrm{~N}_{-}}=+25 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$		0.5	1.0	k Ω
			$\mathrm{V}_{1 \mathrm{~N}_{-}}=-25 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$		0.4	1.0	
\pm Fault Output Turn-On Delay Time (Note 5)		$R \mathrm{~L}=10 \mathrm{k} \Omega, \mathrm{V}_{1 \mathrm{~N}_{-}}= \pm 25 \mathrm{~V}$		$+25^{\circ} \mathrm{C}$		10		ns
\pm Fault Recovery Time (Note 5)		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{1 \mathrm{~N}_{-}}= \pm 25 \mathrm{~V}$		$+25^{\circ} \mathrm{C}$		2.5		$\mu \mathrm{s}$
POWER SUPPLY								
Power-Supply Range	V+, V-			C, E, M	± 8		± 18	V
Power-Supply Current	$1+$	$\mathrm{VIN}_{-}=+15 \mathrm{~V}$	MAX4506	$+25^{\circ} \mathrm{C}$		90	150	$\mu \mathrm{A}$
				C, E			175	
				M			200	
				$+25^{\circ} \mathrm{C}$		160	250	
			MAX4507	C, E			300	
				M			400	
	I-		MAX4506	$+25^{\circ} \mathrm{C}$	-150	-90		
				C, E	-175			
				M	-200			
			MAX4507	$+25^{\circ} \mathrm{C}$	-250	-160		
				C, E	-300			
				M	-400			

ELECTRICAL CHARACTERISTICS-Single Supply

$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}-=-0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Fault-Free Analog Signal Range (Note 4)	VIN_	$\begin{aligned} & \mathrm{V}_{+}=+12 \mathrm{~V}, \mathrm{~V}-=0 \\ & \mathrm{~V}_{\text {IN- }}=+12 \mathrm{~V} \end{aligned}$	C, E, M	0		V+	V
Analog Signal-Path Resistance	R_{ON}	$\mathrm{VIN}_{-}=+10 \mathrm{~V}, \mathrm{IOUT}_{-}=1 \mathrm{~mA}$	$+25^{\circ} \mathrm{C}$		125	200	Ω
			C, E			250	
			M			300	
Signal-Path Resistance Match (Note 6)	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{VIN}_{-}=+10 \mathrm{~V}$, $\mathrm{IOUT}_{-}=1 \mathrm{~mA}$	$+25^{\circ} \mathrm{C}$		3	12	Ω
			C, E			15	
			M			20	
Signal-Path Leakage Current (Note 7)	IOUT_(ON)	V IN $=+10 \mathrm{~V}$ or floating	$+25^{\circ} \mathrm{C}$	-0.5	0.05	+0.5	nA
			C, E	-40		+40	
			M	-400		+400	

Fault-Protected, High-Voltage Signal-Line Protectors

ELECTRICAL CHARACTERISTICS—Single Supply (continued)

$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}-=-0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS		T_{A}	MIN	TYP	MAX	UNITS
FAULT PROTECTION								
Fault-Protected Analog Signal Range (Notes 4, 5, 9)	VIN_	Applies with power on		C, E, M	-36		+36	V
		Applies with power off		C, E, M	-40		+40	
Input Signal-Path Leakage Current, Supply On (Note 9)	IIN_	$\mathrm{V}_{\text {IN }}= \pm 25 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}{ }_{-}=0$		$+25^{\circ} \mathrm{C}$	-1	0.2	+1	$\mu \mathrm{A}$
				C, E	-10		+10	
				M	-10		+10	$\mu \mathrm{A}$
Input Signal-Path Leakage Current, Supply Off (Note 9)	IIN_	$\mathrm{V}_{1 \mathrm{~N}_{-}}= \pm 40 \mathrm{~V}$		$+25^{\circ} \mathrm{C}$	-1	0.2	+1	$\mu \mathrm{A}$
				C, E	-10		+10	
				M	-10		+10	$\mu \mathrm{A}$
Output Clamp Current, Supply On	Iout_	$\mathrm{V}_{1} \mathrm{~N}_{-}=25 \mathrm{~V}$		$+25^{\circ} \mathrm{C}$	3	5.5	10	mA
Output Clamp Resistance, Supply On	Rout_	$\mathrm{V}_{1 N_{-}}= \pm 25 \mathrm{~V}$		$+25^{\circ} \mathrm{C}$		1.0	2.5	$\mathrm{k} \Omega$
\pm Fault Output Turn-On Delay Time (Note 5)		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{1 \mathrm{~N}_{-}}=+25 \mathrm{~V}$		$+25^{\circ} \mathrm{C}$		10		ns
\pm Fault Recovery Time (Note 5)		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{1 \mathrm{~N}_{-}}=+25 \mathrm{~V}$		$+25^{\circ} \mathrm{C}$		2.5		$\mu \mathrm{s}$
POWER SUPPLY								
Power-Supply Range	V+			C, E, M	+9		+36	V
Power-Supply Current	I+	$\mathrm{V}_{1 \mathrm{~N}_{-}}=+12 \mathrm{~V}$	MAX4506	$+25^{\circ} \mathrm{C}$		9	25	$\mu \mathrm{A}$
				C, E			30	
				M			40	
			MAX4507	$+25^{\circ} \mathrm{C}$		17	40	
				C, E			60	
				M			80	

Note 3: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 4: See Fault-Free Analog Signal Range vs. Supply Voltages graph in the Typical Operating Characteristics.
Note 5: Guaranteed by design
Note 6: Δ RON $^{\prime}=\operatorname{RON}(M A X)-\operatorname{RON}(M I N)$
Note 7: Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 8: Leakage testing for single-supply operation is guaranteed by testing with dual supplies.
Note 9: Guaranteed by testing with dual supplies.

Fault-Protected, High-Voltage Signal-Line Protectors

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

ON-RESISTANCE vs. OUTPUT VOLTAGE AND TEMPERATURE (SINGLE SUPPLY)

OUTPUT TRANSFER CHARACTERISTICS
(DUAL SUPPLIES)

ON-RESISTANCE vs. OUTPUT VOLTAGE (SINGLE SUPPLY)

OUTPUT CLAMP RESISTANCE SUPPLIES ON

OUTPUT TRANSFER CHARACTERISTICS (SINGLE SUPPLY)

ON-RESISTANCE vs. OUTPUT VOLTAGE AND TEMPERATURE (DUAL SUPPLIES)

OUTPUT CLAMP CURRENT SUPPLIES ON vs. TEMPERATURE

FAULT-FREE ANALOG SIGNAL RANGE vs. SUPPLY VOLTAGE

Fault-Protected, High-Voltage Signal-Line Protectors

Typical Operating Characteristics (continued)

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX4507
POWER-SUPPLY CURRENT vs.

FAULT-FREE RAIL-TO-RAIL SIGNAL HANDLING WITH $\pm 15 \mathrm{~V}$ SUPPLIES

SUPPLY CURRENT vs. INPUT VOLTAGE

INPUT OVERVOLTAGE
vs. OUTPUT CLAMPING

$5 \mu \mathrm{~s} / \mathrm{div}$
$\pm 25 \mathrm{~V}$ OVERVOLTAGE INPUT WITH THE OUTPUT CLAMPED AT $\pm 15 \mathrm{~V}$

FREQUENCY RESPONSE

Fault-Protected, High-Voltage Signal-Line Protectors

Pin Description

PIN			NAME*	FUNCTION
MAX4506	MAX4507			
$\begin{gathered} \text { 8-Pin } \\ \text { DIP/SO } \end{gathered}$	$\begin{aligned} & \text { 18-Pin } \\ & \text { DIP/SO } \end{aligned}$	$\begin{aligned} & \text { 20-Pin } \\ & \text { SSOP } \end{aligned}$		
1, 2, 3	1, 2, 3	1, 2, 4	IN1, IN2, IN3	Signal Inputs 1, 2, 3
-	4-8	5-9	IN4, IN5, IN6, IN7, IN8	Signal Inputs 4, 5, 6, 7, 8
4	9	10	V-	Negative Supply Voltage Input
-	10-14	11-15	OUT8, OUT7, OUT6, OUT5, OUT4	Signal Outputs 8, 7, 6, 5, 4
5, 6, 7	15, 16, 17	16, 17, 19	OUT3, OUT2, OUT1	Signal Outputs 3, 2, 1
8	18	20	V+	Positive Supply-Voltage Input
-	-	3, 18	N.C.	No Connection. Not internally connected.

* Connect all unused inputs to a hard voltage within the supply range (e.g., V+, V-, or GND).

Detailed Description

The MAX4506/MAX4507 protect other ICs from overvoltage by clamping its output voltage to the supply rails. If the power supplies to the device are off, the device clamps the output to OV. The MAX4506/ MAX4507 provide protection for input signals up to $\pm 36 \mathrm{~V}$ with the power supplies on and $\pm 40 \mathrm{~V}$ with the power supplies off.
The MAX4506/MAX4507 protect other integrated circuits connected to its output from latching up. Latchup is caused by parasitic $\operatorname{SCR}(\mathrm{s})$ within the IC turning on, and can occur when the supply voltage applied to the IC exceeds the specified operating range. Latchup can also occur when signal voltage is applied before the power-supply voltage. When in a latchup state, the circuit draws excessive current and may continue to draw excessive current even after the overvoltage condition is removed. A continuous latchup condition may damage the device permanently. Such "faults" are commonly encountered in modular control systems where power supplies to interconnected modules may be interrupted and reestablished at random. Faults can happen during production testing, maintenance, startup, or a power failure.
Figure 1 shows the normal complementary pair (N1 and P1) found in many common analog switches. In addition to these transistors, the MAX4506/MAX4507 also contain comparators and sensing and clamping circuitry to control the state of N1 and P1. During normal opera-

Figure 1. Simplified Internal Structure
tion, N1 and P1 remain on with a typical 65Ω on-resistance between IN and OUT.

The on-board comparators and sensing circuitry monitor the input voltage for possible overvoltage faults.

Fault-Protected, High-Voltage Signal-Line Protectors

Two clamp circuits limit the output voltage to within the supply voltages. When the power supplies are off, any input voltage applied at IN turns off both N1 and P1, and OUT is clamped to 0 V .

Normal Operation
When power is applied, each protector acts as a resistor in series with the signal path. Any voltage source on the "input" side of the switch will be conducted through the protector to the output (Figure 2).
When the output load is resistive, it draws current through the protector. The internal resistance is typically less than 100Ω. High-impedance loads are relatively unaffected by the presence of the MAX4506/MAX4507. The protector's path resistance is a function of the supply voltage and the signal voltage (see Typical Operating Characteristics).

Fault Protection, Power Off
When power is off (i.e., $\mathrm{V}+=\mathrm{V}-=0$), the protector is a virtual open circuit. With up to $\pm 40 \mathrm{~V}$ applied to the input pin, the output pin will be OV.

Fault Protection, Power On A fault condition exists when the voltage on the $I N_{-}$ exceeds either supply rail. This definition is valid when power is on or off, as well as during all states while power ramps up or down.

Applications Information

Supplying Power Through External ICs

 The MAX4506/MAX4507 have low supply currents ($<250 \mu \mathrm{~A}$), which allows the supply pins to be driven by other active circuitry instead of connected directly to the power sources. In this configuration, the parts can be used as driven fault-protected switches with $V+$ or V - used as the control pins. For example, with the Vpin grounded, the output of a CMOS gate can drive the $\mathrm{V}+$ pin to turn the device on and off. This can effectively connect and disconnect three (MAX4506) or eight (MAX4507) separate signal lines at once. Ensure that the driving source(s) does not drive the $V+$ pin more negative than the V - pin.Figure 3 shows a simple turn-on delay that takes advantage of the MAX4506's low power consumption. The two RC networks cause gradual application of power to the MAX4506, which in turn applies the input signals smoothly after the amplifier has stabilized. The

Figure 2. Application Circuit

Figure 3. Turn-On Delay
two diodes discharge the two capacitors rapidly when the power turns off. Note that the IC used to supply power to the MAX4506/MAX4507 must be able to supply enough current to maintain the load voltage at the supply rail in a fault condition.

Fault-Protected, High-Voltage Signal-Line Protectors

Protectors as Circuit Elements

Each of the protectors in a MAX4506/MAX4507 may be used as a switched resistor, independent of the functions of other elements in the same package. For example, Figure 4 shows a MAX 4506 with two of the protectors used to protect the input of an op amp, and the third element used to sequence a power supply. Combining the circuits of Figures 3 and 4 produces a delayed action on the switched +15 V , as well as smooth application of signals to the amplifier input.
Figure 5 shows MAX4506 used in front of a MAX338 unprotected 1-to-8 multiplexer. With supplies at $\pm 15 \mathrm{~V}$, Vout of the MAX4506 clamps to $\pm 15 \mathrm{~V}$; Vout of the MAX338 goes to $\pm 14 \mathrm{~V}$. With supplies off, VOUT goes to 0 V while the inputs remain at $\pm 25 \mathrm{~V}$.

Figure 4. Power-Supply Sequencing

Figure 5. Protecting a MAX338 with a MAX4506

Use the MAX4506 with a MAX338 to enhance voltage handling capability (Figure 6). The MAX4506 and MAX338 share almost equal voltage drops in this configuration. For example, applying $\pm 40 \mathrm{~V}$ on pins 1 and 2 of the MAX4506 causes a voltage drop of about 26 V across pin 1 of the MAX4506 to pin 4 of the MAX338, and a voltage drop of about 28 V across pin 4 of the MAX4506 to pin 8 of the MAX338. Similarly, there is a 26 V drop from pin 2 of the MAX4506 to pin 5 of the MAX338. The system's performance exceeds each individual part's specification because of shared voltage drops.

Multiplexer and Demultiplexer
As shown in Figure 7, the MAX4506 can be used in series with the output of a MAX4508 (1-to-8 multiplexer) to act as multiplexer or demultiplexer. The MAX4508 is a fault-protected multiplexer whose inputs are designed to interface with harsh environments; however, its common output is not fault protected if connected to outside signals (i.e., demultiplexer use). If the common output can see fault signals, then it needs to be protected, and the MAX4506 can be added to provide complete protection.

Figure 6. SPDT Switch Application

Figure 7. Multiplexer and Demultiplexer Application Using MAX4506 (or MAX4507) with MAX4508

Fault-Protected, High-Voltage Signal-Line Protectors

As seen in Figure 7, the signal input can now be put into pin 1 of the MAX4506 (new common output for system), and outputs can be taken at MAX4508 pins 4 to 7 , and 9 to 12. This is the classic demultiplexer operation. This system now has full protection on both of the multiplexers' inputs and outputs.

Measuring Path Resistance

Measuring path resistance requires special techniques, since path resistance varies dramatically with the IN and OUT voltages relative to the supply voltages. Conventional ohmmeters should not be used for the following two reasons: 1) the applied voltage and currents are usually not predictable, and 2) the true resistance is a function of the applied voltage, which is dramatically altered by the ohmmeter itself. Autoranging ohmmeters are particularly unreliable.
Figure 8 shows a circuit that can give reliable results. This circuit uses a 100 mV voltage source, a low-volt-age-drop ammeter as the measuring circuit, and an adjustable supply to sweep the analog voltage across its entire range. The ammeter must have a voltage drop of less than one millivolt (up to the maximum test current) for accurate results. A Keithley model 617 electrometer has a suitable ammeter circuit, appropriate ranges, and a built-in voltage source designed for this type of measurement. Find the path resistance by setting the analog voltage, measuring the current, and calculating the path resistance. Repeat the procedure at each analog and supply voltage.

Figure 8. Path-Resistance Measuring Circuit

Note: It is important to use a voltage source of 100 mV or less. As shown in Figure 8, this voltage and the VIN voltage form the Vout voltage. Using higher voltages could cause OUT to go into a fault condition prematurely.

High-Voltage Surge Suppression

 These devices are not high-voltage arresters, nor are they substitutes for surge suppressors. However, the MAX4506/MAX4507 can fill a vital gap in systems that use these forms of protection (Figure 9). Although surge suppressors are extremely fast shunt elements, they have very soft current knees. Their clamp voltage must be chosen well above the normal signal levels, because they have excessive leakage currents as the analog signal approaches the knee. This leakage current can interfere with normal operation when signal levels are low or impedance is high. If the clamp voltage is too high, the input can be damaged.Connecting a MAX4506/MAX4507 after a surge suppressor allows the surge-suppressor voltage to be set above the supply voltage (but within the overvoltage limits), dramatically reducing leakage effects (Figure 9). During a surge, the surge suppressor clamps the input voltage roughly to the $\pm 10 \mathrm{~V}$ supplies.

Figure 9. Surge-Suppression Circuit

Fault-Protected, High-Voltage Signal-Line Protectors

__Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
MAX4507CAP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SSOP
MAX4507CWN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 SO
MAX4507CPN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Plastic DIP
MAX4507C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
MAX4507EAP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SSOP
MAX4507EWN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 SO
MAX4507EPN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Plastic DIP
MAX4507MJN	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$18 \mathrm{CERDIP**}$

*Contact factory for dice specifications.
**Contact factory for availability.

TRANSISTOR COUNT:
144 (MAX4506)
379 (MAX4507)
SUBSTRATE CONNECTED TO V+

Fault-Protected, High-Voltage Signal-Line Protectors

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Hot Swap Voltage Controllers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
LTC4227CUFD-4\#PBF LTC4212IMS ADM1075-2ARUZ-RL7 LM5067MW-1/NOPB ADM1075-1ARUZ-RL7 MAX5969BETB+T MIC22700YML-TR LTC4223CDHD-1\#PBF MAX40200AUK+T LTC4224IDDB-2\#TRMPBF LT1640LIS8\#PBF LTC4217CDHC-12\#PBF LT1640ALCS8\#PBF LT4294HDD\#PBF LTC4253CGN\#PBF LTC4211CMS8\#PBF LTC4230CGN\#PBF LTC4224IMS-1\#PBF LTC4216IMS\#PBF LTC4212IMS\#PBF LTC4260CGN\#PBF LTC4227CGN-2\#PBF LTC4244IGN\#PBF LTC4212CMS\#PBF LT4250HCN8\#PBF ADM1276-3ACPZ-RL LTC4226IUD-1\#PBF LT1640AHCN8 ADM1075-2ACPZ ADM1075-1ACPZ ADM1073ARUZ ADM1073ARUZ-REEL7 ADM1075-1ARUZ ADM1075-2ARUZ ADM1170-1AUJZ-RL7 ADM1171-2AUJZ-RL7 ADM1172-1AUJZ-RL7 ADM1172-2AUJZ-RL7 ADM1176-1ARMZ-R7 ADM1177-1ARMZ-R7 ADM1177-2ARMZ-R7 ADM1178-1ARMZ-R7 ADM1275-3ARQZ ADM1275-1ARQZ ADM1275-3ARQZ-R7 ADM1276-3ACPZ ADM1278-1BCPZ ADM4210-1AUJZ-RL7 ADM1270ARQZ ADM12752ARQZ

