Fault-Protected, High-Voltage Single 8-to-1/ Dual 4-to-1 Multiplexers with Output Clamps

Abstract

General Description The MAX4508/MAX4509 are 8-to-1 and dual 4-to-1 faultprotected multiplexers that are pin compatible with the industry-standard DG508/DG509. The MAX4508/ MAX4509 operate with dual supplies of $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ or a single supply of +9 V to +36 V . These multiplexers feature fault-protected inputs, rail-to-rail signal handling capability, and overvoltage clamping at 150 mV beyond the rails.

Both parts offer $\pm 40 \mathrm{~V}$ overvoltage protection with supplies off and $\pm 25 \mathrm{~V}$ protection with supplies on. Onresistance is 400Ω max and is matched between channels to 15Ω max. All digital inputs have TTL logic thresholds, ensuring both TTL and CMOS logic compatibility when using a single +12 V supply or dual $\pm 15 \mathrm{~V}$ supplies.

Functional Diagrams/Truth Tables appear at end of data sheet.
Data-Acquisition Systems
Industrial and Process Control
Avionics
Signal Routing
Redundant/Backup Systems

Applications
Data-Acquisition Systems
Industrial and Process Control
Avionics

Redundant/Backup Systems

Features

- $\pm 40 \mathrm{~V}$ Fault Protection with Power Off $\pm 25 \mathrm{~V}$ Fault Protection with $\pm 15 \mathrm{~V}$ Supplies
- Rail-to-Rail Signal Handling
- No Power-Supply Sequencing Required
- All Channels Off with Power Off
- Output Clamped to Appropriate Supply Voltage During Fault Condition
- 1k Ω Output Clamp Resistance During Overvoltage
- 400Ω max On-Resistance
- 20ns Fault-Response Time
- $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ Dual Supplies +9 V to +36 V Single Supply
- TTL/CMOS-Compatible Logic Inputs

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX4508CSE +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO	S16-8
MAX4508CPE +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP	P16-4
MAX4508C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice *	-
MAX4508ESE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO	$\mathrm{S} 16-8$
MAX4508EPE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP	P16-4
MAX4508MJE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 CERDIP**	$\mathrm{J16-3}$

Ordering Information continued at end of data sheet.
*Contact factory for dice specifications.
**Contact factory for availability.
+Denotes a lead-free package.

Pin Configurations/Functional Diagrams

TOP VIEW

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Fault-Protected, High-Voltage Single 8-to-1/ Dual 4-to-1 Multiplexers with Output Clamps

ABSOLUTE MAXIMUM RATINGS

Note 1: COM_, EN, and A_{-}pins are not fault protected. Signals on COM_, EN, or A_{-}exceeding $V+$ or V - are clamped by internal diodes. Limit forward diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}_{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}} \mathrm{H}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}} \mathrm{L}=+0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH								
Fault-Free Analog Signal Range (Notes 3, 4)	VNO_	$\begin{aligned} & \mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}_{-}}= \pm 15 \mathrm{~V} \end{aligned}$		C, E, M	V-		V+	V
On-Resistance	Ron	$\mathrm{V}_{\mathrm{COM}_{-}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}_{-}}=0.2 \mathrm{~mA}$		$+25^{\circ} \mathrm{C}$		300	400	Ω
				C, E			500	
				M			700	
On-Resistance Match Between Channels (Note 5)	$\Delta \mathrm{RON}$	$\mathrm{V}_{\mathrm{COM}_{-}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}_{-}}=0.2 \mathrm{~mA}$		$+25^{\circ} \mathrm{C}$			15	Ω
				C, E			20	
				M			25	
NO_ Off-Leakage Current (Note 6)	INO_(OFF)	$\mathrm{V}_{\text {NO- }}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=\mp 10 \mathrm{~V}$		$+25^{\circ} \mathrm{C}$	-0.5		+0.5	nA
				C, E	-5		+5	
				M	-50		+50	
COM_ Off-Leakage Current (Note 6)	ICOM_(OFF)	$\begin{aligned} & \mathrm{VCOM}_{C O}= \pm 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}=}=\mp 10 \mathrm{~V} \end{aligned}$	MAX4508	$+25^{\circ} \mathrm{C}$	-2		+2	nA
				C, E	-20		+75	
				M	-200		+200	
			MAX4509	$+25^{\circ} \mathrm{C}$	-1		+1	
				C, E	-100		+75	
				M	-100		+100	
COM_ On-Leakage Current (Note 6)	ICOM_(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}= \pm 10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}}= \pm 10 \mathrm{~V} \text { or } \\ & \text { floating } \end{aligned}$	MAX4508	$+25^{\circ} \mathrm{C}$	-2		+2	nA
				C, E	-100		+75	
				M	-300		+300	
			MAX4509	$+25^{\circ} \mathrm{C}$	-1		+1	
				C, E	-15		+75	
				M	-150		+150	

Fault-Protected, High-Voltage Single 8-to-1/ Dual 4-to-1 Multiplexers with Output Clamps

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}} \mathrm{H}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}} \mathrm{L}=+0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
FAULT PROTECTION							
Fault-Protected Analog Signal Range (Notes 3, 4)	VNO_	Applies with power on, Figure 9	$+25^{\circ} \mathrm{C}$	-25		+25	V
		Applies with power off		-40		+40	
COM_ Output Leakage Current, Supplies On	ICOM_	$\mathrm{V}_{\text {NO_ }}= \pm 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0$	$+25^{\circ} \mathrm{C}$	-20		+20	nA
			C, E	-1		+1	$\mu \mathrm{A}$
			M	-100		+100	
NO_ Input Leakage Current, Supplies On	${ }^{\text {INO}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-}}= \pm 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\mp 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EN}}=0 \end{aligned}$	$+25^{\circ} \mathrm{C}$	-20		+20	nA
			C, E	-200		+200	
			M	-50		+50	$\mu \mathrm{A}$
NO_ Input Leakage Current, Supplies Off	INO_	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}= \pm 40 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0, \\ & \mathrm{~V}+=0, \mathrm{~V}-=0 \end{aligned}$	$+25^{\circ} \mathrm{C}$	-20		+20	nA
			C, E	-5		+5	$\mu \mathrm{A}$
			M	-100		+100	
COM_ On Clamp Output Current, Supplies On	ICOM_	V	$+25^{\circ} \mathrm{C}$	7	10	13	mA
		$\mathrm{V}_{\text {COM }}=0 \quad \mathrm{~V}^{\prime} \mathrm{NO}_{-}=-25 \mathrm{~V}$		-13	-11	-7	
COM_ On Clamp Output Resistance, Supplies On	RCOM_	$\mathrm{V}_{\text {NO_ }}= \pm 25 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	100	1.0	2.5	k Ω
\pm Fault Output Clamp Turn-On Delay (Note 4)		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{NO}_{-}}= \pm 25 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	20			ns
\pm Fault Recovery Time (Note 4)		$\mathrm{RL}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\text {NO_ }}= \pm 25 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$		2.5		$\mu \mathrm{s}$
LOGIC INPUT							
A_ Input Logic Threshold High	$\mathrm{V}_{\text {A_H }}$		C, E, M	2.4			V
A_ Input Logic Threshold Low	$\mathrm{V}_{\text {A_L }}$		C, E, M			0.8	V
A_ Input Current Logic High or Low	IA_H, IA_L	$\mathrm{V}_{\mathrm{A}_{-}}=0.8 \mathrm{~V}$ or 2.4 V	C, E, M	-1		+1	$\mu \mathrm{A}$
SWITCH DYNAMIC CHARACTERISTICS							
Enable Turn-On Time	ton	$\mathrm{V}_{\mathrm{NO}_{-}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text {, }$ Figures 2 and 3	$+25^{\circ} \mathrm{C}$		160	275	ns
			C, E			400	
			M			600	
Transition Time	ttrans	Figure 2	$+25^{\circ} \mathrm{C}$		170	350	ns
			C, E, M			500	
Enable Turn-Off Time	toFF	$\mathrm{V}_{\mathrm{NO}_{-}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ Figures 2 and 3	$+25^{\circ} \mathrm{C}$		120	200	ns
			C, E			250	
			M			400	
Break-Before-Make Time Delay (Note 4)	tBBM	$\mathrm{V}_{\mathrm{NO}_{-}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega,$ Figure 4	C, E, M	10	80		ns
Charge Injection (Note 4)	Q	$\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{~V}_{\mathrm{NO}_{-}}=0, \mathrm{R}_{\mathrm{S}}=0$ Figure 5	$+25^{\circ} \mathrm{C}$		2	10	pC
Off-Isolation (Note 7)	VISO	$\begin{aligned} & R_{L}=75 \Omega, C_{L}=15 \mathrm{pF}, \\ & V_{N O_{-}}=1 V_{\text {RMS }}, f=1 \mathrm{MHz} \text {, Figure } 6 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-70		dB

Fault-Protected, High-Voltage Single 8-to-1/ Dual 4-to-1 Multiplexers with Output Clamps

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}} \mathrm{H}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}} \mathrm{L}=+0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		TA	MIN	TYP	MAX	UNITS
Channel-to-Channel Crosstalk (Note 8)	V_{CT}	$\begin{aligned} & R_{L}=75 \Omega, C_{L}=15 \mathrm{pF}, \\ & V_{\text {NO_ }}=1 V_{\text {RMS }}, f=1 \mathrm{MHz} \text {, Figure } 7 \end{aligned}$		$+25^{\circ} \mathrm{C}$		-62		dB
NO_ Off-Capacitance	CN_(OFF)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 8		$+25^{\circ} \mathrm{C}$		10		pF
COM_ Off-Capacitance	CCOM_(OF)	$f=1 \mathrm{MHz}$, Figure 8	MAX4508	$+25^{\circ} \mathrm{C}$		19		pF
			MAX4509			14		
COM_ On-Capacitance	CCOM_(ON)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 8	MAX4508	$+25^{\circ} \mathrm{C}$		28		pF
			MAX4509			22		
POWER SUPPLY								
Power-Supply Range	V+, V-			C, E, M	± 4.5		± 20	V
V+ Supply Current	I+	$\begin{aligned} & \text { All } \mathrm{V}_{\mathrm{A}_{-}}=0 \text { or } 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}_{-}}=0, \\ & \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V} \end{aligned}$		$+25^{\circ} \mathrm{C}$		370	500	$\mu \mathrm{A}$
				C, E			750	
				M			850	
V- Supply Current	I-	$\begin{aligned} & \text { All } \mathrm{V}_{\mathrm{A}_{-}}=0 \text { or } 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}^{-}=0, \\ & \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V} \end{aligned}$		$+25^{\circ} \mathrm{C}$		200	300	$\mu \mathrm{A}$
				C, E			400	
				M			500	
GND Supply Current	IGND	$\begin{aligned} & \text { All } \mathrm{V}_{\mathrm{A}_{-}}=0 \text { or } 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}^{-}=0, \\ & \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V} \end{aligned}$		$+25^{\circ} \mathrm{C}$		200	300	$\mu \mathrm{A}$
				C, E, M			500	

ELECTRICAL CHARACTERISTICS—Single +12V Supply

$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}-=0, \mathrm{~V}_{\mathrm{A}} \mathrm{H}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}} \mathrm{L}=+0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Fault-Free Analog Signal Range (Note 3)	VNO_	$\mathrm{V}+=12 \mathrm{~V}, \mathrm{~V}-=0, \mathrm{~V}_{\text {NO_ }}=12 \mathrm{~V}$	C, E, M	0		V+	V
On-Resistance	Ron	$\mathrm{V}_{\text {COM }}=+10 \mathrm{~V}, \mathrm{INO}_{-}=200 \mu \mathrm{~A}$	$+25^{\circ} \mathrm{C}$		650	950	Ω
			C, E			1100	
			M			1300	
On-Resistance Match Between Channels (Note 5)	$\Delta \mathrm{RON}$	$\mathrm{V}_{\mathrm{COM}_{-}}=10 \mathrm{~V}, \mathrm{I}_{\text {NO_ }}=200 \mu \mathrm{~A}$	$+25^{\circ} \mathrm{C}$		10	35	Ω
			C, E			50	
			M			75	
NO_ Off-Leakage Current (Notes 6, 9)	INO_(OFF)	$\begin{aligned} & \mathrm{VCOM}_{\mathrm{CO}}=10 \mathrm{~V}, 1 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, 10 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	0.01	+0.5	nA
			C, E	-10		+10	
			M	-200		+200	

Fault-Protected, High-Voltage Single 8-to-1/ Dual 4-to-1 Multiplexers with Output Clamps

ELECTRICAL CHARACTERISTICS—Single +12V Supply (continued)

$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}_{-}=0, \mathrm{~V}_{\mathrm{A}_{-}} \mathrm{H}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}} \mathrm{L}=+0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		TA	MIN	TYP	MAX	UNITS
COM_ Off-Leakage Current (Note 6)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{\text {COM }}=10 \mathrm{~V}, 1 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}_{-}}=1 \mathrm{~V}, 10 \mathrm{~V} \end{aligned}$	MAX4508	$+25^{\circ} \mathrm{C}$	-2		+2	nA
				C, E	-20		+75	
				M	-200		+200	
			MAX4509	$+25^{\circ} \mathrm{C}$	-1		+1	
				C, E	-10		+75	
				M	-100		+100	
COM_ On-Leakage Current (Note 6)	ICOM_(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}^{-}=10 \mathrm{~V}, 1 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}}=10 \mathrm{~V}, 1 \mathrm{~V} \text {, or } \\ & \text { floating } \end{aligned}$	MAX4508	$+25^{\circ} \mathrm{C}$	-2		+2	nA
				C, E	-100		+75	
				M	-300		+300	
			MAX4509	$+25^{\circ} \mathrm{C}$	-1		+1	
				C, E	-15		+75	
				M	-150		+150	
FAULT PROTECTION								
Fault-Protected Analog Signal Range (Notes 3, 10)	VNO_	Applies with all power on		$+25^{\circ} \mathrm{C}$	-25		+25	V
		Applies with all pow			-40		+40	
COM_ Output Leakage Current, Supply On (Notes 3, 10)	ICOM_	$\mathrm{V}_{\text {NO_ }}= \pm 25 \mathrm{~V}, \mathrm{~V}+=12 \mathrm{~V}$		$+25^{\circ} \mathrm{C}$	-20		+20	nA
				C, E	-1		+1	$\mu \mathrm{A}$
				M	-100		+100	
NO_ Input Leakage Current, Supply On (Notes 3, 10)	${ }^{\text {INO_}}$	$\begin{aligned} & \mathrm{V}_{\text {NO_ }}= \pm 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}^{-}= \\ & \mathrm{V}+=12 \mathrm{~V} \end{aligned}$		$+25^{\circ} \mathrm{C}$	-20		+20	nA
				C, E	-5		+5	$\mu \mathrm{A}$
				M	-100		+100	
NO_ Input Leakage Current, Supply Off (Notes 3, 10)	${ }^{\text {INO_}}$	$\mathrm{V}_{\text {NO_ }}= \pm 40 \mathrm{~V}, \mathrm{~V}+=0, \mathrm{~V}-=0$		$+25^{\circ} \mathrm{C}$	-20	0.1	+20	nA
				C, E	-5		+5	$\mu \mathrm{A}$
				M	-100		+100	
COM_ ON Output Current, Supply On	ICOM_	$\mathrm{V}_{\mathrm{NO}_{-}}=25 \mathrm{~V}, \mathrm{~V}_{+}=12 \mathrm{~V}$		$+25^{\circ} \mathrm{C}$	2	3	5	mA
COM_ ON Output Resistance, Supply On	RCOM_	$\mathrm{V}_{\text {NO_ }}=25 \mathrm{~V}, \mathrm{~V}+=12 \mathrm{~V}$		$+25^{\circ} \mathrm{C}$		2.4	6	k Ω
LOGIC INPUT								
A_ Input Logic Threshold High	VIN_H			C, E, M		1.8	2.4	V
A_ Input Logic Threshold Low	VIN_L			C, E, M	0.8	1.8		V
A_ Input Current Logic High or Low	$\begin{aligned} & \text { IINH_, } \\ & \text { liNL_ } \end{aligned}$	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0.8 \mathrm{~V}$ or 2.4 V		C, E, M	-1	0.03	+1	$\mu \mathrm{A}$

Fault-Protected, High-Voltage Single 8-to-1/ Dual 4-to-1 Multiplexers with Output Clamps

ELECTRICAL CHARACTERISTICS—Single +12V Supply (continued)

$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}_{-}=0, \mathrm{~V}_{\mathrm{A}_{-}} \mathrm{H}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}} \mathrm{L}=+0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
SWITCH DYNAMIC CHARACTERISTICS							
Enable Turn-On Time	ton	$\mathrm{V}_{\mathrm{COM}}^{-}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text {, }$ Figure 3	$+25^{\circ} \mathrm{C}$		220	500	ns
			C, E, M			700	
Enable Turn-Off Time	toff	$\mathrm{V}_{\mathrm{COM}}^{-}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega,$ Figure 3	$+25^{\circ} \mathrm{C}$		100	250	ns
			C, E, M			350	
Break-Before-Make Time Delay (Note 4)	tBBM	$\mathrm{V}_{\mathrm{COM}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text {, }$ Figure 4	$+25^{\circ} \mathrm{C}$	50	100		ns
Charge Injection (Note 4)	Q	$C_{L}=1.0 n F, V_{N O_{-}}=0, R_{S}=0$ Figure 5	$+25^{\circ} \mathrm{C}$		2	10	pC
NO_ Off-Capacitance	CNO_(OFF)	$\mathrm{V}_{\text {NO_ }}=0, \mathrm{f}=1 \mathrm{MHz}$, Figure 8	$+25^{\circ} \mathrm{C}$		10		pF
COM_ Off-Capacitance	CCOM_(OF)	$\mathrm{VCOM}_{-}=0, f=1 \mathrm{MHz}$, Figure 8	$+25^{\circ} \mathrm{C}$		19		pF
COM_ On-Capacitance	CCOM_(ON)	$\mathrm{V}_{\mathrm{COM}}^{-}=\mathrm{V}_{\mathrm{NO}_{-}}=0, \mathrm{f}=1 \mathrm{MHz},$ Figure 8	$+25^{\circ} \mathrm{C}$		28		pF
Off-Isolation (Note 7)	VISO	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=1 \mathrm{MHz} \text {, Figure } 6 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-70		dB
Channel-to-Channel Crosstalk (Note 8)	V_{CT}	$\begin{aligned} & \mathrm{RL}_{\mathrm{L}}=75 \Omega, \mathrm{CL}=15 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=1 \mathrm{MHz} \text {, Figure } 7 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-62		dB
POWER SUPPLY							
Power-Supply Range	V+		C, E, M	9		36	V
V+ Supply Current	$1+$	All $\mathrm{V}_{\mathrm{A}_{-}}=0$ or 5 V ,	$+25^{\circ} \mathrm{C}$		200	300	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {NO_ }}=0, \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V}$	C, E, M			675	
		$\begin{aligned} & \text { All } \mathrm{V}_{\mathrm{A}_{-}}=0 \text { or } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{NO}}^{-} \end{aligned}=0, \mathrm{~V}_{\mathrm{EN}}=0 \text { or } \mathrm{V}_{+} .$	$+25^{\circ} \mathrm{C}$		100	250	
			C, E, M			375	

Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 3: NO_ pins are fault protected and COM_ pins are not fault protected. The max input voltage on NO_ pins depends on the COM_ load configuration. Generally, the max input voltage is $\pm 36 \mathrm{~V}$ with $\pm 15 \mathrm{~V}$ supplies and a load referred to ground. For more detailed information see the NO_ Input Voltage section.
Note 4: Guaranteed by design.
Note 5: $\quad \Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{RON}(\mathrm{MAX})-\mathrm{RON}_{\mathrm{O}}(\mathrm{MIN})$.
Note 6: Leakage parameters are 100% tested at the maximum rated hot temperature and guaranteed by correlation at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 7: Off-Isolation = $20 \log 10\left(\mathrm{~V}_{\mathrm{COM}} / / \mathrm{V}_{\mathrm{NO}_{-}}\right)$, where $\mathrm{V}_{\mathrm{COM}}=$ output and $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 8: Between any two analog inputs.
Note 9: Leakage testing for single-supply operation is guaranteed by testing with dual supplies.
Note 10: Guaranteed by testing with dual supplies.

Fault-Protected, High-Voltage Single 8-to-1/ Dual 4-to-1 Multiplexers with Output Clamps

Typical Operating Characteristics

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V} \mathrm{EN}=+2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

LEAKAGE CURRENT vs. TEMPERATURE

ENABLE ON AND OFF TIMES vs. SUPPLY VOLTAGE (SINGLE SUPPLY)

ON-RESISTANCE vs. VCOM AND TEMPERATURE (DUAL SUPPLIES)

CHARGE INJECTION vs. VCOM

ENABLE ON AND OFF TIMES vs. TEMPERATURE

Fault-Protected, High-Voltage Single 8-to-1/ Dual 4-to-1 Multiplexers with Output Clamps

Typical Operating Characteristics (continued)

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

LOGIC-LEVEL THRESHOLD
vs. SUPPLY VOLTAGE

FAULT-FREE SIGNAL PERFORMANCE

FAULT-FREE RAIL-TO-RAIL SIGNAL HANDLING WITH $\pm 15 \mathrm{~V}$ SUPPLIES

INPUT OVERVOLTAGE vs. OUTPUT CLAMPING

$5 \mu \mathrm{~s} / \mathrm{div}$
$\pm 25 \mathrm{~V}$ OVERVOLTAGE INPUT WITH THE OUTPUT CLAMPED AT $\pm 15 \mathrm{~V}$

Fault-Protected, High-Voltage Single 8-to-1/ Dual 4-to-1 Multiplexers with Output Clamps

MAX4508 (Single 8-to-1 Mux)

PIN	NAME	FUNCTION
1	A0	Address Bit 0
2	EN	Mux Enable
3	V-	Negative Supply Voltage
4	NO1	Channel Input 1
5	NO2	Channel Input 2
6	NO3	Channel Input 3
7	NO4	Channel Input 4
8	COM	Analog Output
9	NO8	Channel Input 8
10	NO7	Channel Input 7
11	NO6	Channel Input 6
12	NO5	Channel Input 5
13	V+	Positive Supply Voltage
14	GND	Ground
15	A2	Address Bit 2
16	A1	Address Bit 1

Truth Tables
MAX4508 (Single 8-to-1 Mux)

A2	A1	A0	EN	ON SWITCH
x	x	x	0	None
0	0	0	1	NO1
0	0	1	1	NO2
0	1	0	1	NO3
0	1	1	1	NO4
1	0	0	1	NO5
1	0	1	1	NO6
1	1	0	1	NO7
1	1	1	1	NO8

MAX4509 (Dual 4-to-1 Mux)

A1	A0	EN	COMA	COMB
x	x	0	None	None
0	0	1	NO1A	NO1B
0	1	1	NO2A	NO2B
1	0	1	NO3A	NO3B
1	1	1	NO4A	NO4B

Pin Descriptions

MAX4509 (Dual 4-to-1 Mux)

PIN	NAME	FUNCTION
1	AO	Address Bit 0
2	EN	Mux Enable
3	V-	Negative Supply Voltage
4	NO1A	Channel Input 1A
5	NO2A	Channel Input 2A
6	NO3A	Channel Input 3A
7	NO4A	Channel Input 4A
8	COMA	Mux Output A
9	COMB	Mux Output B
10	NO4B	Channel Input 4B
11	NO3B	Channel Input 3B
12	NO2B	Channel Input 2B
13	NO1B	Channel Input 1B
14	V+	Positive Supply Voltage
15	GND	Ground
16	A1	Address Bit 1

Detailed Description

Traditional fault-protected multiplexers are constructed with three series FET switches. This produces good off protection, but limits the switches input voltage range to as much as 3 V below the supply rails, reducing its usable dynamic range. As the voltage on one side of the switch approaches within about 3 V of either supply rail (a fault condition), the switch impedance increases, limiting the output signal range to approximately 3 V less than the appropriate polarity supply voltage.
The MAX4508/MAX4509 differ considerably from traditional fault-protected multiplexers, offering several advantages. First, they are constructed with two parallel FETs, allowing very low resistance when the switch is on. Second, they allow signals on the NO_ pins that are within or beyond the supply rails to be passed through the switch to the COM terminal. This allows rail-to-rail signal operation. Third, when a signal $\mathrm{VNO}_{\mathrm{N}}$ exceeds the supply rails (i.e., a fault condition), the voltage on COM_{-}is limited to the supply rails. Operation is identical for both fault polarities.

Fault-Protected, High-Voltage Single 8-to-1/ Dual 4-to-1 Multiplexers with Output Clamps

Figure 1. Functional Diagram

When the NO_ voltage goes beyond supply rails (fault condition), the NO_ input becomes high impedance regardless of the switch state or load resistance. When power is removed, and the fault protection is still in effect, the NO_ terminals are a virtual open circuit. The fault can be up to $\pm 40 \mathrm{~V}$, with $\mathrm{V}+=\mathrm{V}-=0$. If the switch is on, the COM_ output current is furnished from the V_{+} or V- pin by "booster" FETs connected to each supply pin. These FETs can source or sink up to 10 mA .
The COM_ pins are not fault protected. If a voltage source is connected to any COM_ pin, it should be limited to the supply voltages. Exceeding the supply voltage will cause high currents to flow through the ESD protection diodes, damaging the device (see Absolute Maximum Ratings).
Figure 1 shows the internal construction, with the analog signal paths shown in bold. A single normally open (NO) switch is shown. The analog switch is formed by the parallel combination of N -channel FET N1 and Pchannel FET P1, which are driven on and off simultaneously, according to the input fault condition and the logic level state.

NO_ Input Voltage

The maximum allowable input voltage for safe operation depends on whether supplies are on or off and the load configuration at the COM output. If COM is referred to a voltage other than ground, but within the supplies, $\mathrm{VNO}_{\text {_ }}$ may range higher or lower than the supplies provided the absolute value of $\left|\mathrm{V}_{\mathrm{NO}_{-}}-\mathrm{VCOM}_{\mathrm{CO}}\right|$ is less than 40 V . For example, if the load is referred to +10 V at COM_{-}, then the NO_{-}voltage range can be from +50 V to -30 V . As another example, if the load is connected to -10 V at $\mathrm{COM}_{\text {_ }}$, the $\mathrm{NO}_{\mathbf{\prime}}$ voltage range is limited to -50 V to +30 V .
If the supplies are $\pm 15 \mathrm{~V}$ and COM is referenced to ground through a load, the maximum NO_ voltage is $\pm 25 \mathrm{~V}$. If the supplies are off and the COM output is referenced to ground, the maximum NO_{-}voltage is $\pm 40 \mathrm{~V}$.

Normal Operation

Two comparators continuously compare the voltage on the NO_ pin with V+ and V- supply voltages. When the signal on NO_{-}is between $\mathrm{V}+$ and V -, the multiplexer behaves normally, with FETs N1 and P1 turning on and off in response to $A_{\text {_ }}$ signals (Figure 1). The parallel

Fault-Protected, High-Voltage Single 8-to-1/ Dual 4-to-1 Multiplexers with Output Clamps

combination of N1 and P1 forms a low-value resistor between $\mathrm{NO}_{\text {_ }}$ and COM_ so that signals pass equally well in either direction.

Positive Fault Condition

When the signal on NO_ exceeds V+ by about 150mV, the positive fault comparator output goes high, turning off FETs N1 and P1 (Figure 1). This makes the NO_ pin high impedance, regardless of the switch state. If the switch state is "off," all FETs turn off, and both NO_ and COM_ are high impedance. If the switch state is "on," FET P2 turns on, clamping COM_ to V+.

Negative Fault Condition

When the signal on NO_ goes about 150mV below V-, the negative fault comparator output goes high, turning off FETs N1 and P1 (Figure 1). This makes the NO_ pin high impedance, regardless of the switch state. If the switch state is "off," all FETs turn off, and both NO_ and COM_ are high impedance. If the switch state is "on," FET N2 turns on, clamping COM_ to V-.

Transient Fault Condition

When a fast rising or falling transient on NO_ exceeds V+ or V -, the output (COM_) follows the input (NO_{-}) to the supply rail with only a few nanoseconds delay. This delay is due to the switch on-resistance and circuit capacitance to ground. When the input transient returns to within the supply rails, however, there is a longer output recovery time. For positive faults, the recovery time is typically 2.5μ s (see Typical Operating Characteristics). For negative faults, the recovery time is typically $1.3 \mu \mathrm{~s}$. These values depend on the COM_ output resistance and capacitance. The delays do not depend on the fault amplitude. Higher COM_ output resistance and capacitance increase the recovery times.

COM and A

FETs N2 and P2 can source about $\pm 10 \mathrm{~mA}$ from $\mathrm{V}+$ or V - to the COM_ pin in the fault condition (Figure 1). Ensure that if the COM_ pin is connected to a lowimpedance load, the absolute maximum current rating of 30 mA is never exceeded, either in normal or fault conditions.
The GND, COM_, and A_{-}pins do not have fault protection. Reverse ESD protection diodes are internally con-
nected between GND, COM_, A_, and both V+ and V-. If a signal on GND, COM_, or A_{-}exceeds $V+$ or V - by more than 300 mV , one of these diodes will conduct. During normal operation, these reverse-biased ESD diodes leak a few nanoamps of current to $\mathrm{V}+$ and V -

Fault Protection Voltage and Power Off The maximum fault voltage on the NO _ pins is $\pm 40 \mathrm{~V}$ from ground when the power is off. With $\pm 15 \mathrm{~V}$ supply voltages, the highest voltage on NO_ can be $\mathrm{V}-+40 \mathrm{~V}$, and the lowest voltage on NO can be $\mathrm{V}+-40 \mathrm{~V}$. Exceeding these limits can damage the chip.

Logic Level Thresholds

The logic level thresholds are CMOS and TTL compatible with $\mathrm{V}+=13.5 \mathrm{~V}$ to $\mathrm{V}+=16.5 \mathrm{~V}$.

Applications Information

Abstract

Ground There is no connection between the analog signal paths and GND. The analog signal paths consist of an N-channel and a P-channel MOSFET with their sources and drains paralleled and their gates driven out of phase to $\mathrm{V}+$ and V - by the logic-level translators. V+ and GND power the internal logic and logic level translators and set the input logic thresholds. The logiclevel translators convert the logic levels to switched $\mathrm{V}+$ and V - signals to drive the gates of the multiplexers. This drive signal is the only connection between the power supplies and the analog signals. GND, A_{-}, and COM_ have ESD protection diodes to V+ and V-.

\section*{Supply Current Reduction}

When the logic signals are driven rail-to-rail from 0 to +15 V or -15 V to +15 V , the current consumption will be reduced from $370 \mu \mathrm{~A}$ (typ) to $200 \mu \mathrm{~A}$.

Power Supplies
The MAX4508/MAX4509 operate with bipolar supplies between $\pm 4.5 \mathrm{~V}$ and $\pm 20 \mathrm{~V}$. The $\mathrm{V}+$ and V - supplies need not be symmetrical, but their sum cannot exceed the 44 V absolute maximum rating.
The MAX4508/MAX4509 operate from single supplies between +9 V and +36 V when V - is connected to GND.

Fault-Protected, High-Voltage Single 8-to-1/ Dual 4-to-1 Multiplexers with Output Clamps

Figure 2. Address Transition Time

Figure 3. Enable Switching Time

Fault-Protected, High-Voltage Single 8-to-1/ Dual 4-to-1 Multiplexers with Output Clamps

Test Circuits/Timing Diagrams (continued)

Figure 4. MAX4508 Break-Before-Make Interval

Figure 5. Charge Injection

[^0]
Fault-Protected, High-Voltage Single 8-to-1/

 Dual 4-to-1 Multiplexers with Output ClampsTest Circuits/Timing Diagrams (continued)

Figure 8. NO_, COM_ Capacitance

Figure 9. Transient Behavior of Fault Condition
Functional Diagrams/Truth Tables

Fault-Protected, High-Voltage Single 8-to-1/ Dual 4-to-1 Multiplexers with Output Clamps

Ordering Information (continued)

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX4509CSE +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO	S16-8
MAX4509CPE +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP	P16-4
MAX4509C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{\star}$	-
MAX4509ESE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO	S16-8
MAX4509EPE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP	P16-4
MAX4509MJE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 CERDIP**	$\mathrm{J} 16-3$

*Contact factory for dice specifications.
** Contact factory for availability.
+Denotes a lead-free package.

Chip Topography

МАХ4508/МАХ4509

Fault-Protected, High-Voltage Single 8-to-1/ Dual 4-to-1 Multiplexers with Output Clamps

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Fault-Protected, High-Voltage Single 8-to-1/ Dual 4-to-1 Multiplexers with Output Clamps

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Fault-Protected, High-Voltage Single 8-to-1/ Dual 4-to-1 Multiplexers with Output Clamps

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
5	$10 / 07$	EC table changes and stylistic corrections	$2-5$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
ADG506ATE/883B DG406BDN-T1-E3 HEF4051BP NLAS5223CMUTAG NLV14051BDG NLVHC4051ADTR2G 016400E ADV3014KSTZ PI3V512QE FSA644UCX MAX7356ETG 7705201EC ISL71830SEHF/PROTO MAX4634ETBT MAX4578CAP+ PI2SSD3212NCE MAX3997ETM+ PI3L100QE PI3DBS12412AZLEX PI3V512QEX MAX4969CTO+ PI3DBS12212AZBEX PI3DBS16213ZLEX PI3DBS16415ZHEX MAX7367EUP+T MAX7369EUP+ MAX7357ETG+T NLV74HC4053ADR2G NLVAST4051DTR2G ADG5209BCPZ-RL7 PS509WEX PS509QEX PS508QEX PS508WEX ADG5209FBRUZ-RL7 ADG5208FBRUZRL7 MAX14984ETG+ MAX14984ETG+T HV2818/R4X HV2918/R4X CBTU02044HEJ PS508LEX PS509LEX TC7W53FK,LF 74LVC1G3157GM, 132 74LVC2G53DC,125 TC7PCI3215MT,LF ADG1407BCPZ-REEL7 ADG1407BRUZ ADG1409SRU-EP

[^0]: Figure 7. Crosstalk

