Rail-to-Rail, Fault-Protected, SPST Analog Switches

General Description

The MAX4510/MAX4520 single-pole/single-throw (SPST), fault-protected analog switches feature a fault-protected input and Rail-to-Rail ${ }^{\circledR}$ signal-handling capability. The normally open (NO) and normally closed (NC) terminals are protected from overvoltage faults up to 36 V during power-on and 44 V with power off. During a fault condition, the switch input terminal (NO or NC) becomes an open circuit; only nanoamperes of leakage current flow from the fault source, and the switch output (COM) furnishes up to 13 mA of the appropriate polarity supply voltage to the load. This ensures unambiguous rail-to-rail outputs when a fault begins and ends.
On-resistance is 160Ω max. The off-leakage current is only 0.5 nA at $+25^{\circ} \mathrm{C}$ and 10 nA at $+85^{\circ} \mathrm{C}$. The MAX4510 is a normally closed switch, while the MAX4520 is a normally open switch. These CMOS switches operate with dual power supplies ranging from $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ or a single supply between +9 V and +36 V .
The digital input has +0.8 V and +2.4 V logic thresholds, ensuring both TTL- and CMOS-logic compatibility when using $\pm 15 \mathrm{~V}$ or a single +12 V supply. The MAX4510/ MAX4520 are available in 6-pin SOT23 and 8-pin μ MAX packages.

Applications
Data Acquisition
Industrial and Process-Control Systems
Avionics
ATE Equipment
Redundant/Backup Systems

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	TOP MARK
MAX4510EUT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SOT23-6	AABZ
MAX4510EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX4520EUT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SOT23-6	AADK
MAX4520EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Features

- $\pm 40 \mathrm{~V}$ Fault Protection with Power Off ± 36 V Fault Protection with $\pm 15 \mathrm{~V}$ Supplies
- Switch is Off with Power Removed
- Rail-to-Rail Signal Handling
- 160Ω max Signal Paths with $\pm 15 \mathrm{~V}$ Supplies
- On-Switch Turns Off with Overvoltage
- 0.5nA Off-Leakage Current
- Output Clamped to Appropriate Supply Voltage During Fault Condition; No Transition Glitch
- No Power-Supply Sequencing Required
$- \pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ Dual Supplies +9 V to +36 V Single Supply
- Low Power Consumption: <2mW
- TTL- and CMOS-Compatible Logic Inputs with Single +9 V to +15 V or $\pm 15 \mathrm{~V}$ Supplies

Pin Configurations/Truth Tables

TOP VIEW

() ARE FOR MAX4520.

IN	MAX4510	MAX4520
0	ON	OFF
1	OFF	ON

SWITCHES SHOWN FOR LOGIC "0" INPUT.
ALL SWITCHES ARE OFF WITH POWER REMOVED.

Pin Configurations continued at end of data sheet.

For free samples \& the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

Rail-to-Rail, Fault-Protected, SPST Analog Switches

ABSOLUTE MAXIMUM RATINGS

(Voltages Referenced to GND)

V+	-0.3V to +44.0V
V-	-44.0V to +0.3V
V + to V-	-0.3V to +44.0V
COM, IN (Note 1)	.(V- - 0.3V) to (V++0.3V)
NC, NO (Note 2)	(V+-36V) to (V-+36V)
NC, NO to COM.	-36V to +36V
Continuous Current into Any Terminal	$\ldots \pm 30 \mathrm{~mA}$
Peak Current into Any Terminal (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)	$\pm 50 \mathrm{~mA}$

Note 1: COM and IN pins are not fault protected. Signals on COM or IN exceeding V+ or V- are clamped by internal diodes. Limit forward diode current to maximum current rating.
Note 2: NC and NO pins are fault protected. Signals on NC or NO exceeding -36V to +36 V may damage the device. These limits apply with power applied to $\mathrm{V}+$ or $\mathrm{V}-$, or $\pm 40 \mathrm{~V}$ with $\mathrm{V}+=\mathrm{V}-=0$.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, G N D=0, \mathrm{~V}_{I H}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Fault-Free Analog Signal Range	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$	Applies with power on or off	E	V-		V+	V
On-Resistance	Ron	$\mathrm{V}_{\text {COM }}= \pm 10 \mathrm{~V}, \mathrm{ICOM}=1 \mathrm{~mA}$	$+25^{\circ} \mathrm{C}$		125	160	Ω
			E			225	
NO or NC Off-Leakage Current (Notes 4, 5)	INO(OFF), INC(OFF)	$V_{C O M}= \pm 14 \mathrm{~V}$; $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{COM}}=\mp 14 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
			E	-10		10	
COM Off-Leakage Current (Notes 4, 5)	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}= \pm 14 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=\mp 14 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
			E	-10		10	
COM On-Leakage Current (Notes 4, 5)	ICOM(ON)	$V_{C O M}= \pm 14 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=$ $\pm 14 \mathrm{~V}$ or unconnected	$+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
			E	-20		20	

FAULT ($\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$, unless otherwise noted.)

Fault-Protected Analog Signal Range	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$	Applies with power on (Note 6)	E	-36		36	V
		Applies with power off (Note 6)		-40		40	
COM Off-Leakage Current, Supplies On	ICOM(OFF)	V_{NO} or $\mathrm{V}_{\mathrm{NC}}= \pm 36 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	-10		10	nA
			E	-200		200	
NO or NC Input Leakage Current, Supplies On	Ino, Inc	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}= \pm 36 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\mathrm{COM}}=\mp 10 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-20		20	nA
			E	-200		200	
NO or NC Input Leakage Current, Supplies Off	Ino, Inc	$\begin{aligned} & V_{N O} \text { or } V_{N C}= \pm 40 \mathrm{~V}, \\ & V_{+}=0, V_{-}=0 \end{aligned}$	$+25^{\circ} \mathrm{C}$	-20	0.1	20	nA
			E	-200		200	
Clamp Output Current, Supplies On	ICOM	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=36 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	8	11	13	mA
		$\mathrm{V}_{\text {NO }}$ or $\mathrm{V}_{\mathrm{NC}}=-36 \mathrm{~V}$		-12	-10	-7	

Rail-to-Rail, Fault-Protected, SPST Analog Switches

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{I H}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
Clamp Output Resistance, Supplies On	Rcom	$\mathrm{V}_{\text {NO }}$ or $\mathrm{V}_{\mathrm{NC}}= \pm 36 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$		1	2.5	k Ω
			E			3	
Fault Trip Threshold			$+25^{\circ} \mathrm{C}$	V- - 0.4		V+ + 0.4	V
Fault Output Turn-On Delay Time		$\mathrm{V}_{\mathrm{IN}}= \pm 25 \mathrm{~V}, \mathrm{RL}=10 \mathrm{k} \Omega$	$+25^{\circ} \mathrm{C}$		10		ns
Fault Recovery Time		$\mathrm{V} / \mathrm{N}= \pm 25 \mathrm{~V}, \mathrm{RL}=10 \mathrm{k} \Omega$	$+25^{\circ} \mathrm{C}$		2.5		$\mu \mathrm{s}$
LOGIC INPUT							
IN Input Logic High	VINH		E	2.4			V
IN Input Logic Low	VINL		E			0.8	V
IN Input Current	linh, lint	V IN $=0.8 \mathrm{~V}$ or 2.4 V	$+25^{\circ} \mathrm{C}$	-1	0.03	1	$\mu \mathrm{A}$
			E	-5		5	
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, $C L=35 p F$, Figure 2	$+25^{\circ} \mathrm{C}$		350	500	ns
			E			600	
Turn-Off Time	toFF	V_{NO} or $\mathrm{V}_{\mathrm{NC}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, $C L=35 p F$, Figure 2	$+25^{\circ} \mathrm{C}$		60	175	ns
			E			250	
Charge Injection (Note 7)	Q	$\begin{aligned} & C_{L}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{NO}}=0, \\ & \mathrm{RS}_{\mathrm{S}}=0 \Omega, \text { Figure } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$		1.5	5	pC
NO or NC Off-Capacitance	$\mathrm{C}_{\text {N(OFF) }}$	$\mathrm{f}=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		10		pF
COM Off-Capacitance	ССом(OFF)	$f=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		5		pF
COM On-Capacitance	CCOM(ON)	$f=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		10		pF
Off-Isolation (Note 8)	VCIso	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=15 \mathrm{pF}, \\ & V_{N_{-}}=1 V_{R M S}, f=1 \mathrm{MHz} \text {, Figure } 5 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-62		dB

POWER SUPPLY

Power-Supply Range	V+, V-		E	± 4.5		± 20	V
V+ Supply Current	I+	V IN $=0$ or 5 V	$+25^{\circ} \mathrm{C}$		100	175	$\mu \mathrm{A}$
			E			250	
V- Supply Current	I-	V IN $=0$ or 5 V	$+25^{\circ} \mathrm{C}$		50	100	$\mu \mathrm{A}$
			E			175	
GND Supply Current	IGND	V IN $=0$ or 15 V	$+25^{\circ} \mathrm{C}$	-1	0.01	1	$\mu \mathrm{A}$
			E			10	
		V IN $=5 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$		50	100	
			E			175	

Rail-to-Rail, Fault-Protected, SPST Analog Switches

ELECTRICAL CHARACTERISTICS—Single +12V Supply
$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}-=0, G N D=0, \mathrm{~V}_{I H}=2.4 \mathrm{~V}, \mathrm{~V} / \mathrm{V}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$ (Note 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Fault-Free Analog Signal Range	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$	Applies with power on or off	E	0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=10 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=1 \mathrm{~mA} \end{aligned}$	$+25^{\circ} \mathrm{C}$		260	390	Ω
			E			500	
NO or NC Off-Leakage Current (Notes 4, 5, 9)	INO(OFF), INC(OFF)	$\begin{aligned} & V_{C O M}=10 \mathrm{~V}, 1 \mathrm{~V} \\ & V_{N O}, V_{N C}=1 \mathrm{~V}, 10 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
			E	-10		10	
COM Off-Leakage Current (Notes 4, 5, 9)	ICOM(OFF)	$\begin{aligned} & V_{C O M}=1 \mathrm{~V}, 10 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=10 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
			E	-10		10	
COM On-Leakage Current (Notes 4, 5, 9)	ICOM(ON)	$\mathrm{V}_{\text {COM }}=1 \mathrm{~V}, 10 \mathrm{~V} ; \mathrm{V}_{\text {NO }}, \mathrm{V}_{\text {NC }}=$ $1 \mathrm{~V}, 10 \mathrm{~V}$, or unconnected	$+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
			E	-20		20	
FAULT							
Fault-Protected Analog Signal Range	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$	Applies with power on (Note 6)	E	-36		36	V
		Applies with power off (Note 6)		-40		40	
COM Off-Leakage Current, Supply On	ICOM	V_{NO} or $\mathrm{V}_{\mathrm{NC}}= \pm 36 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	-10		10	nA
			E	-200		200	
NO or NC Input Leakage Current, Supply On	Ino, Inc	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}= \pm 36 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \end{aligned}$	$+25^{\circ} \mathrm{C}$	-20		20	nA
			E	-200		200	
NO or NC Input Leakage Current, Supply Off	Ino, Inc	$\begin{aligned} & V_{N O} \text { or } V_{N C}= \pm 40 \mathrm{~V}, \\ & V_{+}=0, V_{-}=0 \end{aligned}$	$+25^{\circ} \mathrm{C}$	-20	0.1	20	nA
			E	-200		200	
Clamp Output Current, Supply On	ICOM	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=36 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	2	3	5	mA
Clamp Output Resistance, Supply On	Rcom	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=36 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$		2.4	5	k Ω
LOGIC INPUT							
IN Input Logic High	VINH		E	2.4			V
IN Input Logic Low	VINL		E			0.8	V
IN Input Current	IINH, lint	V IN $=0.8 \mathrm{~V}$ or 2.4 V	$+25^{\circ} \mathrm{C}$	-1	0.03	1	$\mu \mathrm{A}$
			E	-5		5	

Rail-to-Rail, Fault-Protected, SPST Analog Switches

ELECTRICAL CHARACTERISTICS—Single +12V Supply (continued)

$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}-=0, G N D=0, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$ (Note 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	$\begin{aligned} & V_{N O} \text { or } V_{N C}=7 \mathrm{~V}, R_{L}=2 \mathrm{k} \Omega \text {, } \\ & C_{L}=35 \mathrm{pF} \text {, Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$		500	750	ns
			E			1000	
Turn-Off Time	tofF	$\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text {, }$ $C L=35 p F$, Figure 2	$+25^{\circ} \mathrm{C}$		60	200	ns
			E			300	
Charge Injection (Note 7)	Q	$\begin{aligned} & C_{L}=1 n F, V_{N O}=0, \\ & R_{S}=0 \Omega, \text { Figure } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$		1	5	pC
NO or NC Off-Capacitance	$\mathrm{C}_{\mathrm{NO}(\mathrm{OFF})}$, CNC(OFF)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		9		pF
COM Off-Capacitance	CCOM(OFF)	$\mathrm{V}_{\text {COM }}=0, \mathrm{f}=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		9		pF
COM On-Capacitance	CCOM(ON)	$\begin{aligned} & V_{\mathrm{COM}}=\mathrm{V}_{\mathrm{NO}}=0, \\ & f=1 \mathrm{MHz}, \text { Figure } 4 \end{aligned}$	$+25^{\circ} \mathrm{C}$		22		pF
Off-Isolation (Note 8)	VISO	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=15 \mathrm{pF} \\ & V_{I N}=1 V_{\text {RMS }}, f=1 \mathrm{MHz} \text {, Figure } 5 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-62		dB
POWER SUPPLY							
Power-Supply Range	V+		E	9		36	V
V+ Supply Current	$1+$	$\mathrm{V}_{\mathrm{IN}}=0$ or 5 V	$+25^{\circ} \mathrm{C}$		50	125	$\mu \mathrm{A}$
			E			175	
V- and GND Supply Current	IGND	$\mathrm{V}_{\mathrm{IN}}=0$ or 12 V	$+25^{\circ} \mathrm{C}$		25	75	$\mu \mathrm{A}$
			E			125	
		$\mathrm{V}_{\mathrm{IN}}=0$ or 5 V	$+25^{\circ} \mathrm{C}$		50	125	$\mu \mathrm{A}$
			E			175	

Note 3: Algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 4: Leakage parameters are 100% tested at maximum-rated hot temperature and guaranteed by correlation at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 5: SOT packages are 100% tested at $+25^{\circ} \mathrm{C}$. Limits at the maximum-rated temperature are guaranteed by design and correlation limits at $+25^{\circ} \mathrm{C}$. Leakage tests for the SOT package are typical only.
Note 6: $\quad N C$ and NO pins are fault protected. Signals on NC or NO exceeding -36 V to +36 V may damage the device. These limits apply with power applied to $\mathrm{V}+$ or $\mathrm{V}-$, or $\pm 40 \mathrm{~V}$ with $\mathrm{V}+=\mathrm{V}-=0$.
Note 7: Guaranteed by design.
Note 8: Off isolation = 20log ${ }_{10}$ [$\mathrm{V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NC}}\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NO}}\right)\right]$, $\mathrm{V}_{\mathrm{COM}}=$ output, V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 9: Leakage testing for single-supply operation is guaranteed by testing with dual supplies.

Rail-to-Rail, Fault-Protected, SPST Analog Switches

Id(ON), IS(OFF), AND Id(OFF) LEAKAGES vs. TEMPERATURE

ON- AND OFF-TIMES
vs. TEMPERATURE

POWER-SUPPLY CURRENT vs. TEMPERATURE

Rail-to-Rail, Fault-Protected, SPST Analog Switches

Typical Operating Characteristics (continued)
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN		NAME	FUNCTION		
SOT23-6	$\boldsymbol{\mu M A X}$		Positive Supply Voltage Input		
1	8	V-	Negative Supply Voltage Input. Connect to GND for single-supply operation.		
2	5	IN	Logic Control Digital Input		
3	6	GND	Ground		
4	4	COM	Analog Switch Common Terminal		
5	1	Fault-Protected Analog Switch-normally closed (NC) for MAX4510; normally open (NO) for MAX4520			
6	3	NC or NO	N.C.		No Connection. Not inter-
:---					
nally connected.					

Detailed Description

Overview of Traditional

 Fault-Protected SwitchesThe MAX4510/MAX4520 are fault-protected CMOS analog switches with unusual operation and construction. Traditional fault-protected switches are constructed by three series FETs. This produces good off characteristics, but fairly high on-resistance when the signals are within about 3 V of each supply rail. As the voltage on one side of the switch approaches within about 3 V of either supply rail (a fault condition), the switch impedance becomes higher, limiting the output signal range (on the protected side of the switch) to approximately 3 V less than the appropriate polarity supply voltage.
During a fault condition, the output current that flows from the protected side of the switch into its load comes from the fault source on the other side of the switch. If the switch is open or the load is extremely high impedance, the input current will be very low. If the switch is on and the load is low impedance, enough current will flow from the source to maintain the load voltage at 3 V less than the supply.

Rail-to-Rail, Fault-Protected, SPST Analog Switches

Figure 1. Functional Diagram

Overview of MAX4510/MAX4520

The MAX4510/MAX4520 differ considerably from traditional fault-protection switches, with several advantages. First, they are constructed with two parallel FETs, allowing very low on-resistance when the switch is on. Second, they allow signals on the NC or NO pins that are within or slightly beyond the supply rails to be passed through the switch to the COM terminal, allowing rail-to-rail signal operation. Third, when a signal on NC or NO exceeds the supply rails by about 50 mV (a fault condition), the voltage on COM is limited to the appropriate polarity supply voltage. Operation is identical for both fault polarities. The fault-protection extends to $\pm 36 \mathrm{~V}$ from GND.

During a fault condition, the NO or NC input pin becomes high impedance regardless of the switch state or load resistance. If the switch is on, the COM output current is furnished from the $\mathrm{V}+$ or V - pin by "booster" FETs connected to each supply pin. These FETs can typically source or sink up to 13 mA .

When power is removed, the fault protection is still in effect. In this case, the NO or NC terminals are a virtual open circuit. The fault can be up to $\pm 40 \mathrm{~V}$.
The COM pin is not fault protected; it acts as a normal CMOS switch pin. If a voltage source is connected to the COM pin, it should be limited to the supply voltages. Exceeding the supply voltage will cause high currents to flow through the ESD protection diodes, possibly damaging the device (see Absolute Maximum Ratings).

Internal Construction
Internal construction is shown in Figure 1, with the analog signal paths shown in bold. A single normally open (NO) switch is shown; the normally closed (NC) configuration is identical except the logic-level translator becomes an inverter. The analog switch is formed by the parallel combination of N -channel FET N1 and Pchannel FET P1, which are driven on and off simultaneously according to the input fault condition and the logic-level state.

Rail-to-Rail, Fault-Protected, SPST Analog Switches

Normal Operation

Two comparators continuously compare the voltage on the NO (or NC) pin with $V+$ and V-. When the signal on NO or NC is between $\mathrm{V}+$ and V -, the switch acts normally, with FETs N1 and P1 turning on and off in response to IN signals. The parallel combination of N1 and P 1 forms a low-value resistor between NO (or NC) and COM so that signals pass equally well in either direction.

Positive Fault Condition

When the signal on NO (or NC) exceeds V+ by about 50 mV , the high-fault comparator output is high, turning off FETs N1 and P1. This makes the NO (or NC) pin high impedance regardless of the switch state. If the switch state is "off," all FETs are turned off and both NO (or NC) and COM are high impedance. If the switch state is "on," FET P2 is turned on, sourcing current from $\mathrm{V}+$ to COM.

Negative Fault Condition

When the signal on NO (or NC) exceeds V - by about 50 mV , the low-fault comparator output is high, turning off FETs N1 and P1. This makes the NO (or NC) pin high impedance regardless of the switch state. If the switch state is "off," all FETs are turned off and both NO (or NC) and COM are high impedance. If the switch state is "on," FET N2 is turned on, sinking current from COM to V-.

Transient Fault Response and Recovery When a fast rise-time and fall-time transient on IN exceeds $V+$ or V-, the output (COM) follows the input (IN) to the supply rail with only a few nanoseconds delay. This delay is due to the switch on-resistance and circuit capacitance to ground. When the input transient returns to within the supply rails, however, there is a longer output recovery time delay. For positive faults, the recovery time is typically $3.5 \mu \mathrm{~s}$. For negative faults, the recovery time is typically $1.3 \mu \mathrm{~s}$. These values depend on the COM output resistance and capacitance. The delays are not dependent on the fault amplitude. Higher COM output resistance and capacitance increase recovery times.

COM and IN Pins

FETs N2 and P2 can source about $\pm 13 \mathrm{~mA}$ from $\mathrm{V}+$ or V to the COM pin in the fault condition. Ensure that if the COM pin is connected to a low-resistance load, the absolute maximum current rating of 30 mA is never exceeded, both in normal and fault conditions.
The GND, COM, and IN pins do not have fault protection. Reverse ESD-protection diodes are internally connected between GND, COM, IN, and both $\mathrm{V}+$ and V -. If a signal on GND, COM, or IN exceeds $\mathrm{V}+$ or V - by more
than 300 mV , one of these diodes will conduct heavily. During normal operation these reverse-biased ESD diodes leak a few nanoamps of current to $\mathrm{V}+$ and V -.

Fault-Protection Voltage and Power Off
The maximum fault voltage on the NC or NO pins is $\pm 36 \mathrm{~V}$ with power applied and $\pm 40 \mathrm{~V}$ with power off.

Failure Modes

The MAX4510/MAX4520 are not lightning arrestors or surge protectors.
Exceeding the fault-protection voltage limits on NO or NC, even for very short periods, can cause the device to fail.

Ground
There is no connection between the analog signal path and GND. The analog signal path consists of an Nchannel and P-channel MOSFET with their sources and drains paralleled and their gates driven out of phase to $\mathrm{V}+$ and V - by the logic-level translators.
V+ and GND power the internal logic and logic-level translators and set the input logic thresholds. The logiclevel translators convert the logic levels to switched V_{+} and V - signals to drive the gates of the analog switch. This drive signal is the only connection between the power supplies and the analog signal. GND, IN, and COM have ESD-protection diodes to $\mathrm{V}+$ and V -.

IN Logic-Level Thresholds

The logic-level thresholds are CMOS and TTL compatible when $V+$ is +15 V . As $\mathrm{V}+$ is raised, the threshold increases slightly, and when $V+$ reaches 25 V , the level threshold is about 2.8 V -above the TTL output highlevel minimum of 2.4 V , but still compatible with CMOS outputs (see Typical Operating Characteristics).
Increasing V - has no effect on the logic-level thresholds, but it does increase the gate-drive voltage to the signal FETs, reducing their on-resistance.

Dual Supplies

The MAX4510/MAX4520 operate with dual supplies between $\pm 4.5 \mathrm{~V}$ and $\pm 20 \mathrm{~V}$. The $\mathrm{V}+$ and V - supplies need not be symmetrical, but their difference cannot exceed the absolute maximum rating of 44 V .

Single Supply

The MAX4510/MAX4520 operate from a single supply between +9 V and +36 V when V - is connected to GND.

Rail-to-Rail, Fault-Protected, SPST Analog Switches

LOGIC INPUT WAVEFORMS INVERTED FOR SWITCHES THAT HAVE THE OPPOSITE LOGIC SENSE

Figure 2. Switch Turn-On/Turn-Off Times

V- IS CONNECTED TO GND FOR SINGLE-SUPPLY OPERATION

VIN

Δ VOUT IS THE MEASURED VOLTAGE DUE TO CHARGETRANSFER ERROR Q WHEN THE CHANNEL TURNS OFF.
$Q=\Delta V_{\text {OUT }} \cdot C_{L}$

Figure 3. Charge Injection

Rail-to-Rail, Fault-Protected, SPST Analog Switches

Test Circuits/Timing Diagrams (continued)

V- IS CONNECTED TO GND FOR SINGLE-SUPPLY OPERATION.

Figure 4. COM, NO, and NC Capacitance

OFF-ISOLATION $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$ $O N-L O S S=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$

MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AT SOCKET TERMINALS.
OFF ISOLATION IS MEASURED BETWEEN COM AND "OFF" NO OR NC TERMINALS.
ON LOSS IS MEASURED BETWEEN COM AND "ON" NO OR NC TERMINALS.
V- IS CONNECTED TO GND FOR SINGLE-SUPPLY OPERATION.

Figure 5. Frequency Response and Off-Isolation

Rail-to-Rail, Fault-Protected, SPST Analog Switches

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF

