Low－Voltage，CMOS Analog Multiplexers／Switches with Enable Inputs and Address Latching

Abstract

General Description The MAX4530／MAX4531／MAX4532 are low－voltage， CMOS analog ICs configured as an 8－channel multi－ plexer（mux）（MAX4530），two 4－channel muxes （MAX4531），and three single－pole／double－throw switches（MAX4532）．These devices are pin compatible with the industry－standard 74HC4351／74HC4352／ 74HC4353．All devices have two complementary switch－enable inputs and address latching． The MAX4530／MAX4531／MAX4532 operate from a sin－ gle supply of +2 V to +12 V ，or from dual supplies of $\pm 2 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ ．On－resistance（ 150Ω max）is matched between switches to 8Ω max．Each switch can handle rail－to－rail analog signals．Off－leakage current is only 1 nA at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and 50 nA at $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ ． All digital inputs have 0.8 V and 2.4 V logic thresholds， ensuring both TTL－and CMOS－logic compatibility when using $\pm 5 \mathrm{~V}$ or a single +5 V supply．

Applications

Battery－Operated Equipment
Data Acquisition
Test Equipment
Avionics
Networking
ATE Equipment
Audio－Signal Routing
－Pin Compatible with 74HC4351／74HC4352／74HC4353
－$\pm 2.0 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ Dual Supplies +2.0 V to +12 V Single Supply
－ 75Ω Signal Paths with $\pm 5 \mathrm{~V}$ Supplies 150Ω Signal Paths with＋5V Supply
－Rail－to－Rail ${ }^{\circledR}$ Signal Handling
－toN and toff $=150 \mathrm{~ns}$ and 120 ns at $\pm 4.5 \mathrm{~V}$
－＜1 $\mu \mathrm{W}$ Power Consumption
－＞2kV ESD Protection per Method 3015.7
－TTL／CMOS－Compatible Inputs
－Small，20－Pin SSOP／SO／DIP Packages
Ordering Information

PART	TEMP．RANGE	PIN－PACKAGE
MAX4530CPP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Plastic DIP
MAX4530CWP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SO
MAX4530CAP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SSOP
MAX4530C／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$

Ordering Information continued at end of data sheet．
＊Contact factory for availability．

Low-Voltage, CMOS Analog Multiplexers/Switches with Enable Inputs and Address Latching

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to V- $\mathrm{V}+. .-0.3 ~ t o ~+13 V ~$ Voltage into Any Terminal (Note 1) -0.3 to (V++0.3V) or $\pm 20 \mathrm{~mA}$ (whichever occurs first) Continuous Current into Any Terminal.............................. 20 mA Peak Current, NO, NC, or COM_ (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)................................... $\pm 40 \mathrm{~mA}$ ESD per Method 3015.7 ..>2000V

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
20-Pin Plastic DIP (derate $11.11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$$\text { above } \left.+70^{\circ} \mathrm{C}\right) \text {. }$	
20-Pin SO (derate $10.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)............ 800 mW	
20-Pin SSOP (derate $8.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 640 mW	
Operating Temperature Ranges	
MAX453_C_P	.$^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX453_E_P	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range-65	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note 1: Voltages exceeding V+ or V- on any signal terminal are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0, \mathrm{~V}_{\text {ADD_H }}=\mathrm{V}_{\mathrm{EN}} \mathrm{H}=\mathrm{V} \overline{\mathrm{LE}}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {ADD_L }}=\mathrm{V}_{\mathrm{EN}} \mathrm{L}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP (Note 2)	MAX	UNITS
SWITCH								
Analog-Signal Range	$\begin{gathered} \mathrm{V}_{\mathrm{COM},} \mathrm{~V}_{\mathrm{NO}}, \\ \mathrm{~V}_{\mathrm{NC}}, \end{gathered}$	(Note 3)			V-		V+	V
Channel On-Resistance	Ron	$\begin{aligned} & I_{\mathrm{NO}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}= \pm 3.5 \mathrm{~V}, \\ & \mathrm{~V}+=+4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		45	75	Ω
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			100	
On-Resistance Matching Between Channels (Note 4)	$\Delta \mathrm{RoN}$	$\begin{aligned} & \mathrm{I}_{\mathrm{NO}}=2 \mathrm{~mA}, \mathrm{VCOM}= \pm 4.5 \mathrm{~V}, \\ & \mathrm{~V}+=+4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1	8	Ω
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			12	
On-Resistance Flatness (Note 5)	RFLAT(ON)	$\begin{aligned} & I_{N O}=2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{COM}}=-3 \mathrm{~V}, 0 \mathrm{~V},+3 \mathrm{~V} ; \\ & \mathrm{V}+=5 \mathrm{~V} ; \mathrm{V}-=-5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$		4	10	Ω
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			13	
NO-Off Leakage Current (Note 6)	INO(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V}, \\ & \mathrm{~V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.01	1	nA
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	
COM-Off Leakage Current (Note 6)	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}= \pm 4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}}= \pm 4.5 \mathrm{~V}, \\ & \mathrm{~V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \end{aligned}$	MAX4530	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-2	0.01	2	nA
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-100		100	
		$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}= \pm 4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}}= \pm 4.5 \mathrm{~V}, \\ & \mathrm{~V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \end{aligned}$	MAX4531/ MAX4532	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.01	1	
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-50		50	
COM-On Leakage Current (Note 6)	ICOM(ON)	$\begin{aligned} & \mathrm{V}_{\text {COM }}= \pm 4.5 \mathrm{~V}, \\ & \mathrm{~V}+=5.5 \mathrm{~V}, \\ & \mathrm{~V}-=-5.5 \mathrm{~V} \end{aligned}$	MAX4530	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-2	0.01	2	nA
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-100		100	
			MAX4531/ MAX4532	$\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$	-1	0.01	1	
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-50		50	

Low-Voltage, CMOS Analog Multiplexers/Switches with Enable Inputs and Address Latching

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=-5 \mathrm{~V} \pm 10 \%, G N D=0, \mathrm{~V}_{\text {ADD_H }}=\mathrm{V}_{\mathrm{EN}} \mathrm{H}=\mathrm{V} \mathrm{LE}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {ADD }} \mathrm{L}=\mathrm{V}_{\mathrm{EN}} \mathrm{L}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{min}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS
DIGITAL LOGIC INPUT							
Logic High Threshold	$\underset{V_{A D D}{ }_{-H}, V_{E N _H},}{V \overline{L E}}$		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		1.5	2.4	V
Logic Low Threshold			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	0.8	1.5		V
Input Current with Input Voltage High	$\underset{\frac{\mathrm{IADD}}{\mathrm{I}} \mathrm{H}, \mathrm{I} \mathrm{IEN}}{\mathrm{LE}}$	$\mathrm{V}_{\text {ADD_H }}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {ADD_L }}=0.8 \mathrm{~V}$		-0.1	0.01	0.1	$\mu \mathrm{A}$
Input Current with Input Voltage Low		$\mathrm{V}_{\text {ADD_H }}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {ADD_L }}=0.8 \mathrm{~V}$		-0.1		0.1	$\mu \mathrm{A}$
SUPPLY							
Power-Supply Range	V+, V-			± 2.0		± 6	V
Positive Supply Current	I+	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{ADD}_{-}}=\mathrm{V}_{\mathrm{LE}}=0 \mathrm{~V} / \mathrm{V}_{+}, \\ & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.001	1	$\mu \mathrm{A}$
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	
Negative Supply Current	I-	$\begin{aligned} & \mathrm{VEN}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{ADD}_{-}}=\mathrm{V} \overline{\mathrm{LE}}=0 \mathrm{~V} / \mathrm{V}+, \\ & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.001	1	$\mu \mathrm{A}$
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	
IGND Supply Current	IGND	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{ADD}_{-}}=\mathrm{V}_{\mathrm{LE}}=0 \mathrm{~V} / \mathrm{V}+, \\ & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1		1	$\mu \mathrm{A}$
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	
DYNAMIC							
Transition Time	tTRANS	Figure 1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		60	150	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			250	
Break-Before-Make Interval	tBBM	Figure 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	4	10		ns
Enable Turn-On Time	ton(EN)	Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		10	150	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			250	
Enable Turn-Off Time	toff(EN)	Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		40	100	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			150	
Setup Time, Channel Select to Latch Enable	ts	Figure 4	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	50			ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	60			
Hold Time, Latch Enable to Channel Select	th	Figure 6	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0			ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	0			
Pulse Width, Latch Enable	tMPW	Figure 5	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	60			ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	70			
Charge Injection (Note 3)	Q	$C \mathrm{~L}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{NO}}=0 \mathrm{~V}$, Figure 6	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.5	5	pC
Off Isolation (Note 7)	VISO	$\begin{aligned} & V_{E N 2}=0 V, R L=1 \mathrm{k} \Omega, \\ & f=1 \mathrm{MHz} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-65		dB
Crosstalk Between Channels	V_{CT}	$\begin{aligned} & V_{\overline{E N 1}}=0 V, V_{E N 2}=2.4 \mathrm{~V}, \\ & f=1 \mathrm{MHz}, V_{G E N}=1 V_{p-p}, \\ & R_{L}=1 \mathrm{k} \Omega \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-92		dB

Low-Voltage, CMOS Analog Multiplexers/Switches with Enable Inputs and Address Latching

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=-5 \mathrm{~V} \pm 10 \%, G N D=0, \mathrm{~V}_{\text {ADD_ }} \mathrm{H}=\mathrm{V}_{\mathrm{EN}} \mathrm{H}=\mathrm{V} \overline{\mathrm{LE}}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {ADD_L }}=\mathrm{V}_{\mathrm{EN}} \mathrm{L}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{mIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS				TYP (Note 2)	MAX	UNITS
Distortion, Total Harmonic	THD			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.025		\%
Logic Input Capacitance	CIn	$f=1 \mathrm{MHz}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3		
NO-Off Capacitance	CNO(OFF)	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\text {COM }}=0 \mathrm{~V}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3		pF
COM-Off Capacitance	CCOM(OFF)	$\begin{aligned} & f=1 \mathrm{MHz}, \\ & \mathrm{VEN} 2=\mathrm{VCOM}=0 \mathrm{~V} \end{aligned}$	MAX4530	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		15		pF
			MAX4531			9		
			MAX4532			6		
COM-On Capacitance	CCOM(ON)	$\begin{aligned} & f=1 \mathrm{MHz}, \\ & V_{E N 1}=V_{C O M}=0 \mathrm{~V}, \\ & V_{E N 2}=2.4 \mathrm{~V} \end{aligned}$	MAX4530	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		26		pF
			MAX4531			20		
			MAX4532			17		

ELECTRICAL CHARACTERISTICS—Single +5V Supply

$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=0, G N D=0, \mathrm{~V}_{\text {ADD_H }}=\mathrm{V}_{\mathrm{EN}} \mathrm{H}=\mathrm{V} \overline{\mathrm{LE}}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {ADD_L }}=\mathrm{V}_{\mathrm{EN}} \mathrm{L}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS			MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 2) } \end{gathered}$	MAX	UNITS
SWITCH								
Analog Signal Range	$\mathrm{V}_{\text {COM }}, \mathrm{V}_{\text {NO }}$	(Note 3)			0		V+	V
On-Resistance	Ron	$\begin{aligned} & I_{\mathrm{NO}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}=3.5 \mathrm{~V}, \\ & \mathrm{~V}_{+}=4.5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		80	150	Ω
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			200	
On-Resistance Matching Between Channels (Notes 3, 4)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{I} \mathrm{NO}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}=3.5 \mathrm{~V}, \\ & \mathrm{~V}+=4.5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2	15	Ω
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			20	
On-Resistance Flatness	RFLAT	$\begin{aligned} & I_{\mathrm{NO}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{COM}}=3 \mathrm{~V}, 2 \mathrm{~V}, 1 \mathrm{~V} ; \\ & \mathrm{V}+=5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	10			Ω
NO-Off Leakage Current (Note 8)	INO(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=4.5 \mathrm{~V}, 1 \mathrm{~V} ; \\ & \mathrm{V}+=5.5 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1		1	nA
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	
COM-Off Leakage Current (Note 8)	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=4.5 \mathrm{~V}, 1 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, 4.5 \mathrm{~V} ; \\ & \mathrm{V}_{+}=5.5 \mathrm{~V} \end{aligned}$	MAX4530	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-2		2	nA
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-100		100	
			MAX4531/ MAX4532	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1		1	
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-50		50	
COM-On Leakage Current (Note 8)	ICOM(ON)	MAX4530		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-2		2	nA
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {Min }}$ to $\mathrm{T}_{\text {max }}$	-100		100	
		MAX4531/ MAX4532		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1		1	
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {Min }}$ to $\mathrm{T}_{\text {max }}$	-50		50	

Low-Voltage, CMOS Analog Multiplexers/Switches with Enable Inputs and Address Latching

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=0, G N D=0, \mathrm{~V}_{A D D} \mathrm{H}=\mathrm{VEN}_{-} \mathrm{H}=\mathrm{V} \overline{\mathrm{LE}}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {ADD_L }}=\mathrm{VEN}_{-}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{mI}}\right.$ to TMAX, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS
DIGITAL LOGIC INPUT							
Logic-High Threshold	$\begin{aligned} & \text { VADD_H, }^{\text {VEN_H, }} \overline{\text { VEE }} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {max }}$		1.5	2.4	V
Logic-Low Threshold	$\begin{gathered} V_{\text {ADD_L, }} \\ V_{E N _L}, \overline{\mathrm{~V}} \overline{\mathrm{LE}} \end{gathered}$		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {max }}$	0.8	1.5		V
Input Current with Input Voltage High	$\begin{aligned} & \text { IADD_H, } \\ & I_{\text {EN_H, }} \text { ILE } \end{aligned}$	$\mathrm{V}_{\mathrm{H}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0.8 \mathrm{~V}$		-0.1		0.1	$\mu \mathrm{A}$
Input Current with Input Voltage Low	$\begin{gathered} \text { IADD_L, }^{\text {IEN_L, ILE }} \end{gathered}$	$\mathrm{V}_{\mathrm{H}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0.8 \mathrm{~V}$		-0.1		0.1	$\mu \mathrm{A}$
SUPPLY							
Power-Supply Range				2.0		12	V
Positive Supply Current	I+	$\begin{aligned} & V_{E N}=V_{A D D}=V_{\overline{L E}}=0 \mathrm{~V}, \mathrm{~V}+ \\ & \mathrm{V}+=5.5 \mathrm{~V} ; \mathrm{V}-=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1.0		1.0	$\mu \mathrm{A}$
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	
Negative Supply Current	I-	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{ADD}}=\mathrm{V} \overline{\mathrm{LE}}=0 \mathrm{~V}, \mathrm{~V}+ \\ & \mathrm{V}+=5.5 \mathrm{~V} ; \mathrm{V}-=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1.0		1.0	$\mu \mathrm{A}$
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	
IGND Supply Current	IGND	$\begin{aligned} & V_{E N}=V_{A D D}=V \overline{L E}=0 V, V+ \\ & V+=5.5 V ; V-=0 V \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1.0		1.0	$\mu \mathrm{A}$
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to TMAX	-10		10	
DYNAMIC							
Transition Time	ttrans	Figure 1, $\mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		90	200	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			250	
Break-Before-Make Interval	tBBM	Figure 3 (Note 3)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	10	20		ns
Enable Turn-On Time (Note 3)	ton(EN)	Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		100	200	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			250	
Enable Turn-Off Time (Note 3)	toff(EN)	Figure 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		40	100	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			125	
Set-Up Time, Channel Select to Latch Enable	ts	Figure 7	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	50			ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	60			
Hold Time, Latch Enable to Channel Select	th	Figure 7	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0			ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	0			
Pulse Width, Latch Enable	tMPW	Figure 7	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	60			ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	70			
Charge Injection (Note 3)	Q	Figure 7, $\mathrm{CL}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{NO}}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.5	5	pC

Low-Voltage, CMOS Analog Multiplexers/Switches with Enable Inputs and Address Latching

ELECTRICAL CHARACTERISTICS—Single +3V Supply

$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=0, G N D=0, \mathrm{~V}_{\text {ADD_H }}=\mathrm{V}_{\mathrm{EN}} \mathrm{H}=\mathrm{V} \overline{\mathrm{LE}}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {ADD_L }}=\mathrm{V}_{\mathrm{EN}} \mathrm{L}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS			$\begin{gathered} \text { TYP } \\ \text { (Note 2) } \end{gathered}$	MAX	UNITS
SWITCH							
Analog Signal Range	VANALOG	(Note 3)		0		V+	V
On-Resistance	Ron	$\begin{aligned} & I_{\mathrm{NO}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}=1.5 \mathrm{~V}, \\ & \mathrm{~V}+=2.7 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		220	500	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			600	
DYNAMIC							
Transition Time (Note 3)	ttrans	Figure 1, $\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$, $\mathrm{V}_{\mathrm{NO} 1}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO} 8}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		150	350	ns
Enable Turn-On Time (Note 3)	ton(EN)	Figure $3, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}$, $\mathrm{V}_{\mathrm{INL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO} 1}=1.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		150	350	ns
Enable Turn-Off Time (Note 3)	tOFF(EN)	Figure 3, $\mathrm{V}_{\mathrm{INH}}=2.4 \mathrm{~V}$, $\mathrm{V}_{\mathrm{INL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO} 1}=1.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		60	150	ns
Set-Up Time, Channel Select to Latch Enable)	ts	(Note 3)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	100			ns
Hold Time, Latch Enable to Channel Select	$\mathrm{tH}^{\text {}}$	(Note 3)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0			ns
Pulse Width, Latch Enable	tMPW	(Note 3)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	120			ns

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Note 3: Guaranteed by design.
Note 4: $\Delta \operatorname{Ron}=\operatorname{Ron}(\max)-\operatorname{Ron}(m i n)$.
Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges, i.e., $\mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}$ to OV and OV to -3 V .
Note 6: Leakage parameters are 100\% tested at maximum-rated hot-operating temperature, and guaranteed by correlation at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 7: Worst-case isolation is on channel 4 because of its proximity to the COM pin. Off isolation $=20 \log \mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}$,
$\mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 8: Leakage testing at single supply is guaranteed by correlation testing with dual supplies.

Low-Voltage, CMOS Analog Multiplexers/Switches with Enable Inputs and Address Latching

$\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Low-Voltage, CMOS Analog Multiplexers/Switches with Enable Inputs and Address Latching

Pin Description

PIN			NAME	FUNCTION
MAX4530	MAX4531	MAX4532		
$\begin{gathered} 1,2,5,6 \\ 16,17,18,19 \end{gathered}$	-	-	NO0-NO7	Analog Switch Inputs 0-7
-	1, 2, 5, 6	-	NO0B-NO3B	Analog Switch "B" Inputs 0-3
-	-	1	NOB	Analog Switch "B" Normally Open Input
-	-	2	NCB	Analog Switch "B" Normally Closed Input
3, 14	3, 14	3, 14	N.C.	Not Internally Connected
4	-	-	COM	Analog Switch Common
-	4	19	COMB	Analog Switch "B" Common
-	-	4	NOA	Analog Switch "A" Normally Open Input
-	17	5	COMA	Analog Switch "A" Common
-	-	6	NCA	Analog Switch "A" Normally Closed Input
7	7	7	EN1	Enable Logic Input \#1 (see Truth Table).
8	8	8	EN2	Enable Logic Input \#2 (see Truth Table).
9	9	9	V-	Negative Analog Supply Voltage Input. Connect to GND for single supply operation.
10	10	10	GND	Negative Digital Supply Voltage Input. Connect to digital ground. (Analog signals have no ground
11	11	11	LE	Address Latch Logic Input (see Truth Table).
12	12	12	ADDA	Address "A" Logic Input (see Truth Table).
13	13	13	ADDB	Address "B" Logic Input (see Truth Table).
15	-	15	ADDC	Address "C" Logic Input (see Truth Table).
-	15, 16, 18, 19	-	NO0A-NO3A	Analog Switch "A" Inputs 0-3
-	-	16	NCC	Analog Switch "C" Normally Closed Input
-	-	17	NOC	Analog Switch "C" Normally Open Input
-	-	18	COMC	Analog Switch "C" Common
20	20	20	V+	Positive Analog and Digital Supply-Voltage Input

NO_, NC_, and COM_ pins are identical and interchangeable. Either may be considered as an input or output; signals pass equally well in both directions.

Low－Voltage，CMOS Analog Multiplexers／Switches with Enable Inputs and Address Latching

Applications Information

Power－Supply Considerations
Overview
The MAX4530／MAX4531／MAX4532 construction is typi－ cal of most CMOS analog switches．They have three supply pins：$V+, V-$ ，and GND．$V+$ and V－drive the internal CMOS switches and set the limits of the analog voltage on any switch．Reverse ESD－protection diodes are internally connected between each analog－signal pin and both $V+$ and V－．One of these diodes conducts if any analog signal exceeds $\mathrm{V}+$ or V －．During normal operation，these and other reverse－biased ESD diodes leak，forming the only current drawn from V ＋or V －
Virtually all of the analog leakage current comes from the ESD diodes．Although the ESD diodes on a given signal pin are identical and therefore fairly well bal－ anced，they are reverse－biased differently．Each is biased by either $V+$ or V－and the analog signal．This means their leakages vary as the signal varies．The difference in the two diode leakages to the V＋and V－ pins constitutes the analog－signal－path leakage current． All analog leakage current flows between each pin and one of the supply terminals，not to the other switch ter－ minal．For this reason，both sides of a given switch can show leakage currents of either the same or opposite polarity．
The analog－signal paths and GND are not connected．
V＋and GND power the internal logic and logic－level translators，and set both the input and output logic lim－ its．The logic－level translators convert the logic levels into switched $V+$ and V－signals to drive the analog sig－ nals＇gates．This drive signal is the only connection between the logic supplies and signals and the analog supplies．V＋and V－have ESD－protection diodes to GND．

The logic－level thresholds are TTL／CMOS compatible when $\mathrm{V}+=+5 \mathrm{~V}$ ．As $\mathrm{V}+$ rises，the threshold increases slightly，so when $\mathrm{V}+$ reaches +12 V ，the threshold is about 3．1V－above the TTL guaranteed，high－level min－ imum of 2.8 V ，but still compatible with CMOS outputs．

Bipolar Supplies
The MAX4530／MAX4531／MAX4532 operate with bipolar supplies between $\pm 2.0 \mathrm{~V}$ and $\pm 6 \mathrm{~V}$ ．The $\mathrm{V}+$ and V －sup－ plies need not be symmetrical，but their sum cannot exceed the +13 V absolute maximum rating．

Single Supply
The MAX4530／MAX4531／MAX4532 operate from a sin－ gle supply between +2 V and +12 V when V －is connect－ ed to GND．All of the bipolar precautions must be observed．At room temperature，they actually work with a single supply at，near，or below +1.7 V ，although as supply voltage decreases，switch on－resistance and switching times become very high．

High－Frequency Performance In 50Ω systems，signal response is reasonably flat up to 50 MHz （see Typical Operating Characteristics）． Above 20 MHz ，the on response has several minor peaks that are highly layout－dependent．The problem is not in turning the switch on，but in turning it off．The off－ state switch acts like a capacitor and passes higher frequencies with less attenuation．At 10 MHz ，off isola－ tion is about -65 dB in 50Ω systems，becoming worse （approximately 20dB per decade）as frequency increases．Higher circuit impedances also make off iso－ lation worse．Adjacent channel attenuation is about 3dB above that of a bare IC socket，and is due entirely to capacitive coupling．

Low-Voltage, CMOS Analog Multiplexers/Switches with Enable Inputs and Address Latching

МАХ4530/MAX4531/MAX4532

Figure 1. Address Transition Time

Low-Voltage, CMOS Analog Multiplexers/Switches with Enable Inputs and Address Latching

Test Circuits/Timing Diagrams (continued)

ZعGゅXVW/LEGtXVW/OEGゅXVW

Figure 2. Enable Switching Time

Low-Voltage, CMOS Analog Multiplexers/Switches with Enable Inputs and Address Latching

\qquad Test Circuits/Timing Diagrams (continued)

Figure 3. Break-Before-Make Interval

Low-Voltage, CMOS Analog Multiplexers/Switches with Enable Inputs and Address Latching

Test Circuits/Timing Diagrams (continued)

Figure 4. Charge Injection

MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AT SOCKET TERMINALS
OFF ISOLATION IS MEASURED BETWEEN COM_AND OFF NO_ TERMINAL ON EACH SWITCH.
ON LOSS IS MEASURED BETWEEN COM_AND ON TERMINAL ON EACH SWITCH.
CROSSTALK (MAX4531/MAX4532 IS MEASURED FROM ONE CHANNEL (A, B, C) TO ALL OTHER CHANNELS.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.
Figure 5. Off Isolation, On Loss, and Crosstalk

Figure 6. NO/COM Capacitance

Low-Voltage, CMOS Analog Multiplexers/Switches with Enable Inputs and Address Latching

V- = OV FOR SINGLE-SUPPLY OPERATION. REPEAT TEST FOR EACH SECTION.

Figure 7. Setup and Hold Times, Minimum $\overline{L E}$ Width

Low-Voltage, CMOS Analog Multiplexers/Switches with Enable Inputs and Address Latching

Truth Table/Switch Programming

$\overline{\text { LE }}$	EN2	EN1	ADDRESS BITS			ON SWITCHES		
			ADDC*	ADDB	ADDA	MAX4530	MAX4531	MAX4532
0	1	0	X	X	X	Last address	Last address	Last address
X	0	X	X	X	X	All switches open	All switches open	All switches open
X	X	1	X	X	X	All switches open	All switches open	All switches open
1	1	0	0	0	0	COM-NOO	COMA-NOOA, COMB-NOOB	COMA-NCA, COMB-NCB, COMC-NCC
1	1	0	0	0	1	COM-NO1	COMA-NO1A, COMB-NO1B	COMA-NOA, COMB-NCB, COMC-NCC
1	1	0	0	1	0	COM-NO2	COMA-NO2A, COMB-NO2B	COMA-NCA, COMB-NOB, COMC-NCC
1	1	0	0	1	1	COM-NO3	COMA-NO3A, COMB-NO3B	COMA-NOA, COMB-NOB, COMC-NCC
1	1	0	1	0	0	COM-NO4	COMA-NOOA, COMB-NOOB	COMA-NCA, COMB-NCB, COMC-NOC
1	1	0	1	0	1	COM-NO5	COMA-NO1A, COMB-NO1B	COMA-NOA, COMB-NCB, COMC-NOC
1	1	0	1	1	0	COM-NO6	COMA-NO2A, COMB-NO2B	COMA-NCA, COMB-NOB, COMC-NOC
1	1	0	1	1	1	COM-NO7	COMA-NO3A, COMB-NO3B	COMA-NOA, COMB-NOB, COMC-NOC

X = Don't Care *ADDC not present on MAX4531.
Note: NO_ and COM_ pins are identical and interchangeable. Either may be considered an input or an output; signals pass equally well in either direction. $\overline{\mathrm{LE}}$ is independent of $\overline{\mathrm{EN} 1}$ and EN2.

Low-Voltage, CMOS Analog Multiplexers/Switches with Enable Inputs and Address Latching

Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX4530EPP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Plastic DIP
MAX4530EWP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SO
MAX4530EAP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SSOP
MAX4531CPP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Plastic DIP
MAX4531CWP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SO
MAX4531CAP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SSOP
MAX4531C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX4531EPP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Plastic DIP
MAX4531EWP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SO
MAX4531EAP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SSOP

PART	TEMP. RANGE	PIN-PACKAGE
MAX4532CPP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Plastic DIP
MAX4532CWP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SO
MAX4532CAP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SSOP
MAX4532C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX4532EPP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Plastic DIP
MAX4532EWP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SO
MAX4532EAP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SSOP

*Contact factory for availability.

MAX4531

() ARE FOR MAX4532
TRANSISTOR COUNT: 255
SUBSTRATE CONNECTED TO V+

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118

[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

