Quad, Rail-to-Rail, Fault-Protected, SPDT Analog Switch

General Description

The MAX4533 quad, single-pole/double-throw (SPDT), fault-protected analog switch is pin-compatible with the industry-standard MAX333 and MAX333A. The MAX4533 features fault-protected inputs and Rail-to-Rail® signal handling. The normally open (NO_{-}) and normally closed (NC_) terminals are protected from overvoltage faults up to $\pm 25 \mathrm{~V}$ with power on and up to $\pm 40 \mathrm{~V}$ with power off. During a fault condition, NO_ and NC_ become high impedance with only nanoamperes of leakage current flowing to the source. In addition, the output (COM_) clamps to the appropriate polarity supply rail and provides up to $\pm 10 \mathrm{~mA}$ of load current. This ensures unambiguous rail-to-rail outputs when a fault occurs.
The MAX4533 operates from dual $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ power supplies or a single +9 V to +36 V supply. All digital inputs have +0.8 V and +2.4 V logic thresholds, ensuring both TTL and CMOS logic compatibility when using $\pm 15 \mathrm{~V}$ supplies or a +12 V supply. On-resistance is 175Ω max and is matched between switches to 10Ω max. The offleakage current is only 0.5 nA at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and 10 nA at $\mathrm{T} A=+85^{\circ} \mathrm{C}$.

Applications

Redundant/Backup Systems
Test Equipment
Communications Systems
Industrial and Process Control

Portable Instruments
Data-Acquisition Systems
Avionics Systems

Typical Operating Circuit

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Features

- Rail-to-Rail Signal Handling
- $\pm 40 \mathrm{~V}$ Fault Protection with Power Off $\pm 25 \mathrm{~V}$ Fault Protection with $\pm 15 \mathrm{~V}$ Supplies
- All Switches Off with Power Off
- No Power-Supply Sequencing Required During Power-Up or Power-Down
- Output Clamped to Appropriate Supply Voltage During Fault Condition-No Transition Glitch
- $1 k \Omega$ (typ) Output Clamp Resistance During Overvoltage
- 175Ω (max) Signal Paths with $\pm 15 \mathrm{~V}$ Supplies
- 20ns (typ) Fault Response Time
- $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ Dual Supplies +9 V to +36 V Single Supply
- Pin-Compatible with Industry-Standard MAX333/MAX333A
- TTL/CMOS-Compatible Logic Inputs with $\pm 15 \mathrm{~V}$ or Single +9 V to +15 V Supplies

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4533CAP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SSOP
MAX4533CWP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Wide SO

Ordering Information continued at end of data sheet.
Pin Configuration/ Functional Diagram

TOP VIEW

SWITCHES ARE SHOWN WITH LOGIC "0" INPUT N.C. = NOT INTERNALLY CONNECTED

Quad, Rail-to-Rail, Fault-Protected, SPDT Analog Switch

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to GND
V- ...-44.0V to +0.3V
V+ to V-...-0.3V to +44.0V
COM_, IN_ (Note 1) (V--0.3V) to (V+ + 0.3V)
NC_, NO_ (Note 2)............................... $\mathrm{V}+\mathrm{-}$ - 40V) to (V-+40V)
NC_, NO_ to COM_ ..-40V to +40V
NC_, NO_ Overvoltage with Switch Power On (supplies at $\pm 15 \mathrm{~V}$)..-30V to +30 V
NC_, NO_ Overvoltage with Switch Power Off-40V to +40V
Continuous Current into Any Terminal........................... $\pm 30 \mathrm{~mA}$
Peak Current into Any Terminal (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)................................... $\pm 50 \mathrm{~m}$

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 20-Pin SSOP (derate $10.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 842 mW 20-Pin Wide SO (derate $10.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) .. 800 mW 20-Pin Plastic DIP (derate $11.11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 889 mW 20-Pin CERDIP (derate $11.11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)..... 889 mW Operating Temperature Ranges

MAX4533C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX4533E	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MAX4533M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temper	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperatur	$+300^{\circ} \mathrm{C}$

(pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle). $\pm 50 \mathrm{~mA}$
Note 1: COM_ and $I N_{-}$pins are not fault protected. Signals on $C O M _$or $I N_{-}$exceeding $V+$ or V - are clamped by internal diodes. Limit forward diode current to maximum current rating.
Note 2: NC_ and NO_ pins are fault protected. Signals on NC_ or NO_ exceeding -25V to +25 V may damage the device. These limits apply with power applied to $\mathrm{V}+$ or V -. The limit is $\pm 40 \mathrm{~V}$ with $\mathrm{V}+=\mathrm{V}-=0$.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)($ Note 3$)$

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Fault-Free Analog Signal Range (Note 2)	$\mathrm{V}_{\text {NO_ }} \mathrm{V}_{\text {NC_ }}$	$\begin{aligned} & \mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}= \pm 15 \mathrm{~V} \end{aligned}$	C, E, M	V-		V+	V
COM_ to NO_ or COM_ to NC_ On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{VNC}_{\text {NC }}= \pm 10 \mathrm{~V}, \\ & \mathrm{ICOM}_{-}=1 \mathrm{~mA} \end{aligned}$	$+25^{\circ} \mathrm{C}$		125	175	Ω
			C, E			200	
			M			250	
COM_ to NO_ or COM_ to NC_ On-Resistance Match Between Channels (Note 4)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}}^{-} \\ & \\ & \mathrm{I}_{\mathrm{COM}}= \pm 1 \mathrm{~mA}, \end{aligned}$	$+25^{\circ} \mathrm{C}$		1	6	Ω
			C, E			10	
			M			15	
On-Resistance Flatness		$\begin{aligned} & \mathrm{VCOM}_{-}=+5 \mathrm{~V}, 0,-5 \mathrm{~V}, \\ & \mathrm{ICOM}_{-}=1 \mathrm{~mA} \end{aligned}$	$+25^{\circ} \mathrm{C}$		4		Ω
NO_ or NC_ Off-Leakage Current (Note 5)	$\begin{aligned} & \text { INO_(OFF), } \\ & \text { INC_(OFF) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC- }}= \pm 14 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}^{-}=\mp 14 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	0.02	0.5	nA
			C, E	-10		10	
			M	-200		200	
COM_ On-Leakage Current (Note 5)	ICOM_(ON)	$V_{C O M}= \pm 14 \mathrm{~V}$, V_{NO} _ or $\mathrm{V}_{\mathrm{NC}}= \pm 14 \mathrm{~V}$ or floating	$+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
			C, E	-20		20	
			M	-400		400	
FAULT							
Fault-Protected Analog Signal Range (Note 2)	$\mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC_ }}$	Applies with power on	$+25^{\circ} \mathrm{C}$	-25		+25	V
		Applies with power off	$+25^{\circ} \mathrm{C}$	-40		+40	
COM_ Output Leakage Current, Supplies On	ICOM_	V_{NO} or $\mathrm{V}_{\mathrm{NC}}= \pm 25 \mathrm{~V}$, no connection to "ON" channel	$+25^{\circ} \mathrm{C}$	-10		10	nA
			C, E	-200		200	
			M	-10		10	$\mu \mathrm{A}$
NO_ or NC_ Off Input Leakage Current, Supplies On	${ }^{\prime} \mathrm{NO}_{-}, \mathrm{INC}_{-}$	V_{NO} or $\mathrm{V}_{\mathrm{NC}} \mathrm{C}_{-}= \pm 25 \mathrm{~V}$, $\mathrm{V}_{\mathrm{COM}}=\mp 10 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	-20		20	nA
			C, E	-200		200	
			M	-10		10	$\mu \mathrm{A}$

Quad, Rail-to-Rail, Fault-Protected, SPDT Analog Switch

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)($ Note 3$)$

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
NO_ or NC_ Input Leakage Current, Supplies Off	INO_, ${ }^{\text {INC_}}$	$\begin{aligned} & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}= \pm 40 \mathrm{~V}, \\ & \mathrm{~V}+=0, \mathrm{~V}-=0 \end{aligned}$	$+25^{\circ} \mathrm{C}$	-20	0.1	20	nA
			C, E	-200		200	
			M	-10		10	$\mu \mathrm{A}$
COM_ On-Clamp Output Current, Supplies On	ICOM_	$\mathrm{V}_{\text {NO_ }}$ or $\mathrm{VNC}_{-}=+25 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	8	11	13	mA
		$\mathrm{V}_{\text {NO_ }}$ or $\mathrm{V}_{\text {NC_ }}=-25 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	-12	-10	-7	
COM_ On-Clamp Output Resistance, Supplies On	RCOM_	$\mathrm{V}_{\text {NO_ }}$ or $\mathrm{V}_{\mathrm{NC}}= \pm 25 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$		1.0	2.5	$k \Omega$
			C, E, M			3	
\pm Fault Output Clamp Turn-On Delay Time (Note 6)		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}= \pm 25 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		20		ns
\pm Fault Recovery Time (Note 6)		$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{NO}} \mathrm{O}_{-} \text {or } \mathrm{V}_{\mathrm{NC}_{-}}= \pm 25 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		2.5		$\mu \mathrm{S}$

LOGIC INPUT

IN_ Input Logic Threshold High	VIN_H		C, E, M	2.4			V
IN_ Input Logic Threshold Low	VIN_L		C, E, M			0.8	V
IN_ Input Current Logic High or Low	IIN_H, IIN_L	$\mathrm{V} \mathrm{IN}_{-}=+0.8 \mathrm{~V}$ or +2.4 V	$+25^{\circ} \mathrm{C}$	-1	0.03	1	$\mu \mathrm{A}$
			C, E, M	-5		5	

SWITCH DYNAMIC CHARACTERISTICS

Turn-On Time	ton	$\mathrm{V}_{\mathrm{COM}}= \pm 10 \mathrm{~V}$, $R \mathrm{~L}=\overline{2 k} \Omega$; Figure 2	$+25^{\circ} \mathrm{C}$		100	250	ns
			C, E			400	
			M			600	
Turn-Off Time	tOFF	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text {; Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$		60	150	ns
			C, E			300	
			M			450	
Break-Before-Make Time Delay	tBBM	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}^{-}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \text { Figure } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$	10	50		ns
Charge Injection (Note 6)	Q	$\begin{aligned} & C L=100 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{COM}}^{-}=0 ; \text { Figure } 4 \end{aligned}$	$+25^{\circ} \mathrm{C}$		1.5		pC
NO_ or NC_ Off-Capacitance	CN_(OFF)	$\mathrm{f}=1 \mathrm{MHz}$; Figure 5	$+25^{\circ} \mathrm{C}$		5		pF
COM_ On-Capacitance	CCOM_(ON)	$f=1 \mathrm{MHz}$; Figure 5	$+25^{\circ} \mathrm{C}$		12		pF
Off-Isolation (Note 7)	VISO	$\begin{aligned} & R_{L}=50 \Omega, C L=15 \mathrm{pF} \\ & V_{N}=1 V_{R M S}, f=1 \mathrm{MHz} ; \\ & \text { Figure } 6 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-62		dB
Channel-to-Channel Crosstalk (Note 8)	$V_{C T}$	$\begin{aligned} & R_{L}=50 \Omega, C L=15 \mathrm{pF} \\ & V_{N}=1 V_{R M S}, f=1 \mathrm{MHz} ; \\ & \text { Figure } 6 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-66		dB

POWER SUPPLY

Power-Supply Range	V+, V-			± 4.5	± 18	V
V+ Supply Current	$1+$	$\begin{aligned} & \text { All } \mathrm{V}_{\text {IN_ }}=0 \text { or }+5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}}=\mathrm{V}_{\mathrm{NC}_{-}}=0 \end{aligned}$	$+25^{\circ} \mathrm{C}$		600	$\mu \mathrm{A}$
			C, E, M		1000	
V- Supply Current	I-	$\begin{aligned} & \text { All } \mathrm{V}_{1 \mathrm{~N}_{-}}=0 \text { or }+5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NO- }}=\mathrm{V}_{N C_{-}}=0 \end{aligned}$	$+25^{\circ} \mathrm{C}$		400	$\mu \mathrm{A}$
			C, E, M		600	
GND Supply Current	IGND	$\begin{aligned} & \text { All } \mathrm{V}_{\mathrm{IN}_{-}}=0 \text { or }+5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}}=\mathrm{V}_{\mathrm{NC}_{-}}=0 \end{aligned}$	$+25^{\circ} \mathrm{C}$		300	$\mu \mathrm{A}$
			C, E, M		450	

Quad, Rail-to-Rail, Fault-Protected, SPDT Analog Switch

ELECTRICAL CHARACTERISTICS—Single Supply

$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}-=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Fault-Free Analog Signal Range (Note 2)	$\mathrm{V}_{\text {NO_, }} \mathrm{V}_{\text {NC_ }}$	$\begin{aligned} & \mathrm{V}_{+}=+12 \mathrm{~V}, \mathrm{~V}-=0 \\ & \mathrm{~V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC- }}=+12 \mathrm{~V} \text { or } 0 \end{aligned}$	C, E, M	0		V+	V
COM_ to NO_, COM_ to NC_ On-Resistance	Ron	$\begin{aligned} & \mathrm{V}+=+12 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}^{-}= \\ & \mathrm{ICOM}_{-}=1 \mathrm{~mA} \end{aligned}$	$+25^{\circ} \mathrm{C}$		260	390	Ω
			C, E			450	
			M			525	
COM_ -NO_ On-Resistance Match Between Channels (Note 4)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{V}+=+12 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+ \\ & \mathrm{I}_{\mathrm{COM}}=1 \mathrm{~mA} \end{aligned}$	$+25^{\circ} \mathrm{C}$		4	10	Ω
			C, E			20	
			M			30	
NO_ or NC_ Off-Leakage Current (Notes 5, 9)	INO_(OFF), INC_(OFF)		$+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
			C, E	-10		10	
			M	-200		200	
COM_ On-Leakage Current (Notes 5, 9)	ICOM_(ON)	$\mathrm{V}+=+12 \mathrm{~V},$ $V_{C O M}=+10 \mathrm{~V}$, V_{NO} or V_{NC} _ $=+10 \mathrm{~V}$ or floating	$+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
			C, E	-20		20	
			M	-400		400	
FAULT							
Fault-Protected Analog Signal Range (Note 2)	VNO_, VNC_{-}	Applies with power on	$+25^{\circ} \mathrm{C}$	-25		+25	V
		Applies with power off	$+25^{\circ} \mathrm{C}$	-40		+40	
COM_ Output Leakage Current, Supply On (Note 9)	ICOM	$\begin{aligned} & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}= \pm 25 \mathrm{~V} \text {, } \\ & \mathrm{V}+=+12 \mathrm{~V} \text {, } \end{aligned}$ no connection to "ON" channel	$+25^{\circ} \mathrm{C}$	-10		10	nA
			C, E	-200		200	
			M	-10		10	$\mu \mathrm{A}$
NO_ or NC_ Off Input Leakage Current, Supply On (Note 9)	INO_, INC_	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-} \text {or }} \mathrm{V}_{\mathrm{NC}_{-}}= \pm 25 \mathrm{~V}, \\ & \mathrm{VCOM}_{-}=0, \\ & \mathrm{~V}+=+12 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-20		20	nA
			C, E	-200		200	
			M	-10		10	$\mu \mathrm{A}$
NO_ or NC_ Input Leakage Current, Supply Off (Note 9)	INO_, INC_	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{2} \text { or }} \mathrm{V}_{\text {NC- }}= \pm 40 \mathrm{~V} \text {, } \\ & \mathrm{V}+=0, \mathrm{~V}-=0 \end{aligned}$	$+25^{\circ} \mathrm{C}$	-20	0.1	20	nA
			C, E	-200		200	
			M	-10		10	$\mu \mathrm{A}$
COM_ On-Clamp Output Current, Supply On	ICOM_	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-} \text {or } \mathrm{V}_{\text {NC }}}= \pm 25 \mathrm{~V}, \\ & \mathrm{~V}+=+12 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	2	3	5	mA
COM_ On-Clamp Output Resistance, Supply On	RCOM_	$\begin{aligned} & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}= \pm 25 \mathrm{~V}, \\ & \mathrm{~V}+=+12 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		2.4	5	$\mathrm{k} \Omega$
LOGIC INPUT							
IN_ Input Logic Threshold High	VIN_H		C, E, M	2.4			V
IN_ Input Logic Threshold Low	VIN_L		C, E, M			0.8	V
IN_ Input Current Logic High or	IIN_H, lin_L	$\mathrm{V}_{1 \mathrm{~N}_{-}}=+0.8 \mathrm{~V}$ or +2.4 V	$+25^{\circ} \mathrm{C}$	-1	0.03	1	$\mu \mathrm{A}$
Low			C, E, M	-5		5	

Quad, Rail-to-Rail, Fault-Protected, SPDT Analog Switch

ELECTRICAL CHARACTERISTICS—Single Supply (continued)

$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}-=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 3$)$

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	$\mathrm{VCOM}_{-}=+10 \mathrm{~V}$, $R L=2 k \Omega$; Figure 2	$+25^{\circ} \mathrm{C}$		200	500	ns
			C, E, M			1000	
Turn-Off Time	tofF	$\mathrm{V}_{\mathrm{COM}}=+10 \mathrm{~V} \text {, }$ $R L=2 k \Omega$; Figure 2	$+25^{\circ} \mathrm{C}$		100	300	ns
			C, E, M			900	
Break-Before-Make Time Delay	tBBM	$\begin{aligned} & \mathrm{VCOM}_{-}=+10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text {; Figure } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$	5	100		ns
Charge Injection	Q	$\begin{aligned} & C L=100 \mathrm{pF} \\ & \mathrm{VCOM}_{-}=0 ; \text { Figure } 4 \end{aligned}$	$+25^{\circ} \mathrm{C}$		2		pC
NO_ or NC_ Off-Capacitance	CN_(OFF)	$f=1 \mathrm{MHz}$; Figure 5	$+25^{\circ} \mathrm{C}$		5		pF
COM_ On-Capacitance	CCOM_(ON)	$\mathrm{f}=1 \mathrm{MHz}$; Figure 5	$+25^{\circ} \mathrm{C}$		15		pF
Off-Isolation (Note 7)	VISO	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=15 \mathrm{pF} \\ & V_{N O}=1 V_{\mathrm{RMS}}, f=1 \mathrm{MHz} ; \\ & \text { Figure } 6 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-62		dB
Channel-to-Channel Crosstalk (Note 8)	$V_{C T}$	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=15 \mathrm{pF} \\ & V_{N O}=1 V_{R M S}, f=1 \mathrm{MHz} ; \\ & \text { Figure } 6 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-65		dB
POWER SUPPLY							
Power-Supply Range	V+		C, E, M	9		36	V
V+ Supply Current	I+	$\begin{aligned} & \text { All } \mathrm{V}_{\mathrm{IN}_{-}}=0 \text { or }+5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}}=\mathrm{V}_{\mathrm{NC}_{-}}=0 \end{aligned}$	$+25^{\circ} \mathrm{C}$			350	$\mu \mathrm{A}$
			C, E, M			550	
V- and GND Supply Current	IGND	All $\mathrm{V}_{\text {IN_ }}=0$ or +12 V ,	$+25^{\circ} \mathrm{C}$			200	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {NO_ }}=\mathrm{V}_{\text {NC- }}=0$	C, E, M			350	
		$\begin{aligned} & \text { All } \mathrm{V}_{\text {IN_ }}=0 \text { or }+5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}}=\mathrm{V}_{\mathrm{NC}} \\ & \text { an } \end{aligned}$	$+25^{\circ} \mathrm{C}$			350	$\mu \mathrm{A}$
			C, E, M			550	

Note 3: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 4: $\Delta \operatorname{RON}=\operatorname{RON}(M A X)-\operatorname{RON}(M I N)$.
Note 5: Leakage parameters are 100% tested at maximum-rated hot temperature and guaranteed by correlation at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 6: Guaranteed by design.
Note 7: Off-isolation = 20log10($\left.\mathrm{V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 8: Between any two analog inputs.
Note 9: Leakage testing for single-supply operation is guaranteed by testing with dual supplies.

Quad, Rail-to-Rail, Fault-Protected, SPDT Analog Switch

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

ON-RESISTANCE vs. Vcom AND TEMPERATURE (SINGLE SUPPLY)

TURN-ON/TURN-OFF TIME vs. SUPPLY VOLTAGE (DUAL SUPPLIES)

ON-RESISTANCE vs. Vcom (SINGLE SUPPLY)

ON/OFF-LEAKAGE CURRENT
vs. TEMPERATURE

TURN-ON/TURN-OFF TIME vs. SUPPLY VOLTAGE (SINGLE SUPPLY)

ON-RESISTANCE vs. VCOM AND TEMPERATURE (DUAL SUPPLIES)

CHARGE INJECTION vs. VCOM

TURN-ON/TURN-OFF TIME vs. TEMPERATURE (DUAL SUPPLIES)

Quad, Rail-to-Rail, Fault-Protected, SPDT Analog Switch

Typical Operating Characteristics (continued)
$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Quad, Rail-to-Rail, Fault-Protected, SPDT Analog Switch

Typical Operating Characteristics (continued)

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Pin Description

PIN	NAME	
$1,10,11,20$	IN1, IN2, IN3, IN4	FUNCTION
$2,9,12,19$	NO1, NO2, NO3, NO4	
$3,8,13,18$	COM1, Cormally Open Inputs* ${ }^{*}$	
$4,7,14,17$	NC1, NC2, NC3, NC4	Normally Closed Inputs*
5	V-	Negative Analog Supply Voltage Input
6	GND	Digital Ground
15	N.C.	No Connection. Not internally connected.
16	V+	Positive Analog and Digital Supply-Voltage Input

*When the voltage on NO_ or NC_ does not exceed $V+$ or V_{-}, N_{-}(or NC_) and COM_ pins are bidirectional.

Detailed Description

The MAX4533 is a fault-protected analog switch with special operation and construction. Traditional fault-protected switches are constructed using three-series CMOS devices. This combination produces good fault protection but fairly high on-resistance when the signals are within about 3 V of each supply rail. These series devices are not capable of handling signals up to the power-supply rails.
The MAX4533 differs considerably from traditional faultprotected switches, with three advantages. First, it is constructed with two parallel FETs, allowing very low on-resistance when the switch is on. Second, they allow signals on the NC_ or NO_ pins that are within or slightly
beyond the supply rails to be passed through the switch to the COM_ terminal, allowing rail-to-rail signal operation. Third, when a signal on NC_ or NO_ exceeds the supply rails by about 150 mV (a fault condition), the voltage on COM_ is limited to the appropriate polarity supply voltage. Operation is identical for both fault polarities. The fault-protection extends to $\pm 25 \mathrm{~V}$ with power on and $\pm 40 \mathrm{~V}$ with power off.
The MAX4533 has a parallel N -channel and P-channel MOSFET switch configuration with input voltage sensors. The simplified internal structure is shown in Figure 1. The parallel N1 and P1 MOSFETs form the switch element. N3 and P3 are sensor elements to sample the input voltage and compare it against the power-supply rails.

Quad, Rail-to-Rail, Fault-Protected, SPDT Analog Switch

Figure 1. Simplified Internal Structure
During normal operation of a conducting channel, N1 and P1 remain on with a typical 125Ω on-resistance between NO_{-}(or NC_) and COM_. If the input voltage exceeds either supply rail by about 150 mV , the parallel combination switches (N1, P1) are forced off through the driver and sensing circuitries. At the same time, the output (COM_) is clamped to the appropriate supply rail by the clamp circuitries (N2, P2). Two clamp circuits limit the output voltage to the supply voltages.
For simplicity, Figure 1 shows only one side of the SPDT switch configuration. The complete circuit is composed of two channels with their outputs connected.

Normal Operation

Two comparators continuously compare the voltage on the NO_{-}(or NC_{-}) pin with $\mathrm{V}+$ and V - supply voltages. When the signal on NO_{-}(or NC_{-}) is between $\mathrm{V}+$ and V-, the switch behaves normally, with FETs N1 and P1 turning on and off in response to NO_{-}(or NC_) signals (Figure 1). For any voltage between the supply rails, the switch is bidirectional; therefore, COM_ and NC_ (or NO_{-}) are interchangeable. Only NO_{-}and NC_{-}can be exposed to overvoltages beyond the supply range and within the specified breakdown limits of the device.

Fault Condition
The MAX4533 protects devices connected to its output (COM_) through its unique fault-protection circuitry. When the input voltage is raised above either supply rail, the internal sense and comparator circuitries (N3 and N -channel driver or P3 and P-channel driver) disconnect the output (COM_) from the input (Figure 1).
If the switch driven above the supply rail has an on state, the clamp circuitries (N 2 or P 2) connect the output to the appropriate supply rail. Table 1 summarizes the MAX4533's operation under normal and fault conditions. Row 5 shows a negative fault condition when the supplies are on. It shows that with supplies of $\pm 15 \mathrm{~V}$, if the input voltage is between -15 V and -25 V , the output (COM_) clamps to the negative supply rail of -15 V . With this technique, the SPDT switch is capable of withstanding a worse-case condition of opposite fault polarities at its inputs.

Transient Fault Condition
When a fast rising or falling transient on NO_ (or NC_) exceeds $V+$ or V-, the output (COM_) follows the input (IN_{-}) to the supply rail by only a few nanoseconds. This delay is due to the switch on-resistance and circuit capacitance to ground. However, when the input transient returns to within the supply rails there is a longer recovery time. For positive faults, the recovery time is typically $2.5 \mu \mathrm{~s}$. For negative faults, the recovery time is typically $1.3 \mu \mathrm{~s}$. These values depend on the COM_ output resistance and capacitance. The delays are not dependent on the fault amplitude. Higher COM_ output resistance and capacitance increase the recovery times.

Fault Protection, Voltage, and Power Off The maximum fault voltage on the NO_ or NC_ pins is $\pm 40 \mathrm{~V}$ from ground when the power is off. With $\pm 15 \mathrm{~V}$ supply voltages, the highest voltage on NO_{-}(or NC_) can be +25 V , and the lowest voltage on NO_{-}(or NC_) can be -25 V . Exceeding these limits can damage the chip.

IN_ Logic-Level Thresholds The logic-level thresholds are TTL/CMOS-compatible when $\mathrm{V}+$ is +15 V . Raising $\mathrm{V}+$ increases the threshold slightly; when $\mathrm{V}+$ reaches +25 V , the level threshold is 2.8V-higher than the TTL output high-level minimum of 2.4 V , but still compatible with CMOS outputs (see the Typical Operating Characteristics).
Increasing V - has no effect on the logic-level thresholds, but it does increase the gate-drive voltage to the signal FETs, reducing their on-resistance.

Quad, Rail-to-Rail, Fault-Protected, SPDT Analog Switch

Table 1. Switch States in Normal and Fault Conditions

POWER SUPPLIES (V+, V-)	INPUT RANGE	NC_	NO_	OUTPUT
On	Between Rails	On	Off	NC_ $_{-}$
On	Between Rails	Off	On	NO_ $_{-}$
On	Between V+ and $(+40 \mathrm{~V}-\mathrm{V}+)$	On	Off	V_{+}
On	Between $\mathrm{V}+$ and $(+40 \mathrm{~V}-\mathrm{V}+)$	Off	On	V+
On	Between V- and $(-40 \mathrm{~V}-\mathrm{V}-)$	On	Off	V-
On	Between $V-$ and $(-40 \mathrm{~V}-\mathrm{V})$	Off	On	V-
Off	Between Rails	Off	Off	Follows the load terminal voltage.

Failure Modes

The MAX4533 is not a lightning arrester or surge protector. Exceeding the fault-protection voltage limits on NO_ or NC_, even for very short periods, can cause the device to fail.

Applications Information

Ground

There is no connection between the analog signal paths and GND. The analog signal paths consist of an N -channel and P-channel MOSFET with their sources and drains paralleled and their gates driven out of phase to $\mathrm{V}+$ and V - by the logic-level translators.
V+ and GND power the internal logic and logic-level translators and set the input logic thresholds. The logiclevel translators convert the logic levels to switched $\mathrm{V}+$ and V - signals to drive the gates of the switches. This
drive signal is the only connection between the power supplies and the analog signals. GND, IN_{-}, and COM_ have ESD protection diodes to $\mathrm{V}+$ and V -

Supply Current Reduction

When the logic signals are driven rail-to-rail from 0 to +12 V or -15 V to +15 V , the supply current reduces to approximately half of the supply current when the logic input levels are at 0 to 5 V .

Power Supplies
The MAX4533 operates with bipolar supplies between $\pm 4.5 \mathrm{~V}$ and $\pm 18 \mathrm{~V}$. The $\mathrm{V}+$ and V - supplies need not be symmetrical, but their difference can not exceed the absolute maximum rating of +44 V . The MAX4533 operates from a single supply between +9 V and +36 V when V- is connected to GND.

Test Circuits/Timing Diagrams

Figure 2. Switching-Time Test Circuit

Quad, Rail-to-Rail, Fault-Protected, SPDT Analog Switch

Test Circuits/Timing Diagrams (continued)

Figure 3. Break-Before-Make

Figure 4. Charge Injection

V- IS CONNECTED TO GND (OV) FOR SINGLE-SUPPLY OPERATION.

Figure 5. COM_, NO_, NC_ Capacitance

Quad, Rail-to-Rail, Fault-Protected, SPDT Analog Switch

MEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT SOCKET TERMINALS.
OFF ISOLATION IS MEASURED BETWEEN COM_AND "OFF" NO_OR NC_ TERMINALS.
ON LOSS IS MEASURED BETWEEN COM_AND "ON" NO_ OR NC_TERMINALS.
CROSSTALK IS MEASURED BETWEEN COM_ TERMINALS WITH ALL SWITCHES ON.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED
V- IS CONNECTED TO GND (OV) FOR SINGLE-SUPPLY OPERATION.
Figure 6. Frequency Response, Off-Isolation, and Crosstalk

Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX4533CPP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Plastic DIP
MAX4533EAP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SSOP
MAX4533EWP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Wide SO
MAX4533EPP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Plastic DIP
MAX4533MJP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 CERDIP

Chip Information
TRANSISTOR COUNT: 448

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF

