Fault-Protected, High-Voltage, Single 4-to-1/Dual 2-to-1 Multiplexers

General Description
The MAX4534 (single 4-to-1) and MAX4535 (dual 2-to1) fault-protected multiplexers operate with $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ dual supplies or $\mathrm{a}+9 \mathrm{~V}$ to +36 V single supply. These multiplexers feature fault-protected inputs, rail-to-rail signal-handling capability, and overvoltage clamping at 150mV beyond the rails. Both parts feature $\pm 40 \mathrm{~V}$ overvoltage protection with supplies off and $\pm 25 \mathrm{~V}$ protection with supplies on. On-resistance is 400Ω max and is matched between channels to 10Ω max. All digital inputs have TTL logic thresholds, ensuring TTL/CMOS-logic compatibility when using a single +12 V or dual $\pm 15 \mathrm{~V}$ supplies.

Applications
Data-Acquisition Systems
Industrial and Process Control
Avionics
Signal Routing
Redundant/Backup Systems
Pin Configurations

- $\pm 40 \mathrm{~V}$ Fault Protection with Power Off ± 25 V Fault Protection with $\pm 15 \mathrm{~V}$ Supplies
- No Power-Supply Sequencing Required
- All Channels Off with Power Off
- Rail-to-Rail Signal Handling
- Output Clamped to Appropriate Supply Voltage During Fault Condition
- 1.0k Ω typ Output Clamp Resistance During Overvoltage
- 400Ω max On-Resistance
- 20ns typ Fault Response Time
- $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ Dual Supplies +9 V to +36 V Single Supply
- TTL/CMOS-Compatible Logic Inputs

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4534CUD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 TSSOP
MAX4534CSD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Narrow SO
MAX4534CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic DIP
MAX4534EUD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 TSSOP
MAX4534ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Narrow SO
MAX4534EPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP
MAX4535CUD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 TSSOP
MAX4535CSD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Narrow SO
MAX4535CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic SO
MAX4535EUD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 TSSOP
MAX4535ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Narrow SO
MAX4535EPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP

Fault-Protected, High-Voltage, Single 4-to-1/Dual 2-to-1 Multiplexers

ABSOLUTE MAXIMUM RATINGS

(Voltages Referenced to GND)

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
14-Pin TSSOP (derate $6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 500 mW 14-Pin Narrow SO (derate $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 640 mW 14-Pin Plastic DIP (derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).... .800 mW Operating Temperature Ranges
MAX453_C_D \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX453_E_D $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Note 1: COM_, EN, and A_ pins are not fault protected. Signals on COM_, EN, or A_ exceeding V+ or V- are clamped by internal diodes. Limit forward diode current to maximum current rating.
Note 2: NO_ pins are fault-protected. Signals on NO_ exceeding - 25 V to +25 V may damage the device during power-on conditions. When the power is off the maximum voltage range is -40 V to +40 V .

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}} \mathrm{H}=\mathrm{V}_{\mathrm{ENH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}} \mathrm{L}=\mathrm{V}_{\mathrm{ENL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS		TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH								
Fault-Free Analog Signal Range	V_{NO}	Applies with power on or off			V-		V+	V
On-Resistance	Ron	$\mathrm{V}_{\text {COM }}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}_{-}}=1 \mathrm{~mA}$		$+25^{\circ} \mathrm{C}$		275	400	Ω
				C, E			500	
On-Resistance Match Between Channels (Note 4)	$\Delta \mathrm{RON}$	$\mathrm{VCOM}_{-}= \pm 10 \mathrm{~V}, \mathrm{INO}_{-}=1 \mathrm{~mA}$		$+25^{\circ} \mathrm{C}$		2	10	Ω
				C, E			15	
NO_ Off-Leakage Current (Note 5)	INO_(OFF)	$\mathrm{V}_{\mathrm{NO}_{-}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=\mp 10 \mathrm{~V}$		$+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
				C, E	-5		5	
COM_ Off-Leakage Current (Note 5)	ICOM_(OFF)	$\begin{aligned} & \mathrm{VCOM}_{\mathrm{CO}}= \pm 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}}=\mp 10 \mathrm{~V} \end{aligned}$	MAX4534	$+25^{\circ} \mathrm{C}$	-2	0.05	2	nA
				C, E	-60		60	
			MAX4535	$+25^{\circ} \mathrm{C}$	-1	0.05	1	
				C, E	-30		30	
COM_ On-Leakage Current (Note 5)	ICOM_(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}= \pm 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}}=\text { floating } \end{aligned}$	MAX4534	$+25^{\circ} \mathrm{C}$	-2	0.1	2	nA
				C, E	-80		80	
			MAX4535	$+25^{\circ} \mathrm{C}$	-1	0.1	1	
				C, E	-40		40	
FAULT PROTECTION								
Fault-Protected Analog Signal Range (Note 6)	VNO_	Applies with power on			-25		+25	V
		Applies with power off			-40		+40	
COM_ Output Leakage Current, Supplies On	ICOM	$\mathrm{V}_{\text {NO_ }}= \pm 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0, \mathrm{~V}_{\text {COM }}=0$		$+25^{\circ} \mathrm{C}$	-20		20	nA
				C, E	-1		1	$\mu \mathrm{A}$

Fault-Protected, High-Voltage, Single 4-to-1/Dual 2-to-1 Multiplexers

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}_{-}}=\mathrm{V}_{\mathrm{ENH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}_{-}}=\mathrm{V}_{\mathrm{ENL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP MAX	UNITS
NO_ Input Leakage Current, Supplies On	INO_	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-}}= \pm 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\mp 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EN}}=0 \end{aligned}$	$+25^{\circ} \mathrm{C}$	-20	20	nA
			C, E	-200	200	
NO_ Input Leakage Current, Supplies Off	INO_	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-}}= \pm 40 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0, \\ & \mathrm{~V}_{+}=0, \mathrm{~V}-=0 \end{aligned}$	$+25^{\circ} \mathrm{C}$	-20	20	nA
			C, E	-5	5	$\mu \mathrm{A}$
COM_ On Clamp Output Current, Supplies On	ICOM_	$\mathrm{V}_{\text {NO_ }}=+25 \mathrm{~V} \mathrm{~V}_{\text {COM }}=0$	$+25^{\circ} \mathrm{C}$	7	1013	mA
		$\mathrm{V}_{\text {NO_ }}=-25 \mathrm{~V} \mathrm{~V}_{\text {COM }}=0$		-13	-11	
COM_ On Clamp Output Resistance, Supplies On	RCOM_	$\mathrm{V}_{\text {NO_ }}= \pm 25 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	0.1	1.02 .5	k Ω
			C, E	0.08	3	
\pm Fault Response Time		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{NO}}= \pm 25 \mathrm{~V}$			20	ns
\pm Fault Recovery Time		$\mathrm{RL}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{NO}}= \pm 25 \mathrm{~V}$			2.5	$\mu \mathrm{s}$
Fault Trip Threshold		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		V- - 400	$V++400$	mV
LOGIC INPUT						
Input Logic Voltage High	VA_H, VENH			2.4		V
Input Logic Voltage Low	$\begin{aligned} & \mathrm{V}_{\text {A_L, }} \\ & \mathrm{V}_{\mathrm{ENL}} \end{aligned}$				0.8	V
Input Logic Current	$\mathrm{I}_{\mathrm{A}}, \mathrm{I}$ IEN	$\mathrm{V}_{\mathrm{A}_{-}}=\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}$ or 2.4 V		-1	1	$\mu \mathrm{A}$

SWITCH DYNAMIC CHARACTERISTICS

Enable Turn-On Time	ton	$\mathrm{V}_{\mathrm{NO}_{-}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text {, }$ Figure 3		$+25^{\circ} \mathrm{C}$	135	275	ns
				C, E		400	
Enable Turn-Off Time	tofF	$\mathrm{V}_{\mathrm{NO}_{-}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ Figure 3		$+25^{\circ} \mathrm{C}$	60	200	ns
				C, E		250	
Transition Time	ttrans	Figure 2		$+25^{\circ} \mathrm{C}$	130	350	ns
				C, E		500	
Break-Before-Make Time Delay	tBBM	$\mathrm{V}_{\mathrm{NO}_{-}}= \pm 1 \mathrm{C}$ Figure 4	$=1 \mathrm{k} \Omega \text {, }$		1060		ns
Charge Injection (Note 7)	Q	$C_{L}=1 \mathrm{nF}, V$ Figure 5	$=0, R S=0,$		1	10	pC
Off-Isolation (Note 8)	VISO	$\begin{aligned} & R_{L}=50 \Omega, \\ & f=1 \mathrm{MHz}, \end{aligned}$	$=1 V_{\mathrm{RMS}}$, 6		-62		dB
Channel-to-Channel Crosstalk (Note 9)	V_{CT}	$\begin{aligned} & R_{L}=50 \Omega, \\ & f=1 M H z, \end{aligned}$	$=1 V_{\mathrm{RMS}}$, 7		-53		dB
NO_ Off-Capacitance	CNO_(OFF)	$f=1 \mathrm{MHz}$,			5		pF
COM_ Off-Capacitance	CCOM_(OFF)	$\mathrm{f}=1 \mathrm{MHz},$ Figure 8	MAX4534		6.5		pF
			MAX4535		4		
COM_ On-Capacitance	CCOM_(ON)	$\mathrm{f}=1 \mathrm{MHz},$ Figure 8	MAX4534		13.5		pF
			MAX4535		10.5		

Fault-Protected, High-Voltage, Single 4-to-1/Dual 2-to-1 Multiplexers

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)
$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}_{-}}=\mathrm{V}_{\mathrm{ENH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}_{-}} \mathrm{L}=\mathrm{V}_{\mathrm{ENL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN TYP	MAX	UNITS
POWER SUPPLY						
Power-Supply Range	V+, V-			± 4.5	± 20	V
V+ Supply Current	I+	All $\mathrm{V}_{\mathrm{A}_{-}}=\mathrm{V}_{\mathrm{EN}}=0$ or 5 V	$+25^{\circ} \mathrm{C}$	225	400	$\mu \mathrm{A}$
			C, E		600	
		All $\mathrm{V}_{\mathrm{A}_{-}}=\mathrm{V}_{\mathrm{EN}}=0$ or 15 V	$+25^{\circ} \mathrm{C}$	125	200	
			C, E		300	
V- Supply Current	I-	All $\mathrm{V}_{\mathrm{A}_{-}}=\mathrm{V}_{\mathrm{EN}}=0,5 \mathrm{~V}$, or 15 V	$+25^{\circ} \mathrm{C}$	125	200	$\mu \mathrm{A}$
			C, E		300	
GND Supply Current	IGND	All $\mathrm{V}_{\mathrm{A}_{-}}=\mathrm{V}_{\mathrm{EN}}=0$ or 15 V	$+25^{\circ} \mathrm{C}$	0.01	1	$\mu \mathrm{A}$
			C, E		10	
		All $\mathrm{V}_{\mathrm{A}_{-}}=\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	100	200	
			C, E		300	

ELECTRICAL CHARACTERISTICS—Single +12V Supply

$\left(\mathrm{V}_{+}=+12 \mathrm{~V}, \mathrm{~V}_{-}=0, \mathrm{~V}_{\mathrm{A}_{-}} \mathrm{H}=\mathrm{V}_{\mathrm{ENH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}_{-}}=\mathrm{V}_{\mathrm{ENL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MIN}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS		TA	MIN	TYP	MAX	UNITS
Fault-Free Analog Signal Range	VNO_	Applies with power on or off			0		V+	V
On-Resistance	Ron	$\mathrm{V}_{\text {COM }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}_{-}}=500 \mu \mathrm{~A}$		$+25^{\circ} \mathrm{C}$		650	950	Ω
				C, E			1100	
On-Resistance Match Between Channels (Note 5)	$\Delta \mathrm{RON}$	$\mathrm{V}_{\text {COM }}=10 \mathrm{~V}, \mathrm{I}_{\text {NO_ }}=500 \mu \mathrm{~A}$		$+25^{\circ} \mathrm{C}$		10	25	Ω
				C, E			40	
NO_ Off-Leakage Current (Notes 5, 10)	INO_(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=10 \mathrm{~V}, 1 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}_{-}}=1 \mathrm{~V}, 10 \mathrm{~V} \end{aligned}$		$+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
				C, E	-10		10	
COM_ Off-Leakage Current (Notes 5, 10)	ICOM_(OFF)	$\begin{aligned} & \mathrm{VCOM}_{-}=10 \mathrm{~V}, \\ & 1 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}_{-}}=1 \mathrm{~V}, 10 \mathrm{~V} \end{aligned}$	MAX4534	$+25^{\circ} \mathrm{C}$	-2		2	nA
				C, E	-60		60	
			MAX4535	$+25^{\circ} \mathrm{C}$	-1		1	
				C, E	-30		30	
COM_ On-Leakage Current (Notes 5, 10)	ICOM_(ON)	$\begin{aligned} & \mathrm{VCOM}_{\mathrm{CO}_{-}}=10 \mathrm{~V}, \\ & 1 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}}=10 \mathrm{~V}, \\ & 1 \mathrm{~V} \text {, or floating } \end{aligned}$	MAX4534	$+25^{\circ} \mathrm{C}$	-2		2	nA
				C, E	-80		80	
			MAX4535	$+25^{\circ} \mathrm{C}$	-1		1	
				C, E	-40		40	

Fault-Protected, High-Voltage, Single 4-to-1/Dual 2-to-1 Multiplexers

ELECTRICAL CHARACTERISTICS—Single +12V Supply (continued)

$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}_{-}=0, \mathrm{~V}_{\mathrm{A}_{-}} \mathrm{H}=\mathrm{V}_{\mathrm{ENH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}_{-}}=\mathrm{V}_{\mathrm{ENL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MIN}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
FAULT PROTECTION							
Fault-Protected Analog Signal Range (Note 6)	VNO_{2}	Applies with all power on	$+25^{\circ} \mathrm{C}$	-25		25	V
		Applies with all power off		-40		40	
COM_ Output Leakage Current, Supply On	ICOM	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}= \pm 25 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \end{aligned}$	$+25^{\circ} \mathrm{C}$	-20		20	nA
			C, E	-1		1	$\mu \mathrm{A}$
NO_ Input Leakage Current, Supply On	${ }^{\text {INO_}}$	$\mathrm{V}_{\mathrm{NO}_{-}}= \pm 25 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=0$,	$+25^{\circ} \mathrm{C}$	-20		20	nA
			C, E	-5		5	$\mu \mathrm{A}$
NO_ Input Leakage Current, Supply Off	${ }^{\text {INO_}}$	$\mathrm{V}_{\text {NO_ }}= \pm 40 \mathrm{~V}, \mathrm{~V}+=0$	$+25^{\circ} \mathrm{C}$	-20	0.1	20	nA
			C, E	-5		5	$\mu \mathrm{A}$
COM_ ON Output Current, Supply On	ICOM_	$\mathrm{V}_{\text {NO_ }}=25 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	2	3	5	nA
COM_ ON Output Resistance, Supply On	RCOM	$\mathrm{V}_{\text {NO_ }}=25 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$		2.4	6	k Ω
Fault Trip Threshold		$R \mathrm{~L}=1 \mathrm{k} \Omega$		V- - 400		$\mathrm{V}++400$	mV
LOGIC INPUT							
Input Logic Voltage High	$\begin{aligned} & \mathrm{V}_{\mathrm{A} _} \mathrm{H}, \\ & \mathrm{~V}_{\mathrm{ENH}} \end{aligned}$			2.4			V
ANALOG SWITCH							
Input Logic vorage Low	VENL					0.8	V
Input Logic Current	$\mathrm{I}_{\mathrm{A}_{-},} \mathrm{I}$ EN	$\mathrm{V}_{\mathrm{A}_{-}}=\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}$ or 2.4 V		-1		1	$\mu \mathrm{A}$
SWITCH DYNAMIC CHARACTERISTICS							
Enable Turn-On Time	ton	$V_{C O M}=10 \mathrm{~V}, R_{L}=2 \mathrm{k} \Omega \text {, }$ Figure 3	$+25^{\circ} \mathrm{C}$		220	500	ns
			C, E			700	
Enable Turn-Off Time	toff	$V_{C O M}=10 \mathrm{~V}, R_{L}=2 \mathrm{k} \Omega \text {, }$ Figure 3	$+25^{\circ} \mathrm{C}$		100	250	ns
			C, E			350	
Break-Before-Make Time Delay	tBBM	$V_{C O M}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text {, }$ Figure 4	$+25^{\circ} \mathrm{C}$	50	100		ns
Charge Injection (Note 7)	Q	$C_{L}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{NO}_{-}}=0, \mathrm{R}_{\mathrm{S}}=0$ Figure 5	$+25^{\circ} \mathrm{C}$		2	10	pC
Off-Isolation (Note 8)	VISO	$\begin{aligned} & \mathrm{RL}=50 \Omega, \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}}, \\ & \mathrm{f}=1 \mathrm{MHz} \text {, Figure } 6 \end{aligned}$			-62		dB
Channel-to-Channel Crosstalk (Note 9)	$V_{C T}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}}, \\ & \mathrm{f}=1 \mathrm{MHz}, \text { Figure } 7 \end{aligned}$			-65		dB

Fault-Protected, High-Voltage, Single 4-to-1/Dual 2-to-1 Multiplexers

ELECTRICAL CHARACTERISTICS—Single +12V Supply (continued)
$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}_{-}=0, \mathrm{~V}_{\mathrm{A}_{-}} \mathrm{H}=\mathrm{V}_{\mathrm{ENH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}_{-} \mathrm{L}}=\mathrm{V}_{\mathrm{ENL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MIN}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
POWER SUPPLY							
Power-Supply Range	V+			9		36	V
V+ Supply Current	I+	All V_{A}	$+25^{\circ} \mathrm{C}$		75	150	$\mu \mathrm{A}$
			C, E			250	
		All $\mathrm{V}_{\mathrm{A}_{-}}=\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$		150	275	
			C, E			375	

Note 3: Algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 4: $\quad \Delta \mathrm{RON}_{\mathrm{ON}}=\mathrm{RON}(\mathrm{MAX})-\mathrm{RON}(\mathrm{MIN})$.
Note 5: Leakage parameters are 100% tested at maximum-rated hot temperature and guaranteed by correlation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 6: NO_ pins are fault protected, and COM_ pins are not fault protected. The max input voltage, on NO_ pins, depends upon the COM_ load configuration. Generally, the max input voltage is $\pm 25 \mathrm{~V}$, with $\pm 15 \mathrm{~V}$ supplies, and a load referred to ground. For more detailed information, see the NO_ Input Voltage section.
Note 7: Guaranteed by design.
Note 8: Off-isolation = $20 \log 10\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}_{-}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}_{-}}=$input to off switch.
Note 9: Between any two analog inputs.
Note 10: Leakage testing for single-supply operation is guaranteed by testing with dual supplies.

Typical Operating Characteristics

 $\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Fault-Protected, High-Voltage, Single 4-to-1/Dual 2-to-1 Multiplexers

Typical Operating Characteristics (continued)
$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

ENABLE ON/OFF-TIMES vs. SUPPLY VOLTAGE (DUAL SUPPLIES)

POWER-SUPPLY CURRENT vs.
TEMPERATURE ($\mathbf{V}_{\mathbf{A O}}=\mathbf{V}_{\mathrm{A} 1}=\mathrm{V}_{\mathrm{EN}}=\mathbf{0}$)

ENABLE ON/OFF-TIMES vs. SUPPLY VOLTAGE (SINGLE SUPPLY)

POWER-SUPPLY CURRENT vs.
TEMPERATURE ($\mathbf{V}_{\mathrm{AO}}=\mathrm{V}_{\mathrm{A} 1}=\mathrm{V}_{\mathrm{EN}}=\mathbf{5 V}$)

CHARGE INJECTION vs. VNO (DUAL AND SINGLE SUPPLIES)

ENABLE ON/OFF-TIMES
vs. TEMPERATURE

POWER-SUPPLY CURRENT vs. logic voltage ($\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{EN}}$)

Fault-Protected, High-Voltage, Single 4-to-1/Dual 2-to-1 Multiplexers

FAULT-FREE SIGNAL PERFORMANCE

FAULT-FREE RAIL-TO-RAIL SIGNAL HANDLING WITH $\pm 15 \mathrm{~V}$ SUPPLIES

INPUT OVERVOLTAGE vs. OUTPUT CLAMPING

Fault-Protected, High-Voltage, Single 4-to-1/Dual 2-to-1 Multiplexers

Pin Descriptions

MAX4534 (Single 4-to-1 Mux)

PIN	NAME	FUNCTION
1	A0	Address Bit 0
2	EN	Enable Input
3	V-	Negative Supply Voltage
4	NO1	Channel Input 1 (fault protected)
5	NO2	Channel Input 2 (fault protected)
$6,8,9$	N.C.	No connection
7	COM	Analog Output
10	NO4	Channel Input 4 (fault protected)
11	NO3	Channel Input 3 (fault protected)
12	V+	Positive Supply Voltage
13	GND	Ground
14	A1	Address Bit 1

Truth Tables

MAX4534 (Single 4-to-1 Mux)

A1	A0	EN	ON SWITCH
X	X	0	None
0	0	1	NO1
0	1	1	NO2
1	0	1	NO3
1	1	1	NO4

$X=$ Don't care; logic 0: $V_{A L} \leq+0.8$; logic 1: $V_{A H} \geq+2.4 V$
MAX4535 (Dual 2-to-1 Mux)

A0	EN	COMA	COMB
X	0	None	None
0	1	NO1A	NO1B
1	1	NO2A	NO2B

$X=$ Don't care; logic 0: $V_{A L} \leq+0.8$; logic 1: $V_{A H} \geq+2.4 V$

Detailed Description

The MAX4534/MAX4535 differ considerably from traditional fault-protected multiplexers, offering several advantages. First, they are constructed with two parallel FETs, allowing very low resistance when the switch is on. Second, they allow signals on the NO_ pins that are within or beyond the supply rails to be passed through the switch to the COM terminal. This allows rail-

MAX4535 (Dual 2-to-1 Mux)

PIN	NAME	FUNCTION
1	A0	Address Bit 0
2	EN	Enable Input
3	V-	Negative Supply Voltage
4	NO1A	Channel Input 1A (fault protected)
5	NO2A	Channel Input 2A (fault protected)
$6,9,14$	N.C.	No connection
7	COMA	Mux Output A
8	COMB	Mux Output B
10	NO2B	Channel Input 2B (fault protected)
11	NO1B	Channel Input 1B (fault protected)
12	V+	Positive Supply Voltage
13	GND	Ground

to-rail signal operation. Third, when a signal on VNO_ exceeds the supply rails (i.e., a fault condition), the voltage on $\mathrm{COM}_{\text {_ }}$ is limited to the supply rails. Operation is identical for both fault polarities.
When the NO_ voltage goes beyond supply rails (fault condition), the NO_ input becomes high impedance regardless of the switch state or load resistance. When power is removed, and the fault protection is still in effect, the NO_ terminals are a virtual open circuit. The fault can be up to $\pm 40 \mathrm{~V}$, with $\mathrm{V}+=\mathrm{V}-=0$. If the switch is on, the COM_ output current is furnished from the $\mathrm{V}+$ or V- pin by "booster" FETs connected to each supply pin. These FETs can source or sink up to 10 mA .
The COM_ pins are not fault-protected. If a voltage source is connected to any COM_ pin, it should be limited to the supply voltages. Exceeding the supply voltage will cause high currents to flow through the ESD protection diodes, damaging the device (see Absolute Maximum Ratings).
Figure 1 shows the internal construction, with the analog signal paths shown in bold. A single, normally open (NO) switch is shown. The analog switch is formed by the parallel combination of N -channel FET N1 and P channel FET P1, which are driven on and off simultaneously, according to the input fault condition and the logic level state.

Fault-Protected, High-Voltage,

 Single 4-to-1/Dual 2-to-1 MultiplexersMAX4534/MAX4535

Figure 1. Functional Diagram

NO_ Input Voltage
The maximum allowable input voltage for safe operation depends on whether supplies are on or off and on the load configuration at the COM output. If COM is referred to a voltage other than ground, but within the supplies, VNO_{-}may range higher or lower than the supplies, provided the absolute value of VNO_ VCOM_ is less than 40 V . For example, if the load is referred to +10 V at COM_{-}, then the NO_{-}voltage range can be from +50 V to -30 V . As another example, if the load is connected to -10 V at $\mathrm{COM}_{\mathbf{\prime}}$, the NO_{-}voltage range is limited to -50 V to +30 V .
If the supplies are $\pm 15 \mathrm{~V}$ and COM is referenced to ground through a load, the maximum NO_ voltage is $\pm 36 \mathrm{~V}$. If the supplies are off and the COM output is referenced to ground, the maximum NO_ voltage is $\pm 40 \mathrm{~V}$.

Normal Operation

Two comparators continuously compare the voltage on the NO_ pin with V+ and V- supply voltages. When the signal on NO_ is between $V+$ and V-, the multiplexer behaves normally, with FETs N1 and P1 turning on and
off in response to $\mathrm{A}_{\text {_ }}$ signals (Figure 1). The parallel combination of N 1 and P 1 forms a low-value resistor between NO_{-}and COM _ so that signals pass equally well in either direction.

Positive Fault Condition

When the signal on NO_ exceeds V+ by about 150 mV , the positive fault comparator output goes high, turning off FETs N1 and P1 (Figure 1). This makes the NO_ pin high impedance regardless of the switch state. If the switch state is "off," all FETs turn off, and both NO_ and COM _ are high impedance. If the switch state is "on," FET P2 turns on, clamping COM_ to $\mathrm{V}+$.

Negative Fault Condition

When the signal on NO_ goes about 150 mV below V -, the negative fault comparator output goes high, turning off FETs N1 and P1 (Figure 1). This makes the NO pin high impedance regardless of the switch state. If the switch state is "off," all FETs turn off, and both NO_ and COM_ are high impedance. If the switch state is "on," FET N2 turns on, clamping COM_ to V -.

Fault-Protected, High-Voltage, Single 4-to-1/Dual 2-to-1 Multiplexers

Transient Fault Condition
When a fast rising or falling transient on NO_ exceeds V+ or V -, the output (COM_) follows the input (NO_) to the supply rail with only a few nanoseconds delay. This delay is due to the switch on-resistance and circuit capacitance to ground. When the input transient returns to within the supply rails, however, there is a longer output recovery time. For positive faults, the recovery time is typically $2.5 \mu \mathrm{~s}$. For negative faults, the recovery time is typically $1.3 \mu \mathrm{~s}$. These values depend on the COM_ output resistance and capacitance. The delays do not depend on the fault amplitude. Higher COM_ output resistance and capacitance increase the recovery times.

Non-Fault-Protected Pins

 FETs N2 and P2 can source about $\pm 10 \mathrm{~mA}$ from $\mathrm{V}+$ or V - to the COM_ pin in the fault condition (Figure 1). Ensure that if the COM_ pin is connected to a low impedance load, the 30 mA absolute maximum current rating is never exceeded, both in normal and fault conditions.The GND, COM_, EN, and A_ pins do not have fault protection. Reverse ESD protection diodes are internally connected between GND, COM_, A_, EN, and both $V+$ and V-. If a signal on GND, COM_, EN, or A_{-} exceeds $V+$ or V - by more than 300 mV , one of these diodes will conduct. During normal operation, these reverse-biased ESD diodes leak a few nanoamps of current to $\mathrm{V}+$ and V -.

Fault Protection Voltage and Power-Off The maximum fault voltage on the NO_ pins is $\pm 40 \mathrm{~V}$ from ground when the power is off. With $\pm 15 \mathrm{~V}$ supply voltages, the highest voltage on NO_ can be $\mathrm{V}-+40 \mathrm{~V}$, and the lowest voltage on NO_ can be $\mathrm{V}+-40 \mathrm{~V}$. Caution: Exceeding these limits can damage the IC.

Logic-Level Thresholds The logic-level thresholds are CMOS and TTL compatible with $\mathrm{V}+=4.5 \mathrm{~V}$ to 16.5 V .

Applications Information

Ground

There is no connection between the analog signal paths and GND. The analog signal paths consist of an N -channel and a P-channel MOSFET with their sources and drains paralleled, and their gates driven out of phase to $\mathrm{V}+$ and V - by the logic-level translators.
V+ and GND power the internal logic and logic-level translators and set the input logic thresholds. The logiclevel translators convert the logic levels to switched $\mathrm{V}+$ and V - signals to drive the gates of the channel MOSFETs. This drive signal is the only connection between the power supplies and the analog signals. GND, $A_{_}, E N$, and COM_ have ESD protection diodes to $\mathrm{V}+$ and V -.

Supply Current Reduction
When the logic signals are driven rail-to-rail from 0 to +15 V or -15 V to +15 V , the current consumption will be reduced from $300 \mu \mathrm{~A}$ (typ) to $180 \mu \mathrm{~A}$.

Power Supplies

The MAX4534/MAX4535 operate with bipolar supplies between $\pm 4.5 \mathrm{~V}$ and $\pm 20 \mathrm{~V}$. The $\mathrm{V}+$ and V - supplies need not be symmetrical, but their sum cannot exceed the 44 V absolute maximum rating.
The MAX4534/MAX4535 operate from single supplies between +9 V and +36 V when V - is connected to GND.

Fault-Protected, High-Voltage, Single 4-to-1/Dual 2-to-1 Multiplexers

Figure 2. Address Transition Time

Figure 3. Enable Switching Time

Fault-Protected, High-Voltage, Single 4-to-1/Dual 2-to-1 Multiplexers

Test Circuits/Timing Diagrams (continued)

Figure 4. MAX4534 Break-Before-Make Interval

Figure 5. Charge Injection

Figure 6. Off-Isolation

Fault-Protected, High-Voltage, Single 4-to-1/Dual 2-to-1 Multiplexers

Test Circuits/Timing Diagrams (continued)

Figure 8. NO_, COM_ Capacitance

Figure 9. Transient Behavior of Fault Condition

Chip Information
TRANSISTOR COUNT: 265

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+ HEF4053BT. 653 PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7
CD4053BPWRG4 ADG658TRUZ-EP 74HC4053D.653 74HCT4052PW. 118 74LVC2G53DP. 125 74HC4052DB. 112 74HC4052PW. 112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB. 112 74HCT4052D. 112 74HCT4052DB. 112 74HCT4351D.112 74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZRL7

