General Description

The MAX4539/MAX4540 low-voltage, CMOS 8-channel (MAX4539) and dual 4-channel (MAX4540) multiplexers are ideal for precision ADC calibration and system selfmonitoring applications. These calibration multiplexers (cal-muxes) have precision resistor-dividers to generate accurate voltage ratios from an input reference voltage. The reference ratios include 15/4096 and 4081/4096 of the external reference voltage, accurate to 15 bits, and 1/2V+ and 5/8(V+ - V-), accurate to 8 bits. The external reference voltage as well as ground can also be switched to the output. The MAX4539/MAX4540 have enable inputs and address latching. All digital inputs have 0.8V and 2.4V logic thresholds, ensuring both TTL- and CMOS-logic compatibility when using a ±5V or a single +5V supply. Protection diodes at all inputs provide an ESD rating >2kV.

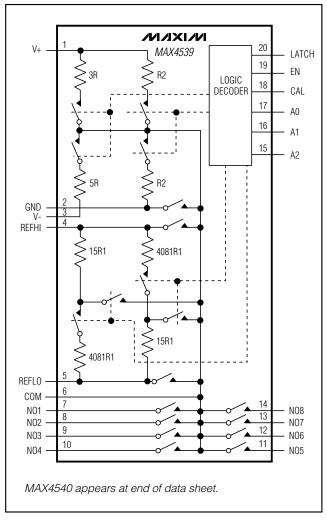
The MAX4539/MAX4540 operate from a single +2.7V to +12V supply, or from dual supplies of ±2.7V to ±6V. On-resistance (100 Ω max) is matched between switches to 6 Ω max. Each switch can handle Rail-to-Rail[®] analog signals. The off leakage current is 0.1nA at TA = +25°C and 2nA at TA = +85°C.

The MAX4539/MAX4540 are available in small 20-pin DIP, SO, and SSOP packages.

	_ Applications
Battery-Operated Equipment	Avionics
Data-Acquisition Systems	Audio-Signal Routing
Test Equipment	Networking

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4539CAP	0°C to +70°C	20 SSOP
MAX4539CWP	0°C to +70°C	20 Wide SO
MAX4539CPP	0°C to +70°C	20 Plastic DIP
MAX4539EAP	-40°C to +85°C	20 SSOP
MAX4539EWP	-40°C to +85°C	20 Wide SO
MAX4539EPP	-40°C to +85°C	20 Plastic DIP
MAX4540CAP	0°C to +70°C	20 SSOP
MAX4540CWP	0°C to +70°C	20 Wide SO
MAX4540CPP	0°C to +70°C	20 Plastic DIP
MAX4540EAP	-40°C to +85°C	20 SSOP
MAX4540EWP	-40°C to +85°C	20 Wide SO
MAX4540EPP	-40°C to +85°C	20 Plastic DIP


Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

M/IXI/M

Features

- On-Chip Gain and Offset Divider Networks Provide 15-Bit Accurate Output Ratios
- On-Chip V+ to GND and V+ to V- Divider Networks Provide 8-Bit Accurate Output Ratios
- RON: 100Ω max
- RON Matching Between Channels: 6Ω max
- Charge Injection: 5pC max
- Low 0.1nA Off Leakage Current
- Small 20-Pin SSOP/SO/DIP Packages

Pin Configurations/ Functional Diagrams

Maxim Integrated Products 1

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

ABSOLUTE MAXIMUM RATINGS

V+ to GND	0.3V to +13V	С
V- to GND	13V to +0.3V	
V+ to V	0.3V to +13V	
CAL, LATCH, A_, EN, NO_, COM_,		
REFHI, REFLO (Note 1)(V	0.3V) to (V+ + 0.3V)	С
Continuous Current (any terminal)	±20mÁ	
Peak Current, NO or COM		
(pulsed at 1ms, 10% duty cycle max)	±40mA	S
(i) , , , , , , , , , , , , , , , , , , ,		- Ē

Continuous Power Dissipation ($T_A = +70^{\circ}$	°C)
SSOP (derate 8mW/°C above +70°C)	640mW
Wide SO (derate 8mW/°C above +70°C	C)800mW
Plastic DIP (derate 10.53mW/°C above	+70°C)842mW
Operating Temperature Ranges	
MAX4539C_P/MAX4540C_P	0°C to +70°C
MAX4539E_P/MAX4540E_P	40°C to +85°C
Storage Temperature Range	
Lead Temperature (soldering, 10sec)	+300° C

Note 1: Signals on NO_, COM_, EN, LATCH, CAL, A_ exceeding V+ or V- are clamped by internal diodes. Limit forward current to maximum current ratings.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

 $(V + = +5V \pm 10\%, V - = -5V \pm 10\%, V_{IH} = 2.4V, V_{IL} = 0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values at $T_A = +25^{\circ}C$.) (Note 2)

PARAMETER	SYMBOL		CONDITIONS		MIN	TYP	MAX	UNITS
SWITCH								
Analog-Signal Range	V _{COM} _, V _{NO} _	(Note 3)			V-		V+	V
On-Resistance	Ron	ICOM_ = 1mA, VNC	o_ = ±3.0V,	$T_A = +25^{\circ}C$		45	75	Ω
On-nesistance	NON	V + = 4.5V, V - = -4.	5V	$T_A = T_{MIN}$ to T_{MAX}			100	52
On-Resistance Matching Between Channels	ΔR _{ON}	I _{COM} _ = 1mA, V _{NC}	-	$T_A = +25^{\circ}C$		1	4	Ω
(Note 4)		V+ = 4.5V, V- = -4.5V		$T_A = T_{MIN}$ to T_{MAX}			6	
On-Resistance Flatness	Deute	ICOM_ = 1mA; VNC	_ = -3V, 0, +3V;	$T_A = +25^{\circ}C$		7	10	Ω
(Note 5)	R _{FLAT}	V+ = 4.5V; V- = -4.5V		$T_A = T_{MIN}$ to T_{MAX}			13	12
NO-Off Leakage Current		V _{COM} = ±4.5V, V _M	NO_ =∓4.5V,	$T_A = +25^{\circ}C$	-0.1	0.01	0.1	nA
(Note 6)	INO(OFF)	V+ = 5.5V, V- = -5.5V		$T_A = T_{MIN}$ to T_{MAX}	-2		2	ПА
		$V_{COM} = \pm 4.5 V,$	MAX4539	TA = +25°C	-0.2	0.01	0.2	
COM-Off Leakage		$V_{NO} = \pm 4.5V$	IVIAA4339	$T_A = T_{MIN}$ to T_{MAX}	-10		10	nA
Current (Note 6)	ICOM_(OFF)	V + = 5.5V,	MAX4540	$T_A = +25^{\circ}C$	-0.1	0.01	0.1	ПА
		V- = -5.5V	V- = -5.5V	$T_A = T_{MIN}$ to T_{MAX}	-5		5	
		$V_{COM} = \pm 4.5 V,$	MAX4530	$T_A = +25^{\circ}C$	-0.2	0.01	0.2	
COM-On Leakage			1017774009	$T_A = T_{MIN}$ to T_{MAX}	-10		10	nA
Current (Note 6)	COM_(ON)		MAX4540	$T_A = +25^{\circ}C$	-0.1	0.01	0.1	ПA
			-5		5			

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

 $(V_{+} = +5V \pm 10\%, V_{-} = -5V \pm 10\%, V_{IH} = 2.4V, V_{IL} = 0.8V, T_{A} = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values at $T_{A} = +25^{\circ}C.$) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
LOGIC INPUTS			1				1
Input High Voltage	VIH			2.4	1.7		V
Input Low Voltage	VIL				1.4	0.8	V
Input Current with Input Voltage High	Ιн	$V_{EN} = V_{A_{-}} = V_{LATCH} = V_{CAL} = V_{+}$		-0.1	0.01	0.1	μA
Input Current with Input Voltage Low	Ι _Ι	$V_{EN} = V_{A_{-}} = V_{LATCH} = V_{CAL} = 0$		-0.1	0.01	0.1	μA
SUPPLY	1		L				
Power-Supply Range				±2.7		±6	V
Positive Supply Current	l+	V _{EN} = V _A = V _{LATCH} = V _{CAL} = 0 or V+, V+ = 5.5V, V- = -5.5V	$T_A = +25^{\circ}C$	-1	0.01	1	μA
r ositive Supply Current	17	(Note 7)	$T_A = T_{MIN}$ to T_{MAX}	-5		5	
Negative Supply Current	-	VEN = VA_ = VLATCH = VCAL = 0 or V+, V+ = 5.5V, V- = -5.5V	T _A = +25°C	-1	0.01	1	μΑ
	1-	(Note 7)	$T_A = T_{MIN}$ to T_{MAX}	-5		5	
GND Supply Current	IGND	VEN = VA_ = VLATCH = VCAL = 0 or V+, V+ = 5.5V, V- = -5.5V	$T_A = +25^{\circ}C$	-1	0.01 1	μA	
and supply surrent	GND	(Note 7)	TA = TMIN to TMAX	-5		5	
DYNAMIC CHARACTER	ISTICS						
Transition Time	t _{TRANS}	RANS Figure 1 $T_A = +25^{\circ}C$	$T_A = +25^{\circ}C$		100	150	ns
			$T_A = T_{MIN}$ to T_{MAX}			200	
Break-Before-Make	topen	Figure 2	$T_A = +25^{\circ}C$	4	10		ns
Interval (Note 3)			$T_A = T_{MIN}$ to T_{MAX}	1			
Enable Turn-On Time	ton	Figure 3	$T_A = +25^{\circ}C$		75	115	ns
	-011		$T_A = T_{MIN}$ to T_{MAX}			175	
Enable Turn-Off Time	toff	Figure 3	$T_A = +25^{\circ}C$		50	100	ns
			$T_A = T_{MIN}$ to T_{MAX}			120	
Charge Injection (Note 3)	VCTE	$C_L = 1nF$, $V_{NO_1} = 0$, Figure 4	TA = +25°C		1	5	рС
Off-Isolation (Note 8)	VISO	$V_{EN} = 0$, f = 1MHz, Figure 5	$T_A = +25^{\circ}C$		-75		dB
Crosstalk Between Channels (Note 9)	V _{CT}	V_{EN} = 2.4V, f = 1MHz, V _{GEN} = 1Vp-p, Figure 5	$T_A = +25^{\circ}C$		-75		dB
Logic Input Capacitance	CIN	f = 1MHz	T _A = +25°C		15		pF
NO-Off Capacitance	COFF	$f = 1MHz$, $V_{EN} = V_{COM_{-}} = 0$, Figure 6	T _A = +25°C		3		pF
COM-Off Capacitance	CCOM_(OFF)	$f = 1MHz$, $V_{EN} = V_{COM} = 0$, Figure 6	TA = +25°C		15		pF
COM-On Capacitance	C _{COM_(ON)}	f = 1MHz, V _{EN} = 2.4V, V _{COM} = 0, Figure 6	T _A = +25°C		26		pF

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

(V+ = +5V ±10%, V- = -5V ±10%, V_{IH} = 2.4V, V_{IL} = 0.8V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values at T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
LATCH TIMING (Note 3)							
Cotup Timo	to	Figure 7	$T_A = +25^{\circ}C$		45	70	20
Setup Time	ts		$T_A = T_{MIN}$ to T_{MAX}			80	ns
Hold Time	+	Figure 7	$T_A = +25^{\circ}C$	-10	0		20
	tH		$T_A = T_{MIN}$ to T_{MAX}	-10			ns
Pulse Width, Latch	th ADMA	Figure 7	$T_A = +25^{\circ}C$	30	15		ns
Enable	tMPW		$T_A = T_{MIN}$ to T_{MAX}	40			115
Enable Setup Time	tro	tes Figure 8	$T_A = +25^{\circ}C$		15	30	ne
Lilable Setup Time	tes		$T_A = T_{MIN}$ to T_{MAX}			40	ns
INTERNAL DIVIDERS							
Offeet Divider Output		$V_{REF} = 4.096V,$	$T_A = +25^{\circ}C$	14.9/ 4096	15/ 4096	15.1/ 4096	LSB
Offset Divider Output		REFHI = 4.096V, REFLO = GND	TA = TMIN to TMAX	14.9/ 4096	15/ 4096	15.1/ 4096	LOD
		V _{REF} = 4.096V,	T _A = +25°C	4080.9/ 4096	4081/ 4096	4081.1/ 4096	1.05
Gain Divider Output		REFHI = 4.096V, REFLO = GND	$T_A = T_{MIN}$ to T_{MAX}	4080.9/ 4096	4081/ 4096	4081.1/ 4096	- LSB
			T _A = +25°C	2032/ 4096	2048/ 4096	2064/ 4096	
(V+ / 2) Divider Output		Referenced to GND	$T_A = T_{MIN}$ to T_{MAX}	2032/ 4096	2048/ 4096	2064/ 4096	LSB
			T _A = +25°C	2544/ 4096	2560/ 4096	2576/ 4096	1.05
(V+ - V-) Divider Output		Referenced to V-	TA = TMIN to TMAX	2544/ 4096	2560/ 4096	2576/ 4096	LSB
Output Resistance Offset Divider		(Note 3)	T _A = +25°C		400	800	Ω
Output Resistance Gain Divider		(Note 3)	T _A = +25°C		400	800	Ω
Output Resistance (V+ / 2) Divider		(Note 3)	T _A = +25°C		6	9	kΩ
Output Resistance (V+ - V-) Divider		(Note 3)	T _A = +25°C		6	9	kΩ
Output Resistance (REFHI, REFLO, GND)		(Note 3)	T _A = +25°C		400	800	Ω
Additional Positive Supply Current		(V + / 2) divider active, V _{IH} = V+, V _{IL} = 0 (Note 3)	T _A = +25°C		V+ / 24k	V+ / 13k	mA

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

 $(V + = +5V \pm 10\%, V - = -5V \pm 10\%, V_{IH} = 2.4V, V_{IL} = 0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values at $T_A = +25^{\circ}$ C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Additional Positive Supply Current (Note 3)		(V+ - V-) divider active, $V_{IH} = V+$, $V_{IL} = 0$	$T_A = +25^{\circ}C$		(V+ - V-)/ 24k	(V+ - V-)/ 13k	mA
Additional Negative Supply Current		(V+ - V-) divider active, VIH = V+, VIL = 0 (Note 3)	$T_A = +25^{\circ}C$		(V+ - V-)/ 24k	(V+ - V-)/ 13k	mA
REFHI, REFLO Input Range (Note 3)				V- - 0.3		V+ + 0.3	V
Input Resistance (REFHI, REFLO) (Note 3)		Offset divider active, gain divider active	$T_A = +25^{\circ}C$	25	40		kΩ

ELECTRICAL CHARACTERISTICS—Single +5V Supply

 $(V + = +5V \pm 10\%, V - = 0, V_{IH} = 2.4V, V_{IL} = 0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values at $T_A = +25^{\circ}C.$) (Note 2)

PARAMETER	SYMBOL		CONDITIONS		MIN	TYP	MAX	UNITS	
SWITCH									
Analog-Signal Range	V _{NO_} , V _{COM_}	(Note 3)			0		V+	V	
On-Resistance	Ron	I _{COM} = 1mA, V _{NO}	_ = 3.0V,	$T_A = +25^{\circ}C$		80	150	Ω	
On-nesistance	NON	V + = 4.5V		$T_A = T_{MIN}$ to T_{MAX}			200	52	
On-Resistance Matching Between Channels	ΔRon	I _{COM} _ = 1mA, V _{NO}	_ = 3.0V,	T _A = +25°C		2	8	Ω	
(Notes 3, 4)		V + = 4.5V		$T_A = T_{MIN}$ to T_{MAX}			12		
On-Resistance Flatness (Note 5)	R _{FLAT}	ICOM_ = 1mA; VNO V+ = 4.5V	_ = 3V, 2V, 1V;	$T_A = +25^{\circ}C$		8		Ω	
NO-Off Leakage Current	hiologe	V _{COM} = 1V, 4.5V;		$T_A = +25^{\circ}C$	-0.1		0.1	nA	
(Notes 6, 10)	INO(OFF)	$V_{NO} = 4.5V, 1V; V_{+} = 5.5V$ $T_{A} = T_{N}$	$T_A = T_{MIN}$ to T_{MAX}	-2		2	I NA		
			MAX4539	$T_A = +25^{\circ}C$	-0.2		0.2		
COM-Off Leakage		V _{COM} = 4.5V, 1V; V _{NO} = 1V, 4.5V;	MAX4339	$T_A = T_{MIN}$ to T_{MAX}	-10		10	nA	
Current (Notes 6, 10)		$V_{\rm NO} = 10, 4.50,$ V+ = 5.5V	MAX4540	$T_A = +25^{\circ}C$	-0.1		0.1		
				101/2/14040	$T_A = T_{MIN}$ to T_{MAX}	-5		5	
			MAX4539	$T_A = +25^{\circ}C$	-0.2		0.2		
COM-On Leakage	ICOM_(ON)	$\begin{array}{c c} VCOM_{-} = 4.5V, & T_{A} \\ V_{NO_{-}} = 4.5V, & T_{A} \\ V_{+} = 5.5V & MAX4540 \end{array}$		TA = TMIN to TMAX	-10		10	nA	
Current (Notes 6, 10)				$T_A = +25^{\circ}C$	-0.1		0.1		
			$T_A = T_{MIN}$ to T_{MAX}	-5		5			

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

 $(V + = +5V \pm 10\%, V - = 0, V_{IH} = 2.4V, V_{IL} = 0.8V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted}. Typical values at T_A = +25^{\circ}C.) (Note 2)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
LOGIC INPUTS (Note 3)			1				
Input High Voltage	VIH			2.4	1.6		V
Input Low Voltage	VIL				1.4	0.8	V
Input Current with Input Voltage High	Iн	$V_{EN} = V_{A_{-}} = V_{LATCH} = V_{CAL} = V_{+}$		-0.1		0.1	μA
Input Current with Input Voltage Low	lı∟	VEN = VA_ = VLATCH = VCAL = 0		-0.1		0.1	μA
SUPPLY		1					
Power-Supply Range				2.7		12	V
Positive Supply Current		VEN = VA_ = VLATCH = VCAL = 0	$T_A = +25^{\circ}C$	-1	0.01	1	
(Note 3)	1+	or V+, V+ = $5.5V$	$T_A = T_{MIN}$ to T_{MAX}	-5		5	μA
GND Supply Current	<u> </u>	$V_{EN} = V_{A_{-}} = V_{LATCH} = V_{CAL} = 0$	TA = +25°C	-1	0.01	1	
(Note 3)	I_{GND} or V+, V+ = 5.5V	$T_A = T_{MIN}$ to T_{MAX}	-10		10	μA	
DYNAMIC CHARACTER	RISTICS (Note	e 3)	1				
Transition Time t	+== +++=	Figure 1	$T_A = +25^{\circ}C$		150	200	20
	t TRANS		$T_A = T_{MIN}$ to T_{MAX}			250	- ns
reak-Before-Make	toppu	Figure 2	$T_A = +25^{\circ}C$	4	10		ns
Interval	tOPEN	Figure 2	$T_A = T_{MIN}$ to T_{MAX}	1			115
Enable Turn-On Time	ton	tour Figure 2	$T_A = +25^{\circ}C$		115	150	ns
	ton	Figure 3	$T_A = T_{MIN}$ to T_{MAX}			200	115
Enable Turn-Off Time	torr	Figure 3	$T_A = +25^{\circ}C$		60	100	ns
	toff		$T_A = T_{MIN}$ to T_{MAX}			130	115
Charge Injection	VCTE	$C_L = 1nF$, $V_{NO} = 0$, Figure 4	$T_A = +25^{\circ}C$		1	5	рС
LATCH TIMING (Note 3)							
Setup Time	ts	Figure 7	$T_A = +25^{\circ}C$			70	ns
	13		$T_A = T_{MIN}$ to T_{MAX}			80	113
Hold Time	tн	Figure 7	$T_A = +25^{\circ}C$	-10	0		ns
	<u>ч</u> п		$T_A = T_{MIN}$ to T_{MAX}	-10			115
Pulse Width, Latch	t _{MPW}	Figure 7	$T_A = +25^{\circ}C$	30	15		ns
Enable	4VIPVV	$T_{A} = T_{MIN} \text{ to } T_{N}$	$T_A = T_{MIN}$ to T_{MAX}	40			110
Enable Setup Time	ble Setup Time t _{ES} Figure 8	$T_A = +25^{\circ}C$		15	30	ns	
Enable Setup Time		$T_A = T_{MIN}$ to T_{MAX}			40	113	

ELECTRICAL CHARACTERISTICS—Single +3V Supply

 $(V_{+} = +2.7V \text{ to } +3.6V, V_{-} = 0, V_{IH} = 2.4V, V_{IL} = 0.5V, T_{A} = T_{MIN} \text{ to } T_{MAX}$, unless otherwise noted. Typical values at $T_{A} = +25^{\circ}C.$) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
SWITCH							
Analog-Signal Range	VCOM_	(Note 3)		0		V+	V
On-Resistance	Ron	$I_{COM} = 0.2mA, V_{NO} = 1.5V,$ V+ = 2.7V	T _A = +25°C		220	500	Ω
		VT - 2.7 V	$T_A = T_{MIN}$ to T_{MAX}			600	
LOGIC INPUTS (Note 3)							
Input High Voltage	VIH			2.4	1.1		V
Input Low Voltage	VIL				1.1	0.5	V
DYNAMIC (Note 3)							
Transition Time	t TRANS	V _{NO1} = 1.5V, V _{NO8} = 0, Figure 1	T _A = +25°C		260	400	ns
Enable Turn-On Time	ton	V _{NO1} = 1.5V, Figure 3	$T_A = +25^{\circ}C$		220	350	ns
Enable Turn-Off Time	tOFF	$V_{NO} = 1.5V$, Figure 3	T _A = +25°C		100	150	ns
LATCH TIMING (Note 3))						
Setup Time	ts	Figure 7	$T_A = +25^{\circ}C$			100	ns
Hold Time	tH	Figure 7	$T_A = +25^{\circ}C$	-10	0		ns
Pulse Width, Latch Enable	tMPW	Figure 7	T _A = +25°C	40			ns
Enable Setup Time	tes	Figure 8	$T_A = +25^{\circ}C$			50	ns

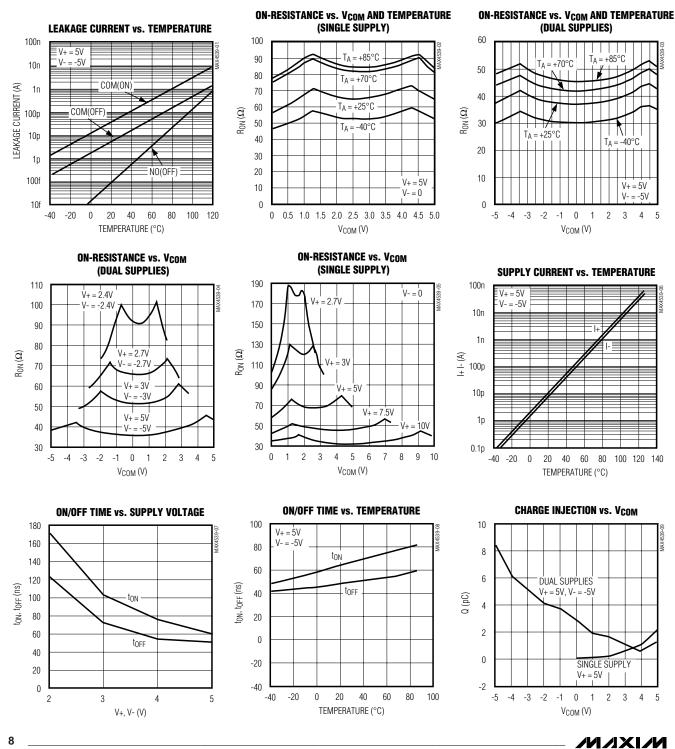
Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.

Note 3: Guaranteed by design.

Note 4: $\Delta R_{ON} = R_{ON}(MAX) - R_{ON}(MIN)$.

Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.

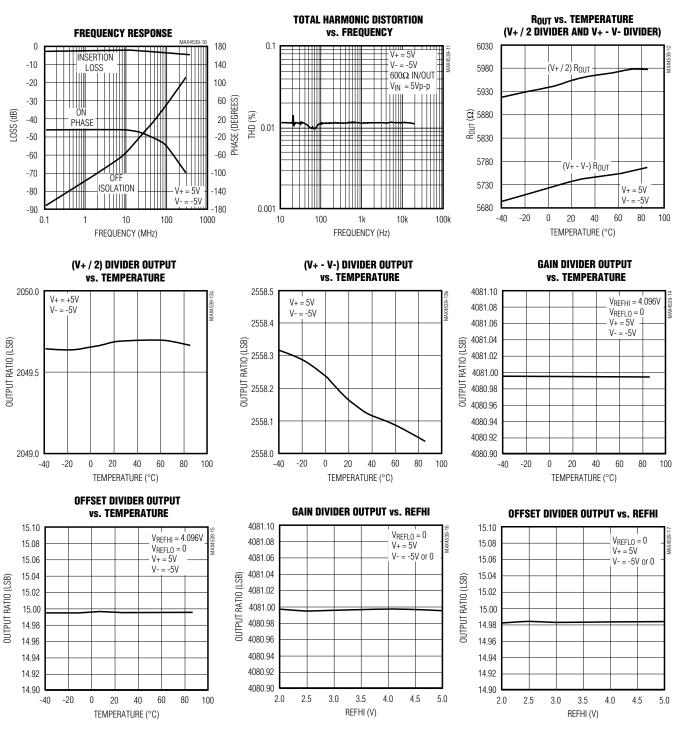
Note 6: Leakage parameters are 100% tested at maximum-rated hot temperature and guaranteed by correlation at T_A = +25°C.


Note 7: If the logic inputs can float during power-on, connect a 1M pull-up from LATCH to V+; see Applications Information

section. Note 8: Off Isolation = $20log_{10}$ (V_{COM}/V_{NO}), V_{COM} = output, V_{NO} = input to off switch.

Note 9: Between any two switches.

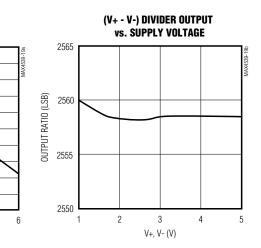
Note 10: Leakage testing with a single supply is guaranteed by testing with dual supplies.


 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Typical Operating Characteristics

MAX4539/MAX4540

Typical Operating Characteristics (continued)


 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

//////-

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ **ROUT VS. TEMPERATURE** (V+ / 2) DIVIDER OUTPUT (OFFSET DIVIDER AND GAIN DIVIDER) vs. SUPPLY VOLTAGE 260 2055 2054 250 2053 240 GAIN DIVIDER 2052 OUTPUT RATIO (LSB) 2051 <u>G</u> 230 100 220 2050 2049 OFFSET DIVIDER 2048 210 V + = 5V2047 V- = -5V 200 V_{REFHI} = 4.096V 2046 $V_{REFLO} = 0$ 190 2045 -20 0 40 60 80 100 3 -40 20 2 TEMPERATURE (°C)

Typical Operating Characteristics (continued)

Pin Descriptions

MAX4539 (Single 8-to-1 Cal-Mux)

PIN	NAME	FUNCTION
1	V+	Positive Supply Voltage
2	GND	Ground
3	V-	Negative Supply Voltage
4	REFHI	Reference High Voltage Input
5	REFLO	Reference Low Voltage Input
6	COM	Multiplexer Output
7	NO1	Channel Input 1
8	NO2	Channel Input 2
9	NO3	Channel Input 3
10	NO4	Channel Input 4
11	NO5	Channel Input 5
12	NO6	Channel Input 6
13	NO7	Channel Input 7
14	NO8	Channel Input 8
15	A2	Address Bit 2
16	A1	Address Bit 1
17	A0	Address Bit 0
18	CAL	Calibration Control Input
19	EN	Multiplexer Enable
20	LATCH	Address Latch Control Input

MAX4540 (Dual 4-to-1 Cal-Mux)

4

V+, V- (V)

PIN	NAME	FUNCTION	
1	V+	Positive Supply Voltage	
2	GND	Ground	
3	V-	Negative Supply Voltage	
4	REFHI	Reference High Voltage Input	
5	REFLO	Reference Low Voltage Input	
6	COMA	Multiplexer Output A	
7	NO1A	Channel Input 1A	
8	NO2A	Channel Input 2A	
9	NO3A	Channel Input 3A	
10	NO4A	Channel Input 4A	
11	NO1B	Channel Input 1B	
12	NO2B	Channel Input 2B	
13	NO3B	Channel Input 3B	
14	NO4B	Channel Input 4B	
15	COMB	Multiplexer Output B	
16	A1	Address Bit 1	
17	A0	Address Bit 0	
18	CAL	Calibration Control Input	
19	EN	Multiplexer Enable	
20	LATCH	Address Latch Control Input	

Truth Tables

CAL	A2	A1	A0	EN	LATCH	СОМ	
Х	Х	Х	х	0	Х	All switches and dividers open. COM is high-Z. Latch contents set to all 1's.	
Х	Х	Х	Х	1	1	State is latched when LATCH is high.	
0	0	0	0	1	0	NO1	
0	0	0	1	1	0	NO2	
0	0	1	0	1	0	NO3	
0	0	1	1	1	0	NO4	
0	1	0	0	1	0	NO5	
0	1	0	1	1	0	NO6	
0	1	1	0	1	0	NO7	
0	1	1	1	1	0	NO8	
1	0	0	0	1	0	(V+ / 2) Divider Mode, V _{COM} = 2048/4096 V+	
1	0	0	1	1	0	REFHI	
1	0	1	0	1	0	REFLO	
1	0	1	1	1	0	(V+ - V-) Divider Mode , V _{COM} = 2560/4096 (V+ - V-)	
1	1	0	0	1	0	GND	
1	1	0	1	1	0	Gain Divider Mode, V _{COM} = 4081/4096 (V _{REFHI} - V _{REFLO})	
1	1	1	0	1	0	Offset Divider Mode, VCOM = 15/4096 (VREFHI - VREFLO)	
1	1	1	1	1	0	All switches and dividers open. COM is high-Z.	

MAX4539 (Single 8-to-1 Cal-Mux)

X = Don't care

MAX4540 (Dual 4-to-1 Cal-Mux)

CAL	A1	A0	EN	LATCH	СОМА	СОМВ
Х	х	х	0	Х	All switches and dividers open. COMA is high-Z.	All switches and dividers open. COMB is high-Z.
Х	Х	Х	1	1	State is latched	State is latched
0	0	0	1	0	NO1A	NO1B
0	0	1	1	0	NO2A	NO2B
0	1	0	1	0	NO3A	NO3B
0	1	1	1	0	NO4A	NO4B
1	0	0	1	0	GND	GND
1	0	1	1	0	Gain Divider Mode	REFLO
1	1	0	1	0	Offset Divider Mode	REFLO
1	1	1	1	0	All switches and dividers open. COMA is high-Z.	All switches and dividers open. COMB is high-Z.

X = Don't care

Low-Voltage, Single 8-to-1 and Dual 4-to-1 Cal-Multiplexers Detailed Description biased by eith

The MAX4539/MAX4540 are multiplexers with additional calibration features. Internal resistor-dividers generate accurate voltage ratios from an external voltage reference, allowing zero- and full-scale calibration of ADC systems as well as facilitation of system self-monitoring. To access the resistor-dividers, assert the CAL pin. When CAL and ENABLE are asserted, the three address pins select one of the various resistor-divider or external reference outputs. The MAX4539/MAX4540 also contain a LATCH input that allows the state of the CAL and address signals to be captured.

Calibration Functions

The Gain Divider, Offset Divider, REFHI and REFLO modes allow calibration of offset and gain errors in ADC systems. The Gain Divider mode outputs a voltage ratio that is 4081/4096 of VREFHI - VREFLO, accurate to 0.1/4096, or better than 15 bits. The Offset Divider mode outputs a voltage ratio that is 15/4096 of VREFHI - VREFLO, also accurate to 0.1/4096. The REFHI mode allows the voltage on the REFHI pin to be switched to the output. The REFLO mode allows the voltage on the REFLO pin to be switched to the output.

Self-Monitoring Functions

The self-monitoring functions are intended to allow an ADC to measure its own supply voltage. The MAX4539 has an internal divide-by-two resistor string between V+ and GND that is accurate to 8 bits (16/4096). It also has a 5/8 resistor string between V+ and V- that is also accurate to 8 bits. This divider string allows measurement of the negative supply with a unipolar ADC. GND can also be switched to the output, eliminating the need for an additional multiplexer channel.

_Applications Information

The MAX4539/MAX4540's construction is typical of most CMOS analog switches. There are three supply pins: V+, V-, and GND. The positive and negative power supplies provide drive to the internal CMOS switches and set the limits of the analog voltage on any switch. Reverse-biased ESD protection diodes are internally connected between each analog signal pin and both V+ and V-. If the voltage on any pin exceeds V+ or V-, one of these diodes will conduct. During normal operation, these reverse-biased ESD diodes leak, forming the only current drawn from V-.

Virtually all the analog-leakage current is through the ESD diodes. Although the ESD diodes on a given signal pin are identical, and therefore fairly well balanced, they are reverse-biased differently. Each is

biased by either V+ or V- and the analog signal. This means their leakage varies as the signal varies. The difference in the two-diode leakage from the signal path to the V+ and V- pins constitutes the analogsignal path leakage current. All analog-leakage current flows to the supply terminals, not to the other switch terminal, which explains how both sides of a given switch can show leakage currents of either the same or opposite polarity.

There is no connection between the analog-signal paths and GND. The analog-signal paths consist of an N-channel and P-channel MOSFET with their sources and drains paralleled and their gates driven out of phase with V+ and V- by the logic-level translators.

V+ and GND power the internal logic and logic-level translators and set the input-logic thresholds. The logic-level translators convert the logic levels to switched V+ and V- signals to drive the gates of the analog switches. This drive signal is the only connection between the logic supplies and the analog supplies. All pins have ESD protection to V+ and to V-.

Increasing V- has no effect on the logic-level thresholds, but it does increase the drive to the P-channel switches, which reduces their on-resistance. V- also sets the negative limit of the analog-signal voltage.

The logic-level thresholds are CMOS- and TTL- compatible when V+ is +5V. As V+ is raised, the threshold increases slightly; when V+ reaches +12V, the level threshold is about 3.2V. Although that is above the TTL output high-level minimum of 2.4V, it is still compatible with CMOS outputs.

Bipolar-Supply Operation

The MAX4539/MAX4540 operate with bipolar supplies between $\pm 2.7V$ and $\pm 6V$. The V+ and V- supplies need not be symmetrical, but their sum cannot exceed the absolute maximum rating of 13V.

Note: Do not connect the MAX4539/MAX4540 V+ pin to +3V AND connect the logic-level input pins to TTL logic-level signals. TTL logic-level outputs can exceed the absolute maximum ratings, which will cause damage to the part and/or external circuits.

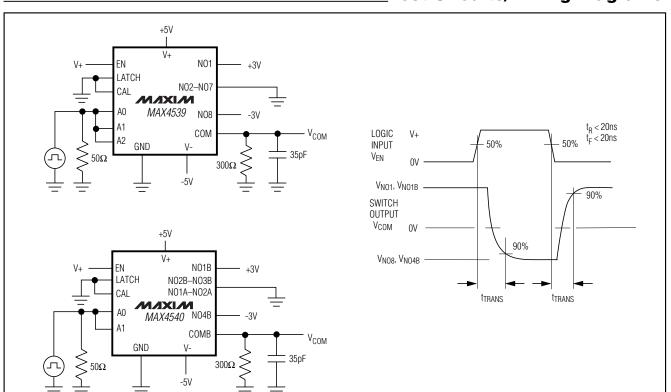
Caution: The absolute maximum V+ to V- differential voltage is 13V. Typical " \pm 6-Volt" or "12-Volt" supplies with \pm 10% tolerances can be as high as 13.2V. This voltage can damage the MAX4539/MAX4540. Even \pm 5% tolerance supplies may have overshoot or noise spikes that exceed 13V.

Single-Supply Operation

The MAX4539/MAX4540 operate from a single supply between +2.7V and +12V when V- is connected to GND. All of the bipolar precautions must be observed. However, these parts are optimized for \pm 5V operation, and most AC and DC characteristics are degraded significantly when departing from \pm 5V. As the overall supply voltage (V+ to V-) is lowered, switching speed, on-resistance, off isolation, and distortion will degrade. (see the *Typical Operating Characteristics* section).

Single-supply operation also limits signal levels and interferes with ground referenced signals. When V = 0, AC signals are limited to -0.3V. Voltages below -0.3V can be clipped by the internal ESD-protection diodes, and the parts can be damaged if excessive current flows.

Power Up


During power up, on-chip latches will strobe whatever addresses are present if EN goes high before LATCH reaches a logic high. When this condition occurs, one of the internal dividers connected between the supplies may inadvertently turn on, causing higher supply current (~200µA supply current) when the enable input is toggled. Avoid this condition by ensuring that EN pin stays low until the remaining logic inputs are valid. To accomplish this, connect a resistor from EN to ground or apply a low voltage to EN before the other logic inputs go high.

Power Off

When power to the MAX4539/MAX4540 is off (i.e., V+ = V- = 0), the Absolute Maximum Ratings still apply. This means that neither logic-level inputs on NO_ nor signals on COM_ can exceed ± 0.3 V. Voltages beyond ± 0.3 V cause the internal ESD-protection diodes to conduct, and the parts can be damaged if excessive current flows.

_Chip Information

TRANSISTOR COUNT: 561

_Test Circuits/Timing Diagrams

Figure 1. Transition Time

Test Circuits/Timing Diagrams (continued)

Figure 2. Break-Before-Make Interval

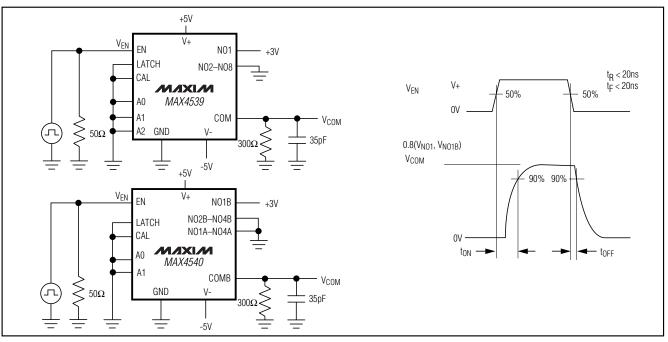


Figure 3. Enable Switching Time

MAX4539/MAX4540

Figure 4. Charge Injection

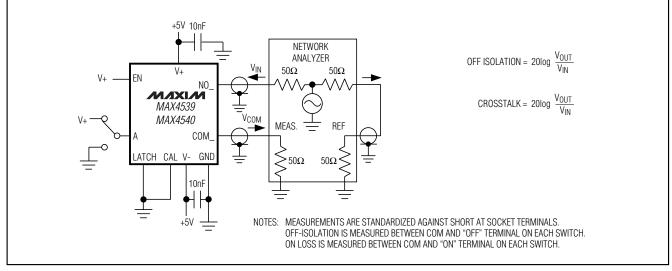


Figure 5. Off-Isolation/Crosstalk

MAX4539/MAX4540

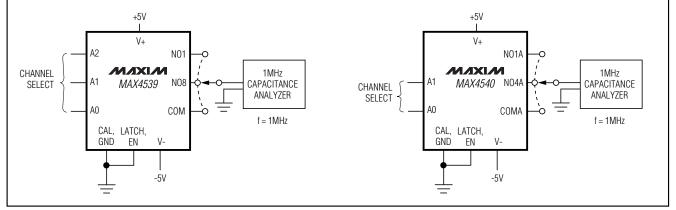
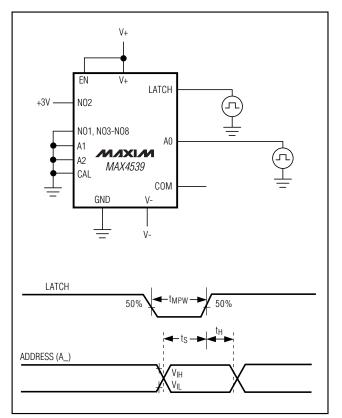
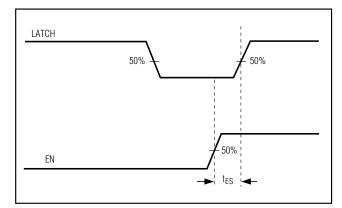
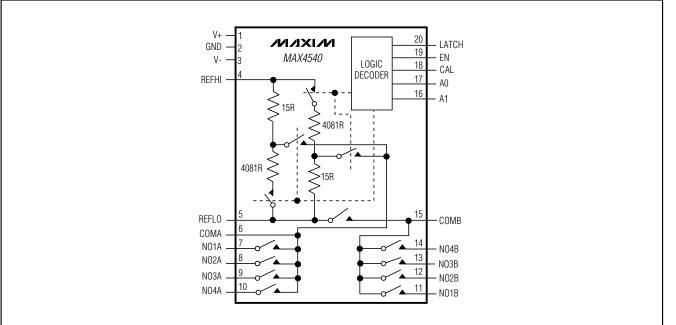


Figure 6. NO_/COM_ Capacitance


Figure 7. Setup Time, Hold Time, Latch Pulse Width

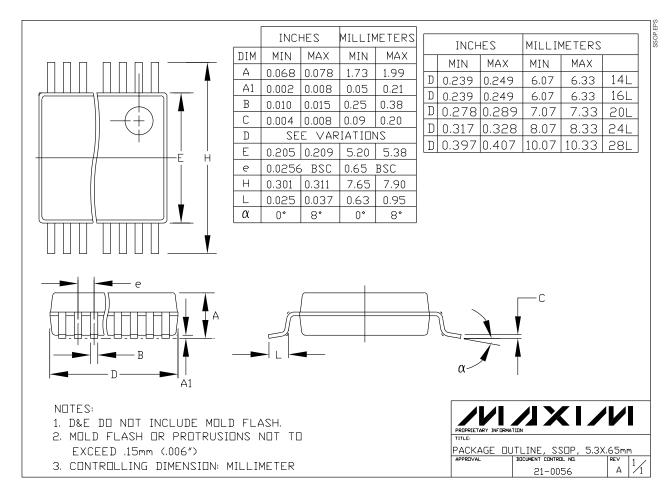
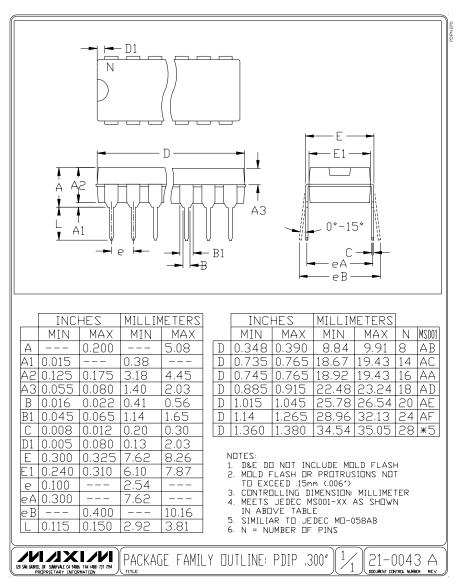
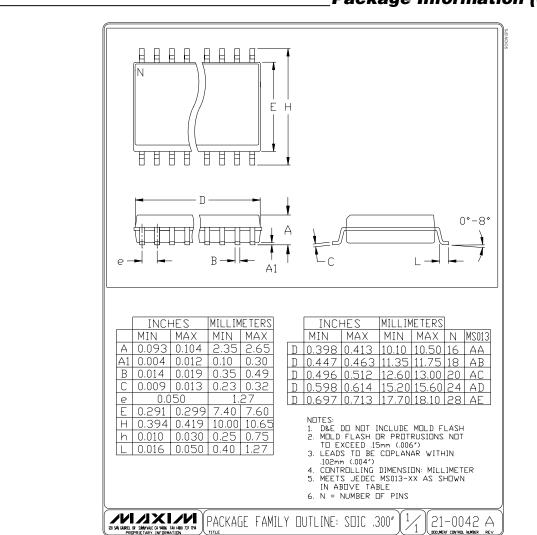

Test Circuits/Timing Diagrams (continued)

Figure 8. Enable Setup Time

_Pin Configurations/Functional Diagrams (continued)


Package Information



MAX4539/MAX4540

M/IXI/M

Package Information (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Printed USA

MAX4539/MAX4540

___Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 1999 Maxim Integrated Products

is a registered trademark of Maxim Integrated Products.

Package Information (continued)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multiplexer Switch ICs category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE NLAS3257CMX2TCG PI5A3157BC6EX PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 TC4066BP-NF HEF4053BT.653 PI3L720ZHEX ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7 CD4053BPWRG4 ADG658TRUZ-EP 74HC4053D.653 74HCT4052PW.118 74LVC2G53DP.125 74HC4052DB.112 74HC4052PW.112 74HC4053DB.112 74HC4067DB.112 74HC4351DB.112 74HCT4052D.112 74HCT4052DB.112 74HCT4053DB.112 74HCT4351D.112 74LV4051PW.112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1439BRUZ