MAX4607/MAX4608/ MAX4609

2.5 Ω, Dual, SPST, CMOS Analog Switches

The MAX4607/MAX4608/MAX4609 dual analog switches feature low on-resistance of 2.5Ω max. On-resistance is matched between switches to 0.5Ω max and is flat (0.5Ω \max) over the specified signal range. Each switch can handle rail-to-rail analog signals. The off-leakage current is only 2.5 nA max at $+85^{\circ} \mathrm{C}$. These analog switches are ideal in low-distortion applications and are the preferred solution over mechanical relays in automatic test equipment or applications where current switching is required. They have low power requirements, require less board space, and are more reliable than mechanical relays.
The MAX4607 has two normally closed (NC) switches, the MAX4608 has two normally open (NO) switches, and the MAX4609 has one NC and one NO switch.

These switches operate from a single supply of +4.5 V to +36 V or from dual supplies of $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$. All digital inputs have +0.8 V and +2.4 V logic thresholds, ensuring TTL/CMOS-logic compatibility when using dual $\pm 15 \mathrm{~V}$ or a single +12 V supply.
Reed Relay Replacement
Test Equipment
Communication Systems

Applications

Reed Relay Replacement

Communication Systems

PBX, PABX Systems
Audio-Signal Routing Avionics

Features

- Low On-Resistance (2.5』 max)
- Guaranteed Ron Match Between Channels (0.5 Ω max)
- Guaranteed Ron Flatness over Specified Signal Range (0.5Ω max)
- Rail-to-Rail Signal Handling
- Guaranteed ESD Protection > 2kV per Method 3015.7
- Single-Supply Operation: +4.5V to +36V Dual-Supply Operation: $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$
- TTL/CMOS-Compatible Control Inputs

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4607CSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX4607CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4607ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX4607EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP

Ordering Information continued at end of data sheet.
Devices are also available in a lead(Pb)-free/RoHS-compliant package. Specify lead-free by adding "+" to the part number when ordering.

Pin Configurations/Functional Diagrams/Truth Tables

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

MAX4607/MAX4608/MAX4609

2.5 2 , Dual, SPST,

CMOS Analog Switches

ABSOLUTE MAXIMUM RATINGS

V+ to GND	
V- to GND ...+0.3V to -44V	
V+ to V-	-0.3V to +44V
V to GND(GND - 0.3V) to (V+ + 0.3V)	
All Other Pins to GND (Note 1)(V--0.3V) to (V++0.3V)	
Continuous Current (COM_, NO_, NC_) $\pm 100 \mathrm{~mA}$	
Peak Current (COM_, NO_, NC_) (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)............................... $\pm 300 \mathrm{~mA}$	
Continuous Power Dissipation ($\mathrm{TA}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
Narrow S	.696mW
Plastic DIP	842 mW

Operating Temperature Ranges
MAX460_C_E
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ MAX460_E_E $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Soldering Temperature (reflow)
Lead(Pb)-Free Packages.. $+260^{\circ} \mathrm{C}$
Packages Containing Lead (Pb). $+240^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

Note 1: Signals on NC_, NO_, COM_, or IN_{-}, exceeding $\mathrm{V}+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}_{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \mathrm{H}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{I} _L}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
ANALOG SWITCH								
Input Voltage Range (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}} \\ & \mathrm{V}_{\mathrm{NC}_{-}} \end{aligned}$				V-		V+	V
COM_ to NO_, COM_ to NC_ On-Resistance	Ron	$\begin{aligned} & I_{C O M}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}_{-}} \\ & \text {or } \mathrm{V}_{\mathrm{NC}_{-}}= \pm 10 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			1.6	2.5	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		3			
COM_ to NO_, COM_ to NC_ On-Resistance Match Between Channels (Note 4)	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{ICOM}_{-}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}_{-}} \\ & \text {or } \mathrm{V}_{\mathrm{NC}_{-}}=-5 \mathrm{~V}, 0,5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\begin{array}{ll}0.05 & 0.4 \\ & 0.5\end{array}$			Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$					
COM_ to NO_, COM_ to NC_ On-Resistance Flatness (Note 5)	RFLAT(ON)	$\begin{aligned} & I_{C O M}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}_{-}} \\ & \text {or } \mathrm{V}_{\mathrm{NC}_{-}}= \pm 10 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			0.1	0.4	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$	Tmax			0.5	
Off-Leakage Current (NO_ or NC_) (Note 6)	INO_, INC_	$\begin{aligned} & \mathrm{V}_{C O M_{-}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}_{-}} \\ & \text {or } \mathrm{V}_{\mathrm{NC}}^{-} \end{aligned}= \pm 10 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-0.5	+0.01	+0.5	nA
			$T_{A}=T_{M I N}$to TMAX	C, E	-2.5		+2.5	
				M	-30		30	
COM_ Off-Leakage Current (Note 6)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}_{-}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\text {NO_ }} \\ & \text { or } \mathrm{V}_{\mathrm{NC}} \\ & = \pm 10 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-0.5	+0.01	0.5	nA
			$\begin{aligned} & T_{A}=T_{\text {MIN }} \\ & \text { to } T_{\text {MAX }} \end{aligned}$	C, E	-2.5		+2.5	
				M	-30		30	
COM_ On-Leakage Current (Note 6)	ICOM_(ON)	$\mathrm{V}_{\mathrm{COM}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\text {NC_ }}= \pm 10 \mathrm{~V}$ or unconnected	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1	0.02	1	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$$\text { to } \mathrm{T}_{\mathrm{MAX}}$	C, E	-10		10	
				M	-120		+120	
LOGIC INPUT								
Input Current with Input Voltage High	IIN_H	$\mathrm{V}_{1 \mathrm{~N}_{-}}=2.4 \mathrm{~V}$, all others $=0.8 \mathrm{~V}$			-0.500	+0.001	+0.500	$\mu \mathrm{A}$
Input Current with Input Voltage Low	IIN_L	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0.8 \mathrm{~V}$, all others $=2.4 \mathrm{~V}$			-0.500	+0.001	+0.500	$\mu \mathrm{A}$

MAX4607/MAX4608/MAX4609
 2.5 , Dual, SPST,
 CMOS Analog Switches

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \mathrm{H}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}} _\mathrm{L}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Logic Input High Voltage	VIN_H			2.4	1.7		V
Logic Input Low Voltage	VIN_L				1.7	0.8	V
POWER SUPPLY							
Power-Supply Range				± 4.5		± 20.0	V
Positive Supply Current	$1+$	$\mathrm{V}_{\mathrm{IN}}=0$ or 5 V	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	+0.001	+0.5	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		+5	
Negative Supply Current	I-	$\mathrm{V}_{1} \mathrm{~N}=0$ or 5 V	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	+0.001	+0.5	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		+5	
Logic Supply Current	C	$\mathrm{V}_{\mathrm{IN}}=0$ or 5 V	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	+0.001	+0.5	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		+5	
Ground Current	IGND	$\mathrm{V}_{\mathrm{IN}}=0$ or 5 V	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	+0.001	+0.5	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		+5	

SWITCH DYNAMIC CHARACTERISTICS

Turn-On Time	TON	$\mathrm{V}_{\text {COM }}= \pm 10 \mathrm{~V}$, Figure $2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	110	ns
Turn-Off Time	TOFF	$\mathrm{V}_{\text {COM }}= \pm 10 \mathrm{~V}$, Figure $2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	150	ns
Charge Injection	Q	$\begin{aligned} & C_{L}=1.0 n F, V_{G E N}=0, \text { RGEN }=0, \text { Figure } 3, \\ & T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$	45	pC
Off-Isolation (Note 7)	VISO	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=5 p F, f=1 \mathrm{MHz} \text {, Figure } 4, \\ & T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$	-60	dB
Crosstalk (Note 8)	$V_{\text {CT }}$	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=5 p F, f=1 \mathrm{MHz} \text {, Figure } 5, \\ & T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$	-66	dB
NC_ or NO_ Capacitance	COFF	$\mathrm{F}=1 \mathrm{MHz}$, Figure 6, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	65	pF
COM_ Off-Capacitance	Ccom	$\mathrm{F}=1 \mathrm{MHz}$, Figure 6, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	65	pF
On-Capacitance	Ccom	$\mathrm{F}=1 \mathrm{MHz}$, Figure $7, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	290	pF

MAX4607/MAX4608/MAX4609

2.5 , , Dual, SPST,

CMOS Analog Switches

ELECTRICAL CHARACTERISTICS-Single Supply

$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V} \mathrm{~L}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}} \mathrm{N}_{-} \mathrm{H}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}} _\mathrm{L}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Input Voltage Range (Note 3)	$\begin{gathered} \mathrm{V}_{\mathrm{COM}_{-},} \mathrm{V}_{\mathrm{NO}_{-}} \\ \mathrm{V}_{\mathrm{NC}_{-}} \end{gathered}$			VGND		V+	V
COM_ to NO_, COM_ to NC_ On-Resistance	Ron	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}^{-}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {NO_ }} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=10 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3	6	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			7	
COM_ to NO_, COM_ to NC_ On-Resistance Match Between Channels (Note 4)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{ICOM}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}_{-}}=10 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.05	0.4	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.5	
COM_ to NO_, COM_ to NC_ On-Resistance Flatness (Note 5)	RFLAT(ON)	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}^{-}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, \\ & 6 \mathrm{~V}, 0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.05	1.1	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1.2	
Off-Leakage Current (NO_ or NC_) (Notes 6, 9)	${ }^{1} \mathrm{NO}_{-}$ ${ }^{1} \mathrm{NC}$ _	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}^{-} \\ & \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V} \mathrm{~V}_{\mathrm{NC}_{-}}=1 \mathrm{~V}, \\ & 10 \mathrm{~V}, \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	+0.01	+0.5	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-2.5		2.5	
COM Off-Leakage Current (Notes 6, 9)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}^{-} \\ & \mathrm{V}_{\mathrm{NO}}=10 \mathrm{~V}, 1 \mathrm{~V} \mathrm{~V}_{\mathrm{NC}_{-}}=1 \mathrm{~V}, \\ & 10 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	+0.01	+0.5	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-2.5		+2.5	
COM On-Leakage Current (Notes 6, 9)	ICOM_(ON)	$\mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 10 \mathrm{~V}$, $\mathrm{V}_{\mathrm{NO}_{-}}$or $\mathrm{V}_{\mathrm{NC}} \mathrm{C}_{-}=1 \mathrm{~V}$, 10 V , or unconnected	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	+0.01	+1	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		+10	
LOGIC INPUT							
Input Current with Input Voltage High	IIN_H	$\mathrm{V}_{1 \mathrm{~N}_{-}}=2.4 \mathrm{~V}$, all others $=0.8 \mathrm{~V}$		-0.500	+0.001	+0.500	$\mu \mathrm{A}$
Input Current with Input Voltage Low	IIN_L	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0.8 \mathrm{~V}$, all others $=2.4 \mathrm{~V}$		-0.500	+0.001	+0.500	$\mu \mathrm{A}$
Logic Input High Voltage	VIN_H			2.4	1.7		V
Logic Input Low Voltage	VIN_L				1.7	0.8	V

MAX4607/MAX4608/MAX4609
 2.5Ω, Dual, SPST,
 CMOS Analog Switches

ELECTRICAL CHARACTERISTICS-Single Supply (continued)

$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \mathrm{H}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \mathrm{L}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
POWER SUPPLY							
Power-Supply Range				+4.5		+36.0	V
Positive Supply Current	I+	V IN $=0 \mathrm{~V}$ or 5 V	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	+0.001	+0.5	$\mu \mathrm{A}$
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		+5	
Logic Supply Current	IL	V IN $=0 \mathrm{~V}$ or 5 V	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	+0.001	+0.5	$\mu \mathrm{A}$
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		+5	
Ground Current	IGND	V IN $=0 \mathrm{~V}$ or 5 V	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	+0.001	$+0.5$	$\mu \mathrm{A}$
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		+5	
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	$\mathrm{V}_{\text {COM }}=10 \mathrm{~V}$, Figure 2, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		110			ns
Turn-Off Time	toff	$\mathrm{V}_{\text {COM }}=10 \mathrm{~V}$, Figure 2, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		130			ns
Charge Injection	Q	$C_{L}=1.0 n F, V_{G E N}=0 V, R_{G E N}=0 \Omega,$ Figure 3, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		50			pC
Crosstalk (Note 8)	V_{CT}	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=5 p F, f=1 \mathrm{MHz} \text {, Figure } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$		66			dB
NC or NO Capacitance	$\mathrm{C}_{\text {(OFF) }}$	$\mathrm{f}=1 \mathrm{MHz}$, Figure 6, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		105			pF
COM Off-Capacitance	$\mathrm{C}_{\text {(COM }}$	$\mathrm{f}=1 \mathrm{MHz}$, Figure 6, $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$		105			pF
On-Capacitance	$\mathrm{C}_{(\text {(COM })}$	$\mathrm{f}=1 \mathrm{MHz}$, Figure $7, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		185			pF

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Note 3: Guaranteed by design.
Note 4: Δ Ron $=\operatorname{Ron}(M A X)-\operatorname{Ron}(M I N)$
Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
Note 6: Leakage parameters are 100% tested at maximum-rated hot temperature and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.
Note 7: Off-isolation = $20 \log _{10}\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NC}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NO}}\right)\right], \mathrm{V}_{\mathrm{COM}}=$ output, V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 8: Between any two switches Ω.
Note 9: Leakage testing at single supply is guaranteed by testing with dual supplies.

MAX4607/MAX4608/MAX4609 2.5 2, Dual, SPST, CMOS Analog Switches

ON-RESISTANCE vs. VCOM AND TEMPERATURE (SINGLE SUPPLY)

ON-RESISTANCE vs. VCOM AND TEMPERATURE (DUAL SUPPLY)

ON/OFF-LEAKAGE CURRENT vs. TEMPERATURE

ON/OFF TIME vs. TEMPERATURE

ON-RESISTANCE vs. VCOM AND TEMPERATURE (SINGLE SUPPLY)

CHARGE INJECTION vs. VCOM

ON/OFF TIME vs. SUPPLY VOLTAGE

MAX4607/MAX4608/MAX4609
 2.5 Ω, Dual, SPST,
 CMOS Analog Switches

Typical Operating Characteristics (continued)
$\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Pin Description

PIN			NAME	
MAX4607	MAX4608	MAX4609		FUNCTION
2,7	2,7	2,7	IN2, IN2	Logic-Control Digital Inputs
14,11	14,11	14,11	COM1, COM2	Analog Switch, Common Terminals
16,9	-	-	NC1, NC2	Analog Switch, Normally Closed Terminals
-	16,9	-	NO1, NO2	Analog Switch, Normally Open Terminals
-	-	9	NC1	Analog Switch, Normally Closed Terminal
-	-	16	NO1	Analog Switch, Normally Open Terminal
4	4	4	V-	Negative Analog Supply-Voltage Input. Connect to DGND for single-supply operation.
5	5	5	GND	Ground
$1,3,6,8$, 10,15	$1,3,6,8$,	$1,3,6,8$,	N.C.	No Connection. Not internally connected. Connect to GND as low impedance to improve on/off-isolation.
12	12	12	VL	Logic-Supply Input
13	13	13	V+	Positive Analog-Supply Input

MAX4607/MAX4608/MAX4609

2.5 2 , Dual, SPST,

 CMOS Analog Switches
Applications Information

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence $\mathrm{V}+$ on first, then V -, followed by the logic inputs, NO , or COM. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog signal range to one diode drop below $\mathrm{V}+$ and one diode drop above V-, but does not affect the devices' low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V+ and V- should not exceed 44V. These protection diodes are not recommended when using a single supply.

Off-Isolation at High Frequencies With the N.C. pins connected to GND, the high-frequency on-response of these parts extends from DC to above 100 MHz with a typical loss of -2 dB . When the switch is turned off, however, it behaves like a capacitor, and off-isolation decreases with increasing frequency. (Above 300 MHz , the switch actually passes more signal turned off than turned on.) This effect is more pronounced with higher source and load impedances.

Above 5 MHz , circuit-board layout becomes critical, and it becomes difficult to characterize the response of the switch independent of the circuit. The graphs shown in the Typical Operating Characteristics were taken using a 50Ω source and load connected with BNC connectors to a circuit board deemed "average;" that is, designed with isolation in mind, but not using strip-line or other special RF circuit techniques. For critical applications above 5 MHz , use the MAX440, MAX441, and MAX442, which are fully characterized up to 160 MHz .

Figure 1. Overvoltage Protection Using External Blocking Diodes

Figure 2. Switching-Time Test Circuit

MAX4607/MAX4608/MAX4609
 2.5 2 , Dual, SPST,
 CMOS Analog Switches

Test Circuits/Timing Diagrams (continued)

Figure 3. Charge-Injection Test Circuit

Figure 4. Off-Isolation Test Circuit

Figure 5. Crosstalk Test Circuit

MAX4607/MAX4608/MAX4609

2.5 2 , Dual, SPST,

CMOS Analog Switches
Test Circuits/Timing Diagrams (continued)

Figure 6. Switch Off-Capacitance Test Circuit

Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
MAX4608CSE	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX4608CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4608ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX4608EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4608MSE/PR3	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Narrow SO
MAX4609CSE	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX4609CPE	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4609ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX4609EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP

Devices are also available in a lead(Pb)-free/RoHS-compliant package. Specify lead-free by adding "+" to the part number when ordering.

Figure 7. Switch On-Capacitance Test Circuit

Chip Information

PROCESS: BiCMOS

Package Information
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
16 PDIP	P16-4	$\underline{21-0043}$	-
16 SO	$\mathrm{S} 16-8$	$\underline{21-0041}$	$\underline{90-0097}$

MAX4607/MAX4608/MAX4609
 2.5 2 , Dual, SPST,
 CMOS Analog Switches

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
2	$3 / 10$	Updated the maximum limits of the COM_ to NO_, COM_ to NC_On-Resistance Flatness parameter in the Electrical Characteristics-Single Supply table.	4
3	$9 / 12$	Added MAX4608MSE/PR3 part, lead-free information, and updated on- and off- leakage current conditions, and updated power supply minimum values, and updated package codes	$1,2,3,5,10$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118

