1 Ω, Low-Voltage, Single-Supply SPDT Analog Switches

\qquad
General Description
The MAX4624/MAX4625 are low-on-resistance, lowvoltage single-pole/double-throw (SPDT) analog switches that operate from a single +1.8 V to +5.5 V supply. The MAX4624 has break-before-make switching; the MAX4625 has make-before-break switching. These devices also have fast switching speeds (toN $=50 \mathrm{~ns}$ max, tOFF = 50ns max).
When powered from a +5 V supply, the MAX4624/ MAX4625 offer 1Ω max on-resistance (RON), with 0.12Ω max Ron matching and flatness. The digital logic inputs are TTL compatible when using a single +5 V supply. These switches also feature overcurrent protection to prevent damage from short circuits and excessive loads.
The MAX4624/MAX4625 are pin compatible with the MAX4544 and are available in space-saving standard 6-pin SOT23 packages, as well as the 1.0 mm high Thin SOT package.

Applications
Power Routing
Battery-Operated Equipment
Audio and Video Signal Routing
Low-Voltage Data-Acquisition Systems
Communications Circuits
PCMCIA Cards
Cellular Phones
Modems
Hard Drives
Low RoN
1Ω max (+5V Supply)
2Ω max (+3V Supply)
0.12Ω max Ron Flatness (+5V Supply)
Overcurrent Protection
+1.8V to +5.5V Single-Supply Operation
Available in SOT23 Packages

- Fast Switching: toN = 50ns max, toFF = 50ns max
tTL-Logic Compatible (+5V Supply)
- Pin Compatible with MAX4544
- Guaranteed Break-Before-Make (MAX4624)
- Guaranteed Make-Before-Break (MAX4625)

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	TOP MARK
MAX4624EUT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SOT23-6	AADL
MAX4624EZT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SOT23-6*	AAAE
MAX4625EUT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SOT23-6	AADM
MAX4625EZT-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SOT23-6*	AAAF

*Thin SOT (1.0mm height) package. Recommended for new designs.

Pin Configuration/
Functional Diagram/Truth Table

TOP VIEW

LOGIC	NC	NO
0	ON	OFF
1	OFF	ON

SWITCHES SHOWN
FOR LOGIC "0" INPUT

1 Ω, Low-Voltage, Single-Supply SPDT Analog Switches

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to GND

Continuous Power Dissipation
6 -Pin SOT23 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)............. 571 mW 6 -Pin Thin SOT23 (derate $6.25 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)... 500 mW Operating Temperature Range
MAX462_E_T ... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature ... $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Note 1: Signals on NC, NO, and COM exceeding V+ or GND are clamped by internal diodes.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +5V Supply

$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, G N D=0, \mathrm{~V}_{\text {INH }}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)($ Notes 2,3$)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NO}}$, V_{NC}			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \\ & \mathrm{V}_{\mathrm{NC}}=3.5 \mathrm{~V}, \mathrm{ICOM}=100 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.65	1	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1.2	
On-Resistance Match Between Channels (Note 4)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.06	0.12	Ω
			$\mathrm{T}_{\text {A }}=$ TMIN to TMAX			0.15	
On-Resistance Flatness (Note 5)	Rflat(ON)	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V} \text {; } \mathrm{ICOM}=100 \mathrm{~mA} \text {; } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0,1 \mathrm{~V}, 2 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.08	0.12	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.15	
NO or NC Off-Leakage Current	INO(OFF), INC(OFF)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V} \text {; } \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-2	0.01	2	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to TMAX	-20		20	
COM On-Leakage Current	ICOM(ON)	$\mathrm{V}+=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V}$; V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 4.5 \mathrm{~V}$, or floating	$T_{A}=+25^{\circ} \mathrm{C}$	-4	0.3	4	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-40		40	
Overcurrent-Protection Current Threshold		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.2			A
DYNAMIC							
Turn-On Time	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		40	50	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			60	
Turn-Off Time	toff	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		40	50	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to TMAX			60	
Break-Before-Make Delay (Note 6)	tBBM	MAX4624 only, Figure 3a	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	1	20		ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	1			
Make-Before-Break Delay (Note 6)	$\mathrm{tmBB}^{\text {m }}$	MAX4625 only, Figure 3b	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	1	6		ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	1			

1 Ω, Low-Voltage, Single-Supply SPDT Analog Switches

ELECTRICAL CHARACTERISTICS-Single +5 V Supply (continued)

$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0, \mathrm{~V}\right.$ INH $=2.4 \mathrm{~V}, \mathrm{~V}$ INL $=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)($ Notes 2, 3)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX |
| :--- | :---: | :--- | :---: | :---: | :---: | UNITS

ELECTRICAL CHARACTERISTICS—Single +3V Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~V} \operatorname{INH}=2.0 \mathrm{~V}, \mathrm{~V} \operatorname{INL}=0.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)($ Notes 2,3$)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	Vcom, V_{NO} $V_{N C}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \text {, } \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.2	2.0	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			2.5	
On-Resistance Flatness (Note 6)	Rflat(On)	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V} ; \mathrm{ICOM}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V} \mathrm{VC}=0, \\ & 0.75 \mathrm{~V}, 1.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$			0.25		Ω
DYNAMIC							
Turn-On Time	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		65	80	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			100	
Turn-Off Time	toff	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		62	80	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {max }}$			100	
Break-Before-Make Time Delay (Note 4)	tBBM	MAX4624 only, Figure 3a		1	40		ns
Make-Before-Break Time Delay (Note 4)	tMBB	MAX4625 only, Figure 3b		1	8		ns
Charge Injection	Q	$\begin{aligned} & C_{L}=1.0 n F, \text { Figure 4, } V_{G E N}=0, \\ & R_{G E N}=0, T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$			40		pC

1 Ω, Low-Voltage, Single-Supply SPDT Analog Switches

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)
$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~V}_{\mathrm{INH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LOGIC INPUT						
Input Voltage Low	VINL				0.6	V
Input Voltage High	VINH		2.0			V
Logic Input Current	IIN		-1		1	$\mu \mathrm{A}$
SUPPLY						
Positive Supply Current	$1+$	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0$ or $\mathrm{V}+$			10	$\mu \mathrm{A}$

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value is a maximum, is used in this data sheet.
Note 3: SOT-packaged parts are 100% tested at $+25^{\circ} \mathrm{C}$. Limits across the full temperature range are guaranteed by design and correlation.
Note 4: $\Delta \mathrm{RON}=\mathrm{RON}(\mathrm{MAX})-\mathrm{RON}(\mathrm{MIN})$.
Note 5: Flatness is defined as the difference between the maximum and minimum values of on-resistance as measured over the specified analog signal range.
Note 6: Guaranteed by design.
Note 7: Off-Isolation = $20 \log _{10}\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NC}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NO}}\right)\right], \mathrm{V}_{\mathrm{COM}}=$ output, V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 8: Between the two switches

Typical Operating Characteristics

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

1 Ω, Low-Voltage, Single-Supply
 SPDT Analog Switches

Typical Operating Characteristics (continued)

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

LOGIC THRESHOLD VOLTAGE

1 Ω, Low-Voltage, Single-Supply SPDT Analog Switches

PIN	NAME	FUNCTION
1	NN	Digital Control Input
2	V+	Positive Supply Voltage Input
3	GND	Ground
4	NC	Analog Switch—Normally Closed
5	COM	Analog Switch-Common
6	NO	Analog Switch—Normally Open

Detailed Description

The MAX4624/MAX4625 are low-on-resistance (RON), low-voltage, single-pole/double-throw (SPDT) analog switches that operate from $\mathrm{a}+1.8 \mathrm{~V}$ to +5.5 V supply. The MAX4624 has break-before-make switching, and the MAX4625 has make-before-break switching. These devices also have fast switching speeds (ton $=50 \mathrm{~ns}$ max, tOFF $=50 \mathrm{~ns}$ max).
When powered from a +5 V supply, their 1Ω max RON allows high continuous currents to be switched in a variety of applications. In an overcurrent condition, these switches provide both current-limit and thermalshutdown protection.

Current-Limit Protection

The MAX4624/MAX4625 feature current-limit protection circuitry. When the voltage drop across the on switch reaches 0.6 V typ, the internal circuitry activates. The current limit is not instantaneous, but rather integrates

Figure 1. Overvoltage Protection Using Two External Blocking Diodes
over time, so current limiting will not activate when the switch output charges a small $0.1 \mu \mathrm{~F}$ capacitor. For sustained overload conditions, the switch turns off (opens). The switch turns on after 5 ms . If the overload persists, the switch cycles off and on to produce a pulsed output. A direct short circuit will be detected immediately, and the switch will pulse on for $1 \mu \mathrm{~s}$, then remain off for 5 ms .

Applications Information

Logic Inputs

The MAX4624/MAX4625 logic inputs can be driven up to +5.5 V regardless of the supply voltage. For example, with a +3.3 V supply, IN may be driven low to OV and high to 5.5 V . Driving IN Rail-to-Rail ${ }^{\circledR}$ minimizes power consumption.

Analog Signal Levels

Analog signals that range over the entire supply voltage (V+ to GND) can be passed with very little change in on-resistance (see Typical Operating Characteristics). The switches are bidirectional, so the NO, NC, and COM pins can be used as either inputs or outputs.

Power-Supply Sequencing and Overvoltage Protection

Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the devices.

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals, especially if the analog signal is not current limited. If this sequencing is not possible, and if the analog inputs are not current limited to $<20 \mathrm{~mA}$, add

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

1,, Low-Voltage, Single-Supply SPDT Analog Switches

a small-signal diode (D1) as shown in Figure 1. If the analog signal can dip below GND, add D2. Adding protection diodes reduces the analog range to a diode drop (about 0.7 V) below $\mathrm{V}+$ (for D 1), and a diode drop above ground (for D2). On-resistance increases slightly at low supply voltages. Maximum supply voltage (V+) must not exceed +6 V .
Adding protection diode D2 causes the logic threshold to be shifted relative to GND. TTL compatibility is not guaranteed when D2 is added.

Protection diodes D1 and D2 also protect against some overvoltage situations. With Figure 1's circuit, if the supply voltage is below the absolute maximum rating, and if a fault voltage up to the absolute maximum rating is applied to an analog signal pin, no damage will result.

Test Circuits/Timing Diagrams

Figure 2. Switching Time

Figure 3a. Break-Before-Make Interval (MAX4624 only)

1 Ω, Low-Voltage, Single-Supply SPDT Analog Switches

Test Circuits/Timing Diagrams (continued)

Figure 3b. Make-Before-Break Interval (MAX4625 only)

IN DEPENDS ON SWITCH CONFIGURATION INPUT POLARITY DETERMINED BY SENSE OF SWITCH.

Figure 4. Charge Injection

mEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT IC TERMINALS.
OFF-ISOLATION IS MEASURED BETWEEN COM_ AND "OFF" NO_ OR NC_ TERMINAL ON EACH SWITCH.
ON-LOSS IS MEASURED BETWEEN COM_ AND "ON" NO_OR NC_TERMINAL ON EACH SWITCH.
CROSSTALK IS MEASURED FROM ONE CHANNEL TO ALL OTHER CHANNELS.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.
Figure 5. On-Loss, Off-Isolation, and Crosstalk

1,, Low-Voltage, Single-Supply SPDT Analog Switches

Chip Information
TRANSISTOR COUNT: 186

Figure 6. Channel Off/On-Capacitance

1 Ω, Low-Voltage, Single-Supply SPDT Analog Switches

1 Ω, Low-Voltage, Single-Supply SPDT Analog Switches

Package Information (continued)

TIP VIEW
NOTE: PIN 1 WIL BE IDENTIFIED BY

END VIEW

DETAIL " A "

PACKAGE QUTLINE, 6 LEAD THIN SOT23,

NOTES:

1. ALL DIMENSIONS ARE IN MLLIMETERS.
2. "D" AND "E1" ARE REFERENCE DATUM AND DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS, AND ARE MEASURED AT THE BOTTOM PARTING LINE. MOLD FLASH OR PROTRUSION SHALL NOT EXCEED 0.15 mm ON "D" AND 0.25 mm ON "E" PER SIDE.
3. THE LEAD WIDTH DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.07 mm TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION.
4. DATUM PLANE "H" LOCATED AT MOLD PARTING LINE AND COINCIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BODY at The bottom of parting line.
5. THE LEAD TIPS MUST LINE WTHIN A SPECIFIED TOLERANCE ZONE. THIS TOLERANCE ZONE IS DEFINED BY TWO PARALLEL LINES. ONE PLANE IS THE SEATING PLANE, DATUM [-C-]; AND THE OTHER PLANE IS AT THE SPECIFIED DISTANCE FROM $[-C-]$ IN THE DIRECTION INDICATED. FORMED LEADS SHALL BE PLANAR WITH RESPECT TO ONE ANOTHER WITH 0.10 mm AT SEATING PLANE.
6. THIS PART IS COMPLIANT WITH JEDEC SPECIFICATION

MO-193 EXCEPT FOR THE "e" DIMENSION WHICH IS 0.95 mm INSTEAD OF 1.00 mm . THIS PART IS IN FULL COMPLIANCE TO EIAJ SPECIFICAION SC-74.

SYMBDLS			
	MIN	NDM	MAX
A	-	-	1.10
A1	0.05	0.075	0.10
A2	0.85	0.88	0.90
A3	0.50 BSC		
b	0.30	-	0.45
b1	0.25	0.35	0.40
C	0.15	-	0.20
C1	0.12	0.127	0.15
D	2.80	2.90	3.00
E	2.75 BSC		
E1	1.55	1.60	1.65
L	0.30	0.40	0.50
e1	1.90 BSC		
e	0.95 BSC		
C	0.	4^{-}	8^{-}
a.a.a	0.20		

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118

