0.5Ω, Low-Voltage, Single-Supply SPST Analog Switches

Benefits and Features

- Low Ron
- 0.5Ω max (+5 V Supply)
- 0.9Ω max (+3V Supply)
- 0.1Ω max RoN Flatness (+5V Supply)
- Overcurrent Protection
- Single-Supply Operation (+1.8 V to +5.5 V)
- Available in SOT23 Packages
- Fast Switching: ton $=50$ ns max, toff $=30 \mathrm{~ns}$ max
- TTL-Logic Compatible at +5 V
- Pin Compatible with MAX4514 (MAX4626)

Pin Compatible with MAX4515 (MAX4627)

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	TOP MARK
MAX4626EUK +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23-5	+ ADMJ
MAX4627EUK +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23-5	+ADMK
MAX4628EUT +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SOT23-6	+AADN

+Denotes lead (Pb)-free/RoHS-compliant package.
T = Tape and reel.

- Communications Circuits
- PCMCIA Cards
- Cellular Phones
- Modems
- Hard Drives

Pin Configurations/Functional Diagrams/Truth Tables

Absolute Maximum Ratings

Voltages Referenced to GND

| V+, IN, $\overline{\mathbb{N}} . ~$ |
| :--- |$+400 \mathrm{~mA}$ to +6 V)

Operating Temperature Range
MAX462_EU
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature
$\ldots+150^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) \qquad $+300^{\circ} \mathrm{C}$

Note 1: Signals on NC, NO, or COM exceeding V+ or GND are clamped by internal diodes.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics-Single +5 V Supply

$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, G N D=0, \mathrm{~V}_{\text {INH }}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}, \mathrm{~V}_{\mathrm{NO}}, \\ \mathrm{~V}_{\mathrm{NC}} \end{gathered}$			0		V+	V
On-Resistance	R_{ON}	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3.5 \mathrm{~V} \text {, } \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.35	0.5	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.6	
On-Resistance Flatness (Note 4)	$\mathrm{R}_{\text {FLAT(ON) }}$	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=0,1 \mathrm{~V}, \\ & 2 \mathrm{~V} ; \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.05	0.10	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.10	
NO or NC Off-Leakage Current	${ }^{1} \mathrm{NO}(\mathrm{OFF})$, ${ }^{\text {INC(OFF) }}$,	$\mathrm{V}+=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V}$ V_{NO} or $\mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V}, 1 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-2	0.2	2	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-20		20	
COM Off-Leakage Current	ICOM(OFF)	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-2	0.2	2	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-20		20	
COM On-Leakage Change	ICOM(ON)	$\mathrm{V}+=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} \text {; }$ V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 4.5 \mathrm{~V}$, or floating	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-4	0.3	4	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-40		40	
Overcurrent-Protection Threshold Current		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2.4			A
DYNAMIC							
Turn-On Time	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		40	50	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			60	
Turn-Off Time	toff	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		18	30	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			40	
Charge Injection	Q	$\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0, \mathrm{R}_{\mathrm{GEN}}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Figure 3			40		pC
Off-Isolation (Note 5)	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{A}=+25^{\circ} \mathrm{C}$, Figure 4			-51		dB
COM Off-Capacitance	$\mathrm{C}_{\text {COM (OFF) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Figure 5			65		pF
NC or NO OffCapacitance	Coff	$f=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Figure 5			65		pF
COM On-Capacitance	$\mathrm{C}_{\text {COM(ON) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Figure 5			130		pF

Electrical Characteristics-Single +5 V Supply (continued)
$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, G N D=0, \mathrm{~V}_{\text {INH }}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LOGIC INPUT	$V_{I N L}$		2.4	0.8	V	
Input Voltage Low	$\mathrm{V}_{\mathrm{INH}}$		-1	V		
Input Voltage High	I_{IN}		1.8	$\mu \mathrm{~A}$		
Logic Input Current	$\mathrm{V}+$			5.5	V	
SUPPLY	$\mathrm{I}+$	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0$ or $\mathrm{V}+$	10	$\mu \mathrm{~A}$		
Power-Supply Range						

Electrical Characteristics—Single +3V Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~V}_{\mathrm{INH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)($ Notes 2,3$)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}, \mathrm{~V}_{\mathrm{NO}} \\ \mathrm{~V}_{\mathrm{NC}} \end{gathered}$			0		V+	V
On-Resistance	R_{ON}	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.4	0.8	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.9	
On-Resistance Flatness (Note 4)	$\mathrm{R}_{\text {FLAT(ON) }}$	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0,0.75 \mathrm{~V}, 1.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$		0.1			Ω
DYNAMIC							
Turn-On Time	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		65	80	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			90	
Turn-Off Time	toff	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}$, Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		22	40	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			50	
Charge Injection	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \text { Figure } 3, \mathrm{~V}_{\mathrm{GEN}}=0, \mathrm{R}_{\mathrm{GEN}}=0, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$			30		pC
LOGIC INPUT							
Input Voltage Low	$\mathrm{V}_{\text {INL }}$					0.6	V
Input Voltage High	$\mathrm{V}_{\text {INH }}$			2.0			V
Logic Input Current	I_{IN}			-1		1	$\mu \mathrm{A}$
SUPPLY							
Positive Supply Current	I+	$\mathrm{V}=+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0$				10	$\mu \mathrm{A}$

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Note 3: SOT-packaged parts are 100% tested at $+25^{\circ} \mathrm{C}$. Limits across the full temperature range are guaranteed by design and correlation.
Note 4: Flatness is defined as the difference between the maximum and minimum values of on-resistance as measured over the specified analog signal range.
Note 5: Off-Isolation $=20 \log _{10}\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NC}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NO}}\right)\right], \mathrm{V}_{\mathrm{COM}}=$ output, V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Typical Operating Characteristics (continued)
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN			NAME	FUNCTION	
MAX4626	MAX4627	MAX4628			
1	1	1	COM	Analog Switch—Common	
2	-	2	NO	Analog Switch—Normally Open	
3	3	3	GND	Ground	
4	4	5	IN	Digital Control Input	
5	5	6	V+	Positive Supply Input	
-	2	-	NC	Analog Switch—Normally Closed	
-	-	4	$\overline{\mathrm{IN}}$	Inverted Digital Control Input (see MAX4628 Truth Table)	

Detailed Description

The MAX4626/MAX4627/MAX4628 are low-on-resistance (RON), low-voltage, single-pole/single-throw (SPST) analog switches that operate from a +1.8 V to +5.5 V single supply. The MAX4626 is normally open (NO), and the MAX4627 is normally closed (NC). The MAX4628 is normally open (NO) and has two control inputs.
When powered from a +5 V supply, their 0.5Ω RON allows high continuous currents to be switched in a variety of applications. In the event of an overcurrent condition, these switches provide both current-limit and thermalshutdown protection.

Current-Limit Protection

The MAX4626/MAX4627/MAX4628 feature current-limit protection circuitry. When the voltage drop across the on switch reaches 0.6 V (typ), the internal circuitry activates. The current limit is not instantaneous, but rather integrates over time so that current limiting will not activate under momentary short-circuit conditions encountered when the switch output charges a small $0.1 \mu \mathrm{~F}$ capacitor. For sustained overcurrent conditions, the switch turns off (opens). The switch turns on after 5 ms and, if the overload condition persists, the switch will cycle off and on to produce a pulsed output. A direct short circuit will be detected immediately, and the switch will pulse on for $1 \mu \mathrm{~s}$, then remain off for 5 ms .

Figure 1. Overvoltage Protection Using Two External Blocking Diodes

Applications Information

Logic Inputs

The MAX4626/MAX4627/MAX4628 logic inputs can be driven up to +5.5 V regardless of the supply voltage. For example, with a +3.3 V supply, $\mathbb{I N}$ or $\overline{\mathbb{N}}$ may be driven low to 0 V and high to 5.5 V . Driving IN or $\overline{\mathrm{N}}$ Rail-to-Rail ${ }^{(8)}$ minimizes power consumption.

Analog Signal Levels

Analog signals that range over the entire supply voltage ($\mathrm{V}+$ to GND) can be passed with very little change in onresistance (see Typical Operating Characteristics). The switches are bidirectional, so the NO, NC, and COM pins can be used as either inputs or outputs.

Power-Supply Sequencing and Overvoltage Protection

Caution: Do not exceed the absolute maximum ratings; stresses beyond the listed ratings may cause permanent damage to the devices.
Proper power-supply sequencing is recommended for all CMOS devices. Always apply $\mathrm{V}+$ before applying analog signals, especially if the analog signal is not current limited. If this sequencing is not possible, and if the analog inputs are not current limited to $<20 \mathrm{~mA}$, add a small-signal diode (D1) as shown in Figure 1. If the analog signal can dip below GND, add D2. Adding protection diodes reduces the analog range to a diode drop (about 0.7 V) below $\mathrm{V}+$ (for D 1), and a diode drop above ground (for D2). On-resistance increases by a small amount at low supply voltages. Maximum supply voltage ($\mathrm{V}+$) must not exceed +6 V .
Adding protection diode D2 causes the logic thresholds to be shifted relative to GND. TTL compatibility is not guaranteed when protection diode D2 is added.
Protection diodes D1 and D2 also protect against some overvoltage situations. With Figure 1's circuit, if the supply voltage is below the absolute maximum rating, and if a fault voltage up to the absolute maximum rating is applied to an analog signal pin, no damage will result.

Test Circuits/Timing Diagrams

Figure 2. Switching Time

Figure 3. Charge Injection

MEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT IC TERMINALS.
OFF-ISOLATION IS MEASURED BETWEEN COM_AND "OFF" NO_ OR NC_ TERMINAL ON EACH SWITCH.
ON-LOSS IS MEASURED BETWEEN COM_AND "ON" NO_ OR NC_ TERMINAL ON EACH SWITCH.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.
Figure 4. On-Loss and Off-Isolation

Chip Information
TRANSISTOR COUNT: 186

Figure 5. Channel Off/On-Capacitance

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Revision History

| REVISION
 NUMBER | REVISION
 DATE | DESCRIPTION | PAGES
 CHANGED |
| :---: | :---: | :--- | :---: | :---: |
| 0 | $1 / 00$ | Initial Release | - |
| 1 | $5 / 17$ | Updated package information to indicate lead-free | 1 |

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF

