Fast, Low-Voltage, 4Ω, 4-ChanneI CMOS Analog Multiplexer

Abstract

General Description The MAX4634 fast, low-voltage, 4-channel CMOS analog multiplexer features 4Ω (max) on-resistance (RON). It offers RON matching between switches to 0.3Ω (max) and RoN flatness of 1Ω (max) over the specified signal range. Each switch can handle V+ to GND analog signals. Off-leakage current is only 0.1 nA (max) at $+25^{\circ} \mathrm{C}$. The MAX4634 features fast turn-on (tON) and turn-off (toff) times of 18 ns and 11 ns , respectively. All this comes in the tiny 10-pin $\mu \mathrm{MAX}{ }^{\circledR}$ and 10 -pin, $3 \mathrm{~mm} \times$ 3mm, TDFN packages. This low-voltage multiplexer operates from $\mathrm{a}+1.8 \mathrm{~V}$ to +5.5 V single supply. All digital inputs have +0.8 V and +2.4 V logic thresholds, ensuring TTL/CMOS-logic compatibility with +5 V operation.

$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

Applications
Battery-Operated Equipment
Audio and Video Signal Routing
Low-Voltage Data-Acquisition Systems
Sample-and-Hold Circuits
Communications Circuits

Guaranteed Ron 2.5Ω (typ) with 5 V Supply 4.5Ω (typ) with 3V Supply			
- 0.3Ω (max) Guaranteed RoN Match Between Channels			
- 1Ω (max) Guaranteed Ron Flatness Over Signal Range			
0.1 nA (at $+25^{\circ} \mathrm{C}$) Guaranteed Low Leakage Currents			
- +1.8V to +5.5V Single-Supply Operation			
+1.8V Operation RON $=30 \Omega$ (typ) Overtemperature toN = 30ns (typ), tOFF = 13ns (typ)			
- V+ to GND Signal Handling			
- TTL/CMOS-Logic Compatible			
- -78dB Crosstalk (at 1MHz)			
- -80dB Off-Isolation (at 1MHz)			
- 0.018\% Total Harmonic Distortion			
Ordering Information			
PART	TEMP RANGE	PIN-PACKAGE	TOP MARK
MAX4634EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 MMAX	-
MAX4634ETB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 TDFN-EP* ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)	AAU

*EP = Exposed pad.
2.5Ω (typ) with 5V Supply
4.5Ω (typ) with 3V Supply
0.3Ω (max) Guaranteed RoN Match Between Channels
1Ω (max) Guaranteed RoN Flatness Over Signal Range
$0.1 \mathrm{nA}\left(\mathrm{at}+25^{\circ} \mathrm{C}\right.$) Guaranteed Low Leakage Currents

- +1.8V to +5.5V Single-Supply Operation
+1.8V Operation
to = 30ns (typ), torf $=13 \mathrm{~ns}$ (typ)
- V+ to GND Signal Handling
- TTL/CMOS-Logic Compatible
- -78dB Crosstalk (at 1MHz)
- -80dB Off-Isolation (at 1MHz)
- 0.018% Total Harmonic Distortion

Ordering Information

Pin Configurations/Functional Diagrams/Truth Table

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Fast, Low-Voltage, 4 Ω, 4-Channel CMOS Analog Multiplexer

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND.)

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$10-Pin $\mu \mathrm{MAX}$ (derate $4.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\left.+70^{\circ} \mathrm{C}\right) \ldots330 \mathrm{~mW}$10-Pin TDFN (derate $24.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$above $+70^{\circ} \mathrm{C}$).. $+85^{\circ} \mathrm{C}$Operating Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Storage Temperature Range $300^{\circ} \mathrm{C}$

Note 1: Signals on NO_, COM, EN, or A_ exceeding V+ or GND are clamped by internal diodes. Limit forward diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +5 V Supply

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}, \mathrm{~V} \mathrm{~V}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	VCOM, VNO_			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \\ & \mathrm{ICOM}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}}=0 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2.5	4	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			4.5	
On-Resistance Match Between Channels (Notes 4, 5)	$\triangle \mathrm{RoN}$	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \\ & \mathrm{ICOM}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}}=0 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.1	0.3	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.4	
On-Resistance Flatness (Note 6)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \\ & \mathrm{ICOM}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}}^{-}=0 \text { to } \mathrm{V}+ \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.75	1	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1.2	
NO_ Off-Leakage Current (Note 7)	INO_(OFF)	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V} ; \\ & \mathrm{VCOM}^{2} \mathrm{~V}, 4.5 \mathrm{~V} ; \\ & \mathrm{VNO}_{-}=4.5 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.1	± 0.01	+0.1	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.3		+0.3	
COM Off-Leakage Current (Note 7)	ICOM(OFF)	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V} ; \\ & \mathrm{V} \text { COM }=1 \mathrm{~V}, 4.5 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\text {NO_ }}=4.5 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.1	± 0.01	+0.1	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.65		+0.65	
COM On-Leakage Current (Note 7)	ICOM(ON)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, 4.5 \mathrm{~V} \text {, } \\ & \text { or unconnected } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.1	± 0.01	+0.1	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {min }}$ to $\mathrm{Tmax}^{\text {max }}$	-0.65		+0.65	
DIGITAL I/O (A_, EN)							
Input Logic-High	V_{IH}			2.4			V
Input Logic-Low	VIL					0.8	V
Input Logic Current				-100	5	+100	nA

Fast, Low-Voltage, 4 Ω, 4-Channel CMOS Analog Multiplexer

ELECTRICAL CHARACTERISTICS-Single +5 V Supply (continued)

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
DYNAMIC						
Turn-On Time (Note 7)	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}, \\ & \mathrm{RL}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF} \text {, Figure } 2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	14	18	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		20	
Turn-Off Time (Note 7)	tOFF	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}, \\ & \mathrm{RL}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF} \text {, Figure } 2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	6	11	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		13	
Break-Before-Make Time (Note 7)	tBBM	$\begin{aligned} & \mathrm{V}_{\text {NO_ }}=3 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF} \text {, Figure } 3 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	8		ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	1		
Charge Injection	Q	VGEN $=2 \mathrm{~V}, \mathrm{RGEN}=0$	$\mathrm{CL}_{\mathrm{L}}=5 \mathrm{pF}$, Figure 4	2		pC
Off-Isolation (Note 8)	VISO	$C L=5 p F, R L=50 \Omega,$ Figure 5	$\mathrm{f}=10 \mathrm{MHz}$	-57		dB
			$\mathrm{f}=1 \mathrm{MHz}$	-80		
Crosstalk (Note 9)	V_{C} T	$C L=5 p F, R L=50 \Omega,$ Figure 5	$\mathrm{f}=10 \mathrm{MHz}$	-52		dB
			$\mathrm{f}=1 \mathrm{MHz}$	-78		
NO_ Off-Capacitance	CNO_(OFF)	Figure 6		13		pF
COM Off-Capacitance	CCOM(OFF)	Figure 6		52		pF
COM On-Capacitance	CCOM(ON)	$C L=5 p F$, Figure 6		68		pF
Total Harmonic Distortion	THD	$\mathrm{RL}_{\mathrm{L}}=600 \Omega, \mathrm{f}=20 \mathrm{~Hz}$ to 20kHz		0.018		\%
POWER SUPPLY						
Power-Supply Range	V+			1.8	5.5	V
Positive Supply Current	I+	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}+$,	= 0	0.001	1.0	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS-Single +3V Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V}_{I H}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\mathrm{V}_{\mathrm{COM}}$, VNO_{-}			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \\ & \mathrm{I}^{\mathrm{COM}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {NO }}=0 \text { to } \mathrm{V}+ \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		4.5	7	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			8	
On-Resistance Match Between Channels (Notes 4, 5)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}+ \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.1	0.3	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.4	

Fast, Low-Voltage, 4 Ω, 4-Channel CMOS Analog Multiplexer

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V} \mathrm{~V}=0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3 \mathrm{~V}$ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
On-Resistance Flatness (Note 6)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NO}}^{-} \\ & =0 \text { to } \mathrm{V}+ \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.2	2.5	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{TMAX}^{\text {m }}$			3	
NO_ Off-Leakage Current (Note 7)	INO_(OFF)	$\begin{aligned} & \mathrm{V}+=3.3 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 3 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}_{-}}=3 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.1	± 0.01	+0.1	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.3		+0.3	
COM Off-Leakage Current (Note 7)	ICOM(OFF)	$\begin{aligned} & \mathrm{V}+=3.3 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 3 \mathrm{~V} ; \\ & \mathrm{V}_{\text {NO_ }}=3 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.1	± 0.01	+0.1	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.65		+0.65	
COM On-Leakage Current (Note 7)	ICOM(ON)	$\begin{aligned} & \mathrm{V}_{+}=3.3 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 3 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, 3 \mathrm{~V} \text {, or } \\ & \text { unconnected } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.1	± 0.01	+0.1	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.65		+0.65	
DIGITAL I/O (A_, EN)							
Input High	V_{IH}			2.0			V
Input Low	VIL					0.4	V
Input Logic Current				-100	5	+100	nA
DYNAMIC							
Turn-On Time (Note 7)	ton	$\begin{aligned} & \mathrm{V}_{\text {NO_ }}=2 \mathrm{~V}, \\ & C_{L}=35 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega \text {, Figure } 2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		16	22	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $T_{\text {MAX }}$			24	
Turn-Off Time (Note 7)	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=2 \mathrm{~V}, \\ & \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega \text {, Figure } 2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		8	14	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			16	
Break-Before-Make Time (Note 7)	tBBM	$\begin{aligned} & \mathrm{V}_{\text {NO_ }}=2 \mathrm{~V}, \\ & \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega \text {, Figure } 3 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		9		ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	1			
Charge Injection	Q	$\mathrm{V}_{\mathrm{GEN}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0, \mathrm{CL}=5 \mathrm{pF}$, Figure 4			2		pC
Off-Isolation (Note 8)	VISO	$C_{L}=5 p F, R_{L}=50 \Omega,$ Figure 5	$f=10 \mathrm{MHz}$		-57		dB
			$\mathrm{f}=1 \mathrm{MHz}$		-80		
Crosstalk (Note 9)	VCT	$C_{L}=5 p F, R_{L}=50 \Omega,$ Figure 5	$\mathrm{f}=10 \mathrm{MHz}$		-52		dB
			$\mathrm{f}=1 \mathrm{MHz}$		-78		

Fast, Low-Voltage, 4 Ω, 4-Channel CMOS Analog Multiplexer

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}$ IL $=0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
NO_ Off-Capacitance	CNO_(OFF)	$\mathrm{V}_{\text {NO_ }}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$, Figure 6	13		pF
COM Off-Capacitance	CCOM(OFF)	$V_{C O M}=G N D, f=1 \mathrm{MHz}$, Figure 6	52		pF
COM On-Capacitance	C(ON)	$\mathrm{V}_{\text {COM }}=\mathrm{V}_{\text {NO_ }}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$, Figure 6	68		pF
Total Harmonic Distortion	THD	$\mathrm{RL}=600 \Omega, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz	0.018		\%
POWER SUPPLY					
Positive Supply Current	I+	$\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}+, \mathrm{V}_{\text {IL }}=0$	0.001	1	$\mu \mathrm{A}$

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Note 3: TDFN parts are tested at $+25^{\circ} \mathrm{C}$ and guaranteed by design and correlation over the entire temperature range.
Note 4: $\Delta \operatorname{Ron}=\operatorname{RON}(M A X)-\operatorname{RON}(\mathrm{MIN})$.
Note 5: RON and Δ Ron matching specifications for TDFN-packaged parts are guaranteed by design.
Note 6: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
Note 7: Guaranteed by design.
Note 8: Off-isolation $=20 \log _{10}\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}\right)$, where $\mathrm{V}_{\mathrm{COM}}=$ output and $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 9: Between any two switches.

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Fast, Low-Voltage, 4 ${ }^{2}$, 4-Channel CMOS Analog Multiplexer

Fast，Low－Voltage， 4Ω, 4－Channel CMOS Analog Multiplexer

Pin Description

PIN	NAME	FUNCTION
μ MAX／ TDFN		
1	A0	Address Input．See the Truth Table for details．
2	NO1	Normally Open Switch 1
3	GND	Ground
4	NO3	Normally Open Switch 3
5	EN	Enable Logic Input．See the Truth Table for details．
6	V＋	Positive Supply Voltage．Connect to an external power supply． Bypass to GND with a $10 \mu \mathrm{~F}$ capacitor placed as close to the pin as possible．
7	NO4	Normally Open Switch 4
8	COM	Analog Switch Common Terminal
9	NO2	Normally Open Switch 2
10	A1	Address Input．See the Truth Table for details．
－	EP	Exposed Pad．Internally connected to GND．Connect to a large PCB ground plane for proper operation． Not intended as an electrical connection point（TDFN package only）．

Detailed Description

The MAX4634 is a low－on－resistance，low－voltage ana－ log multiplexer that operates from $\mathrm{a}+1.8 \mathrm{~V}$ to +5.5 V sin－ gle supply．CMOS switch construction allows pro－ cessing of analog signals that are within the supply volt－ age range（GND to $\mathrm{V}+$ ）．
To disable all switch channels，drive EN low．All four inputs and COM become high impedance during this state．If the disable feature is not needed，connect EN to $\mathrm{V}+$ ．

Figure 1．Overvoltage Protection Using External Blocking Diodes

Applications Information
 Power－Supply Sequencing and Overvoltage Protection

Proper power－supply sequencing is recommended for all CMOS devices．Always apply V＋before applying analog signals or logic inputs，especially if the analog or logic signals are not current limited．If this sequencing is not possible，and if the analog or logic inputs are not current limited to $<20 \mathrm{~mA}$ ，add a small－signal diode （D1）as shown in Figure 1．If the analog signal can dip below GND，add D2．Adding protection diodes reduces the analog signal range to a diode drop（about 0.7 V ） below $\mathrm{V}+$ for D 1 or to a diode drop above ground for D 2 ． The addition of diodes does not affect leakage．On－resis－ tance increases by a small amount at low supply voltages． Maximum supply voltage（ $\mathrm{V}+$ ）must not exceed 6V．
Protection diodes D1 and D2 also protect against some overvoltage situations．A fault voltage up to the absolute maximum rating at an analog signal input does not damage the device，even if the supply voltage is below the signal voltage．

Fast, Low-Voltage, 4 Ω, 4-Channel CMOS Analog Multiplexer

Figure 2. Switching Time

Figure 3. Break-Before-Make Interval

Figure 4. Charge Injection
\qquad

Fast, Low-Voltage, 4 Ω, 4-Channel CMOS Analog Multiplexer

Test Circuits/Timing Diagrams (continued)

Figure 5. Off-Isolation/On-Channel Bandwidth

PROCESS: CMOS

Figure 6. Channel Off/On-Capacitance

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
$10 \mu \mathrm{MAX}$	-	$\underline{\mathbf{2 1 - 0 0 6 1}}$
10 TDFN	$\mathrm{T} 1033-1$	$\underline{\mathbf{2 1 - 0 1 3 7}}$

Fast, Low-Voltage, 4 , 4-Channel CMOS Analog Multiplexer

Revision History			
REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$4 / 00$	Initial release	-
1	$2 / 02$	Added QFN package	-
2	$5 / 03$	Added QFN packaging information	-
3	$2 / 09$	Added TDFN package information (replaced QFN), style edits	1,7

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+ HEF4053BT. 653 PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7
CD4053BPWRG4 ADG658TRUZ-EP 74HC4053D.653 74HCT4052PW. 118 74LVC2G53DP. 125 74HC4052DB. 112 74HC4052PW. 112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB. 112 74HCT4052D. 112 74HCT4052DB. 112 74HCT4351D.112 74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZRL7

