MAX4638/MAX4639 3.5 Ω, Single 8:1 and Dual 4:1, Low-Voltage Analog Multiplexers

General Description

The MAX4638/MAX4639 are single 8:1 and dual 4:1 CMOS analog multiplexers/demultiplexers (muxes/ demuxes). Each mux operates from a single +1.8 V to +5 V supply or dual $\pm 2.5 \mathrm{~V}$ supplies. These devices feature 3.5Ω on-resistance (RON) when powered with a single +5 V supply and have -75 dB off-isolation and -85 dB crosstalk from the output to each off channel. The switching times are 18 ns ton and 7 ns toff. They feature a -3 dB 85 MHz bandwidth and a guaranteed $0.25 n A$ leakage current at $+25^{\circ} \mathrm{C}$.
$\mathrm{A}+1.8 \mathrm{~V}$ to +5.5 V operating range makes the MAX4638/ MAX4639 ideal for battery-powered, portable instruments. All channels guarantee break-before-make switching. These parts feature bidirectional operation and can handle Rail-to-Rail ${ }^{\circledR}$ analog signals. All control inputs are TTL/CMOS-logic compatible. Decoding is in standard BCD format, and an enable input is provided to simplify cascading of devices. These devices are available in small 16-pin TQFN, TSSOP, and SO packages, as well as a 20-pin TQFN package.

Applications

Automatic Test Equipment
Low-Voltage Data-Acquisition Systems
Audio and Video Signal Routing
Medical Equipment
Battery-Powered Equipment
Relay Replacement

Features

- Guaranteed RoN
3.5Ω (+5 V or $\pm 2.5 \mathrm{~V}$ Supplies)
6Ω (+3V Supply)
- Guaranteed 0.4Ω Ron Match Between Channels
- Guaranteed 1Ω Ron Flatness Over Signal Range
- Guaranteed Low Leakage Currents
$0.25 n A$ at $+25^{\circ} \mathrm{C}$
- Switching Times: tON $=18 \mathrm{~ns}$, tofF $=7 \mathrm{~ns}$
- +1.8V to +5.5V Single-Supply Operation $\pm 2.5 \mathrm{~V}$ Dual-Supply Operation
- Rail-to-Rail Signal Handling
- TTL/CMOS-Logic Compatible
- Crosstalk: -80dB (1MHz)
- Off-Isolation: -60dB (10MHz)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4638ETE +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TQFN-EP* (4×4)
MAX4638EUE +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP
MAX4638ESE +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 SO
MAX4638ETP +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TQFN-EP* (4×4)

+Denotes a lead(Pb)-free/RoHS-compliant package.
T = Tape and reel.
*EP = Exposed pad.
Ordering Information continued at end of data sheet.

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
For pricing, delivery, and ordering information, please contact Maxim Direct at
1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

MAX4638/MAX4639

3.5 Ω, Single 8:1 and Dual 4:1,
 Low-Voltage Analog Multiplexers

ABSOLUTE MAXIMUM RATINGS

(Voltages Referenced to GND)

$V+$ to V -	V
$V+, A_{-}, \mathrm{EN}$	-0.3V to +6V
V-	+0.3V to -6V
NO_, COM_ (Note 1)	-0.3V to (V+ + 0.3V)
Continuous Current A_, EN	$\pm 30 \mathrm{~mA}$
Continuous Current NO_, COM_	$\pm 100 \mathrm{~mA}$
Peak Current (NO_, COM_) (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)	$\pm 200 \mathrm{~mA}$

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
TQFN (derate $16.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)..................... 1349 mW
TSSOP (derate $9.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 754.7 mW
SO (derate 8.70mW/ ${ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 696 mW
Operating Temperature Range
MAX463_E_E
.$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .. $+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow) $+260^{\circ} \mathrm{C}$

Note 1: Signals on $\mathrm{COM}_{-}, \mathrm{NO}_{-}$exceeding $\mathrm{V}+$ or V - are clamped by internal diodes. A_{-}and EN are clamped only to V - and can exceed $V+$ up to their maximum ratings. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—+5V Single Supply

$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=0, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)($ Notes 2,3$)$

PARAMETER	SYMBOL	CONDITIONS		MIN	$\begin{aligned} & \text { TYP } \\ & \text { (Note 2) } \end{aligned}$	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	VCOM_, V_{NO}			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=+4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {NO_ }}=+3.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2.5	3.5	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			4.5	
On-Resistance Match Between Channels (Notes 4, 5)	$\Delta \mathrm{RoN}$	$\begin{aligned} & \mathrm{V}_{+}=+4.5 \mathrm{~V}, \mathrm{ICOM}_{-}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}}=+3.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.1	0.4	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.5	
On-Resistance Flatness (Note 6)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}_{+}=+4.5 \mathrm{~V} ; \mathrm{ICOM}_{-}=10 \mathrm{~mA} ; \\ & \mathrm{VNO}_{-}=+1 \mathrm{~V},+2 \mathrm{~V},+3.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.75	1	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1.2	
NO_ Off-Leakage Current (Note 7)	INO_(OFF)	$\begin{aligned} & \mathrm{V}+=+5.5 \mathrm{~V} ; \mathrm{VCOM}_{\mathrm{CO}}=+1 \mathrm{~V}, \\ & +4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}}=+4.5 \mathrm{~V},+1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.25	± 0.01	0.25	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.35		0.35	
COM_ Off-Leakage Current (Note 7)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}+=+5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=+1 \mathrm{~V}, \\ & +4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}}=+4.5 \mathrm{~V},+1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.25	± 0.01	0.25	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.75		0.75	
COM_ On-Leakage Current (Note 7)	ICOM_(ON)	$\begin{aligned} & \mathrm{V}+=+5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=+1 \mathrm{~V}, \\ & +4.5 \mathrm{~V} ; \mathrm{V}_{\text {NO_ }}=+1 \mathrm{~V},+4.5 \mathrm{~V}, \\ & \text { or unconnected } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.25	± 0.01	0.25	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.75		0.75	
DIGITAL I/O							
Input Logic High	V_{IH}			2.4			V
Input Logic Low	V_{IL}					0.8	V
Input Leakage Current	$\mathrm{IIH}^{\text {I ILI }}$	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0$ or $\mathrm{V}+$		-0.1	0.005	0.1	$\mu \mathrm{A}$
Digital Input Capacitance	CIN				2		pF
DYNAMIC							
Transition Time (Note 7)	ttrans	$\begin{aligned} & \mathrm{RL}=100 \Omega, C \mathrm{C}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{NO} 1}=+3 \mathrm{~V} \text { or } 0, \\ & \mathrm{~V}_{\mathrm{NO} 8}=0 \text { or }+3 \mathrm{~V} \text {, Figure } 2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		14	18	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			20	

ELECTRICAL CHARACTERISTICS—+5V Single Supply (continued)

$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=0, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{VL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)($ Notes 2,3$)$

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP (Note 2)	MAX	UNITS
Break-Before-Make (Note 7)	tBBM	$\begin{aligned} & R_{L}=100 \Omega, C L=35 p F, \\ & V_{N O_{-}}=+3 V, \text { Figure } 3 \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		8		ns
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	1			
Enable Turn-On Time (Note 7)	ton(EN)	$\begin{aligned} & R_{L}=100 \Omega, C_{L}=35 \mathrm{pF}, \\ & V_{\mathrm{NO} 1}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO} 2} \text { to } \\ & \mathrm{V}_{\mathrm{NO}}=0, \text { Figure } 4 \\ & \hline \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		14	18	ns
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			20	
Enable Turn-Off Time (Note 7)	toff(EN)	$\begin{aligned} & R_{L}=100 \Omega, C_{L}=35 \mathrm{pF}, \\ & V_{N O 1}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO} 2} \text { to } \\ & \mathrm{V}_{\mathrm{NO} 8}=0, \text { Figure } 4 \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		5	7	ns
				$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			8	
On-Channel -3dB Bandwidth	BW	Signal = OdBm, $C L=5 p F$, 50Ω in and out, Figure 6	MAX4638	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		50		MHz
			MAX4639	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		85		
Charge Injection	Q	$\begin{aligned} & \mathrm{V}_{\mathrm{GEN}}=+2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0, \\ & \mathrm{CL}=1.0 \mathrm{nF}, \text { Figure } 5 \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		13		pC
NO_ Off-Capacitance	CNO_(OFF)	$\mathrm{V}_{\mathrm{NO}_{-}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz},$ Figure 8		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		9		pF
COM_ Off-Capacitance	CCOM_(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz}, \\ & \text { Figure } 8 \end{aligned}$	MAX4638	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		40		pF
			MAX4639	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		20		
Switch On-Capacitance	C(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}= \\ & \mathrm{V}_{\mathrm{NO}}=0 \mathrm{OV}, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$ Figure 8	MAX4638	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		54		pF
			MAX4639	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		34		
Off-Isolation (Note 8)	VISO	$\begin{aligned} & C_{L}=5 p F, R_{L}=50 \Omega, \\ & f=1 \mathrm{MHz}, V_{N O}= \\ & 1 V_{\text {RMS }} \text {, Figure } 6 \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-55		dB
		$\begin{aligned} & C_{L}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \mathrm{~V}_{\mathrm{NO}}= \\ & 1 \mathrm{~V}_{\text {RMS }} \text {, Figure } 6 \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-75		
Crosstalk (Note 9)	V_{CT}	$\begin{aligned} & C_{L}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \mathrm{~V}_{\mathrm{NO}}= \\ & \mathrm{IV}_{\text {RMS }}, \text { Figure } 7 \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-65		dB
		$\begin{aligned} & C_{L}=5 p F, R_{L}=50 \Omega, \\ & f=1 \mathrm{MHz}, V_{N O}= \\ & 1 \mathrm{~V}_{\text {RMS }} \text {, Figure } 7 \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-85			
Total Harmonic Distortion	THD	$\begin{aligned} & R_{L}=600 \Omega, \\ & R_{F L A T(O N)} / R_{L} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0.5			\%
SUPPLY								
Positive Supply Current	I+	$\mathrm{V}+=+5.5 \mathrm{~V}, \mathrm{~V}$ IN $=0$ or $\mathrm{V}+$				0.001	1.0	$\mu \mathrm{A}$

MAX4638/MAX4639

3.5ת, Single 8:1 and Dual 4:1,
 Low-Voltage Analog Multiplexers

ELECTRICAL CHARACTERISTICS—+3.0V Single Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V}-=0, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	$\begin{aligned} & \text { TYP } \\ & \text { (Note 2) } \end{aligned}$	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}, \\ & \mathrm{~V}_{\mathrm{NO}} \end{aligned}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{ICOM}_{-}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}}=+1.7 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		4.5	6	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			8	
On-Resistance Match Between Channels (Notes 4, 5)	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{ICOM}_{-}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}}=+1.7 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.25	0.6	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.8	
On-Resistance Flatness (Note 6)	RFLAT(ON)	$\begin{aligned} & \text { ICOM_ }=10 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}}=+1.5 \mathrm{~V},+1.7 \mathrm{~V}, \\ & +1.9 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1	2	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			2.5	
NO_ Off-Leakage Current (Note 7)	INO_(OFF)	$\begin{aligned} & \mathrm{V}+=+3.3 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{COM}}=+1 \mathrm{~V},+3 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}} \\ & =+3 \mathrm{~V},+1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.25	± 0.01	0.25	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.35		0.35	
COM_ Off-Leakage Current (Note 7)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}+=+3.3 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{COM}}=+1 \mathrm{~V},+3 \mathrm{~V} ; \mathrm{VNO}_{-} \\ & =+3 \mathrm{~V},+1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.25	± 0.01	0.25	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.35		0.35	
COM_ On-Leakage Current (Note 7)	ICOM_(ON)	$\begin{aligned} & \mathrm{V}+=+3.3 \mathrm{~V} ; \mathrm{V}_{\text {COM }}= \\ & +1 \mathrm{~V},+3 \mathrm{~V} ; \mathrm{V}_{\text {NO_ }}=+1 \mathrm{~V} \text {, } \\ & +3 \mathrm{~V} \text {, or unconnected } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.25	± 0.01	0.25	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.35		0.35	
DIGITAL I/O							
Input Logic High	V_{IH}			2.0			V
Input Logic Low	VIL					0.4	V
Input Leakage Current	$\mathrm{I}_{\text {IH, }} \mathrm{I}_{\text {IL }}$	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0$ or $\mathrm{V}+$		-0.1	0.005	0.1	$\mu \mathrm{A}$
Digital Input Capacitance	CIN				2		pF
DYNAMIC							
Transition Time (Note 7)	tTRANS	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-}}=+2 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \text {, Figure } 2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		16	20	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			24	
Break-Before-Make (Note 7)	tBBM	$\mathrm{V}_{\mathrm{NO}_{-}}=+2 \mathrm{~V}, \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF},$$R_{L}=100 \Omega \text {, Figure } 3$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		8		ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	1			
Enable Turn-On Time (Note 7)	ton(EN)	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-}}=+2 \mathrm{~V}, \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \text {, Figure } 4 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		15	20	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			24	
Enable Turn-Off Time (Note 7)	toff(EN)	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-}}=+2 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \text {, Figure } 4 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		5	9	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			10	

3.5 , Single 8:1 and Dual 4:1, Low-Voltage Analog Multiplexers

ELECTRICAL CHARACTERISTICS—+3.0V Single Supply (continued)

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V}-=0, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS			MIN	$\begin{aligned} & \text { TYP } \\ & \text { (Note 2) } \end{aligned}$	MAX	UNITS
Off-Isolation (Note 8)	VISO	$\begin{aligned} & C_{L}=5 \mathrm{pF}, \mathrm{RL}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{NO}}=+1 \mathrm{~V}_{\mathrm{RMS}}, \text { Figure } 6 \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		55		dB
		$\begin{aligned} & C_{L}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}}, \\ & \text { Figure } 6 \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-75		
Crosstalk (Note 9)	$V_{\text {CT }}$	$\begin{aligned} & C_{L}=5 \mathrm{pF}, R_{L}=50 \Omega, \\ & f=10 \mathrm{MHz}, V_{N O}=1 V_{R M S}, \\ & \text { Figure } 7 \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-65		dB
		$\begin{aligned} & C_{L}=5 p F, R_{L}=50 \Omega, \\ & f=1 \mathrm{MHz}, V_{N O}=1 V_{R M S}, \\ & \text { Figure } 7 \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-85		
On-Channel -3dB Bandwidth	BW	Signal = $0 \mathrm{dBm}, 50 \Omega$ in and out, Figure 6	MAX4638	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		50		MHz
			MAX4639	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		85		
NO_ Off-Capacitance	CNO_(OFF)	$\mathrm{V}_{\mathrm{NO}_{-}}=\mathrm{OV}, \mathrm{f}=1 \mathrm{MHz},$ Figure 8		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		9		pF
COM_ Off-Capacitance	Ccom_(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$ Figure 8	MAX4638	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		40		pF
			MAX4639	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		20		
Switch On-Capacitance	C (ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{NO}} \\ & =0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$ Figure 8	MAX4638	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		54		pF
			MAX4639	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		34		
SUPPLY								
Positive Supply Current	I+	$\mathrm{V}+=+3.3 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}_{-}}=0$ or $\mathrm{V}+$				0.001	1	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS— $\pm 2.5 V$ Dual Supplies

$\left(\mathrm{V}+=+2.5 \pm 10 \%, \mathrm{~V}-=-2.5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V} \pm= \pm 2.5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	$\begin{aligned} & \text { TYP } \\ & \text { (Note 2) } \end{aligned}$	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}} \end{aligned}$			V-		V+	V
On-Resistance	Ron	$\begin{aligned} & \text { lCom_ }=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}= \pm 1.5 \mathrm{~V}, \\ & \mathrm{~V}+=+2.25 \mathrm{~V}, \mathrm{~V}-=-2.25 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2.5	3.5	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			4.5	
On-Resistance Match Between Channels (Notes 4, 5)	$\triangle \mathrm{RON}$	$\begin{aligned} & \text { ICOM_ }=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}= \pm 1.5 \mathrm{~V}, \\ & \mathrm{~V}+=+2.25 \mathrm{~V}, \mathrm{~V}-=-2.25 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.2	0.4	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.5	

MAX4638/MAX4639

3.5ת, Single 8:1 and Dual 4:1,
 Low-Voltage Analog Multiplexers

ELECTRICAL CHARACTERISTICS— $\pm 2.5 \mathrm{~V}$ Dual Supplies (continued)

$\left(\mathrm{V}+=+2.5 \pm 10 \%, \mathrm{~V}-=-2.5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{I H}=+2.0 \mathrm{~V}, \mathrm{~V}_{I L}=+0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V} \pm= \pm 2.5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Note 3: Parts are tested at $+85^{\circ} \mathrm{C}$ and guaranteed by design over the entire temperature range.
Note 4: Δ RON $=$ RON(MAX) $-\operatorname{RON(MIN).~}$
Note 5: Δ RON matching specifications for TQFN packaged parts are guaranteed by design.
Note 6: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
Note 7: Guaranteed by design.
Note 8: Off-Isolation $=20 \log _{10}\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}_{-}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}_{-}}=$input to off switch.
Note 9: Between any two switches
$\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

MAX4638/MAX4639

3.5ת, Single 8:1 and Dual 4:1, Low-Voltage Analog Multiplexers

Typical Operating Characteristics (continued)

(V+ $=+5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN						NAME	FUNCTION
MAX4638			MAX4639				
DIP/SO	TQFN-EP		DIP/SO	TQFN-EP			
	16-PIN	20-PIN		16-PIN	20-PIN		
1, 15, 16	15, 13, 14	19, 18, 17	-	-	-	A0, A2, A1	Address Inputs
-	-	-	1,16	15, 14	19, 17	A0, A1	Address Inputs
2	16	1	2	16	1	EN	Enable
3	1	2	3	1	2	V-	Negative-Supply Voltage Input
4-7	2-5	3-6	-	-	-	NO1-N04	Bidirectional Analog Inputs
-	-	-	4-7	2-5	3-6	NO1A-NO4A	Bidirectional Analog Inputs
8	6	7	-	-	-	COM	Bidirectional Analog outputs
-	-	-	8, 9	6, 7	7, 9	COMA, COMB	Bidirectional Analog outputs
9-12	7-10	10-13	-	-	-	NO8-NO5	Bidirectional Analog Inputs
-	-	-	10-13	8-11	10-13	NO4B-NO1B	Bidirectional Analog Inputs
13	11	14	14	12	14	V+	Positive-Supply Voltage Input
14	12	15	15	13	15	GND	Ground
-	-	$\begin{aligned} & 8,9 \\ & 16,20 \end{aligned}$	-	-	$\begin{aligned} & 8,16 \\ & 18,20 \end{aligned}$	N.C.	No Connection. Not internally connected.
-	-	-	-	-	-	EP	Exposed Pad (TQFN Only). Connect EP to V-.

MAX4638/MAX4639
 3.5ת, Single 8:1 and Dual 4:1, Low-Voltage Analog Multiplexers

Detailed Description

The MAX4638/MAX4639 are low-voltage, CMOS analog muxes. The MAX4638 is an 8:1 mux that switches one of eight inputs (NO1-NO8) to a common output (COM) as determined by the 3-bit binary inputs A0, A1, and A2. The MAX4639 is a $4: 1$ dual mux that switches one of four differential inputs to a common differential output as determined by the 2-bit binary inputs A0 and A1. Both the MAX4638/MAX4639 have an EN input that can be used to enable or disable the device. When disabled, all channels are switched off. See Truth Tables.

Applications Information

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence $V+$ on first, then V-, followed by the logic inputs. If power-supply sequencing is not possible, add two small-signal diodes (D1, D2) in series with the supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog signal range to one diode drop below $\mathrm{V}+$ and one diode drop above V -, but

Figure 1. Overvoltage Protection Using External Blocking Diodes
does not affect the devices' low switch resistance. Device operation is unchanged, and the difference between V+ and V- should not exceed 6V. These protection diodes are not recommended when using a single supply. For single-supply operation, V- should be connected to GND as close to the device as possible.

Truth Tables

MAX4638 (Single 8-to-1 Mux)

A2	A1	A0	EN	ON SWITCH
X	X	X	0	None
0	0	0	1	NO1
0	0	1	1	NO2
0	1	0	1	NO3
0	1	1	1	NO4
1	0	0	1	NO5
1	0	1	1	NO6
1	1	0	1	NO7
1	1	1	1	NO8

MAX4639 (Dual 4-to-1 Mux)

A1	A0	EN	COMA	COMB
X	X	0	None	None
0	0	1	NO1A	NO1B
0	1	1	NO2A	NO2B
1	0	1	NO3A	NO3B
1	1	1	NO4A	NO4B

MAX4638/MAX4639

3.5 , Single 8:1 and Dual 4:1,

Low-Voltage Analog Multiplexers
Test Circuits/Timing Diagrams

Figure 2. Transition Time

Figure 3. MAX4638 Break-Before-Make Interval

MAX4638/MAX4639
 3.5ת, Single 8:1 and Dual 4:1, Low-Voltage Analog Multiplexers

Test Circuits/Timing Diagrams (continued)

Figure 4. Enable Switching Time

Figure 5. Charge Injection

MAX4638/MAX4639

3.5 , Single 8:1 and Dual 4:1,

Low-Voltage Analog Multiplexers
Test Circuits/Timing Diagrams (continued)

Figure 6. Off-Isolation/On-Channel Bandwidth

Figure 7. Crosstalk

Figure 8. Channel Off/On-Capacitance

MAX4638/MAX4639
 3.5ת, Single 8:1 and Dual 4:1, Low-Voltage Analog Multiplexers

Pin Configurations (continued)

Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
MAX4639ETE +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TQFN-EP* (4×4)
MAX4639EUE +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP
MAX4639ESE +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 SO
MAX4639ETP +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TQFN-EP* (4×4)

+Denotes a lead(Pb)-free/RoHS-compliant package.
T = Tape and reel.
*EP = Exposed pad
Chip Information

Package Information
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
16 TQFN	$\mathrm{T} 1644+4$	$\underline{\underline{21-0139}}$	$\underline{\underline{90-0070}}$
20 TQFN	$\mathrm{T} 1644+3$	$\underline{\underline{1-0139}}$	$\underline{90-0069}$
16 TSSOP	$\mathrm{U} 16+2$	$\underline{21-0066}$	$\underline{90-0117}$
16 SO	$\mathrm{S} 16+3$	$\underline{21-0041}$	$\underline{90-0097}$

MAX4638/MAX4639

3.5 , Single 8:1 and Dual 4:1,Z

Low-Voltage Analog Multiplexers
Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
2	$9 / 10$	-	-
3	$10 / 12$	Added RoHS ordering information throughout data sheet	$1-16$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+ HEF4053BT. 653 PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7
CD4053BPWRG4 ADG658TRUZ-EP 74HC4053D.653 74HCT4052PW. 118 74LVC2G53DP. 125 74HC4052DB. 112 74HC4052PW. 112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB. 112 74HCT4052D. 112 74HCT4052DB. 112 74HCT4351D.112 74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZRL7

