High-Speed, Low-Voltage, 4 Ω, Dual SPST CMOS Analog Switches

Abstract

General Description The MAX4641/MAX4642/MAX4643 are monolithic, dual, single-pole/single-throw (SPST) switches that can operate from a single supply ranging from +1.8 V to +5.5 V . The MAX4641/MAX4642/MAX4643 provide low 4Ω on-resistance (RON), 0.6 R RON matching between channels, and 1Ω RON flatness over the entire analog signal range. These devices offer fast switching times of less than 20 ns while consuming less than $0.01 \mu \mathrm{~W}$ of quiescent power The MAX4641 has two normally open (NO) switches, and the MAX4642 has two normally closed (NC) switches. The MAX4643 has one NO switch and one NC switch. All three devices have low $0.35 n \mathrm{n}$ leakage currents over the entire temperature range. The MAX4641/ MAX4642/MAX4643 are available in small 8-pin μ MAX and 8-pin QFN packages.

Applications

Battery-Operated Equipment
Audio and Video Signal Routing
Low-Voltage Data-Acquisition Systems
Sample-and-Hold Circuits
Communications Circuits

Rail-to-Rail is a trademark of Nippon Motorola, Ltd.
Pin Configurations/Functional Diagrams/Truth Tables

Pin Configurations continued at end of data sheet.

High-Speed, Low-Voltage, 4 2 , Dual SPST CMOS Analog Switches

ABSOLUTE MAXIMUM RATINGS	
(All Voltages Referenced to GND)	
V+	-0.3V to +6V
IN_, COM_, NO_, NC_ (Note 1)..................-0.3V	-0.3V to (V+ + 0.3V)
Continuous Current (any terminal).	$\pm 20 \mathrm{~mA}$
Continuous Current (NO_, NC_, COM_)	$\pm 50 \mathrm{~mA}$
Peak Current (NO_, NC_, COM_, pulsed at 1 ms , 10\% duty cycle).	1 ms ,

tinuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
8-Pin μ MAX (derate $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above +70	
8 -Pin QFN (derate $24.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$	
Operating Temperature Range $. ~-~ 40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature. \qquad	
Storage Temperature Range-6	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	+300

Note 1: Signals on NO_, NC_, COM_, or IN_ exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +5V Supply

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}$ INH $=2.4 \mathrm{~V}, \mathrm{~V}$ INL $=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	VCOM_ VNO_, V_{NC}			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V} \\ & \mathrm{ICOM}_{-}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}_{-}} \\ & \text {or } \mathrm{V}_{\mathrm{NC}}^{-} \end{aligned}=0 \text { to } \mathrm{V}_{+} \text {. }$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2.5	4	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			5	
On-Resistance Match Between Channels (Notes 2, 8)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{V}+==4.5 \mathrm{~V}, \mathrm{ICOM}_{-}= \\ & 10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}} \text { or or } \\ & \mathrm{V}_{\mathrm{NC}_{-}}=0 \text { to } \mathrm{V}+ \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.2	0.6	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.8	
On-Resistance Flatness (Note 3)	RFLAT	$\begin{aligned} & \mathrm{V}++=4.5 \mathrm{~V}_{1} \mathrm{ICOM}_{-}= \\ & 10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}} \text { or or } \\ & \mathrm{V}_{\mathrm{NC}}^{-} \\ & =0 \text { to } \mathrm{V}_{+} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.85	1	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1.5	
NO_, NC_ Off-Leakage Current (Note 4)	$\begin{aligned} & \text { INO_(OFF), } \\ & \text { INC_(OFF) } \end{aligned}$	$\mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}^{-}=$ 1 V or $4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}^{-}=4.5 \mathrm{~V}$ or $\overline{1} \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.25	0.01	0.25	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.35		0.35	
COM_ Off-Leakage Current (Note 4)	ICOM_(OFF)	$\mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=$ 1 V or $4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}} \mathrm{C}_{-}=4.5 \mathrm{~V}$ or $\overline{1} \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.25	0.01	0.25	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.35		0.35	
COM_ On-Leakage Current (Notes 4, 5)	ICOM_(ON)	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{VCOM}_{-}= \\ & 1 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.25	0.01	0.25	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.35		0.35	
DIGITAL INPUTS							
IN_ Input Logic High	V_{IH}			2.4			V
IN_ Input Logic Low	VIL					0.8	V
IN_ Input Current	IIN	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0.8 \mathrm{~V}$ or 2.4 V		-0.1	0.005	0.1	$\mu \mathrm{A}$

High-Speed, Low-Voltage, 4 2 , Dual SPST CMOS Analog Switches

ELECTRICAL CHARACTERISTICS—Single +5 V Supply (continued)

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

ELECTRICAL CHARACTERISTICS—Single +3V Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V}$ INH $=2.0 \mathrm{~V}, \mathrm{~V} \operatorname{INL}=0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	VCOM_ $\mathrm{VNO}_{\mathrm{N}}$, V_{NC}			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{ICOM}_{-}= \\ & 10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}^{-} \text {or } \\ & \mathrm{V}_{\mathrm{NC}}^{-}=0 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		6	8	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			9	
On-Resistance Match Between Channels (Notes 2, 8)	$\Delta \mathrm{RON}$	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{ICOM}_{-}=$ $10 \mathrm{~mA}, \mathrm{VNO}$ or $\mathrm{V}_{\mathrm{NC}_{-}}=0$ to V_{+}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.2	0.6	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.8	
On-Resistance Flatness (Note 3)	Rflat	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{ICOM}_{-}= \\ & 10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}^{-} \text {or } \\ & \mathrm{V}_{\mathrm{NC}}=0 \end{aligned}=0 \text { to } \mathrm{V}_{+}-2$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.5	3.0	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			3.5	

High-Speed, Low-Voltage, 4 ${ }^{\text {, }}$, Dual SPST CMOS Analog Switches

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.0 \mathrm{~V}, \mathrm{~V} \operatorname{INL}=0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

Note 2: $\Delta \operatorname{RON}=\operatorname{RON}(M A X)-\operatorname{RON}(M I N)$.
Note 3: RON Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
Note 4: Guaranteed by design.
Note 5: On-Leakage performed with voltage applied to COM_, with NO_ and NC_ left floating.
Note 6: Off-Isolation = $20 \log _{10}\left(\mathrm{VO}_{-} / \mathrm{V}_{\mathrm{I}}\right)$, where VO_{O} is $\mathrm{V}_{\mathrm{COM}}$ and V_{I} is $\mathrm{V}_{N C_{-}}$or $\mathrm{V}_{N O}$ from the network analyzer.
Note 7: Crosstalk is measured between the two switches.
Note 8: RON and \triangle RON matching specifications for QFN-packaged parts are guaranteed by design.

High-Speed, Low-Voltage, 4 2 , Dual SPST CMOS Analog Switches

Typical Operating Characteristics
$\left(\mathrm{V}+=+5 \mathrm{~V}\right.$ or $+3 \mathrm{~V}, \mathrm{~V}_{\text {INH }}=\mathrm{V}+, \mathrm{V}_{\text {INL }}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

High-Speed, Low-Voltage, 4 ${ }^{\text {, }}$, Dual SPST CMOS Analog Switches

Typical Operating Characteristics (continued)

$\left(\mathrm{V}+=+5 \mathrm{~V}\right.$ or $+3 \mathrm{~V}, \mathrm{~V}_{\text {INH }}=\mathrm{V}+, \mathrm{V}_{\text {INL }}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Pin Description

PIN			NAME	FUNCTION
MAX4641	MAX4642	MAX4643		
1,5	-	-	NO1, NO2	Analog Switch Normally Open Terminals
-	1,5	-	NC1, NC2	Analog Switch Normally Closed Terminals
-	-	1	NO1	Analog Switch Normally Open Terminal
-	-	5	NC2	Analog Switch Normally Closed Terminal
2,6	2,6	2,6	COM1, COM2	Analog Switch Common Terminals
3,7	3,7	3,7	IN2, IN1	Logic-Controlled Inputs
4	4	4	GND	Ground
8	8	8	V+	Positive Supply Input. Bypass with a $0.1 \mu F$ capacitor to GND.

Note: NO_{-}, NC_{-}, and COM_{-}pins are identical and interchangeable. Signals can be passed through either side of these bidirectional switches. However, the typical off-capacitances differ, as shown in the Electrical Characteristics.

High-Speed, Low-Voltage, 4 2 , Dual SPST CMOS Analog Switches

Pin Configurations/Functional Diagrams/Truth Tables (continued)

Applications Information

Figure 1. Overvoltage Protection Using External Blocking Diodes

The MAX4641/MAX4642/MAX4643 operate from a single supply ranging from +1.8 V to +5.5 V . The devices are guaranteed to be functional over that supply range, but TTL/CMOS compatibility is only valid for operation using a +5 V supply. All voltage levels are referenced to GND. Positive and negative DC analog inputs or AC signals can be accommodated by shifting V+ and GND.
ESD-protection diodes are internally connected between each analog-signal pin and both V_{+}and GND. One of these diodes conducts if any analog signal
exceeds V+ or GND (Figure 1). Virtually all of the analog leakage current comes from the ESD diodes to V+ or GND. Although the ESD diodes on a given signal pin are identical, and therefore fairly well balanced, they are reverse biased differently. Each is biased by either V+ or GND and the analog signal. This means their leakages will vary as the signal varies. The difference in the two diode leakages to the $V+$ and GND pins constitutes the analog-signal-path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch terminal. This is why both sides of a given switch can show leakage currents of the same or opposite polarity.
There is no normal current path between the analogsignal paths and $V+$ or GND. $V+$ and GND also power the internal logic and logic-level translators. The logiclevel translators convert the logic level into switched V+ and GND signals to drive the analog signal gates.

High-Speed, Low-Voltage, 4 ${ }^{\text {, D, Dual SPST }}$ CMOS Analog Switches

$\mathrm{t}_{\mathrm{BBM}}=\mathrm{t}_{\mathrm{ON}\left(\mathrm{NO}_{-}\right)}-\mathrm{t}_{\mathrm{OFF}}\left(\mathrm{NC}_{-}\right)$
OR
$t_{\text {BBM }}=t_{\text {ON(NC_) }}-t_{\text {OFF(NO_) }}$
Figure 2. Switching Times

High-Speed, Low-Voltage, 4 ${ }^{\text {, D, Dual SPST }}$ CMOS Analog Switches

Figure 3. Off-Isolation, On-Loss, and Crosstalk

Figure 5. NO_, NC_, and COM_ Capacitance

Figure 4. Charge Injection

High-Speed, Low-Voltage, 4 ${ }^{\text {, }}$, Dual SPST CMOS Analog Switches

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118

