## MAX4684/MAX4685

## 0.5 $\Omega / 0.8 \Omega$ Low-Voltage, Dual SPDT Analog Switches in UCSP

## General Description

The MAX4684/MAX4685 low on-resistance (RON), lowvoltage, dual single-pole/double-throw (SPDT) analog switches operate from a single +1.8 V to +5.5 V supply. The MAX4684 features a $0.5 \Omega$ (max) RON for its NC switch and a $0.8 \Omega$ (max) $\mathrm{R}_{\mathrm{ON}}$ for its NO switch at a +2.7 V supply. The MAX4685 features a $0.8 \Omega$ max on-resistance for both NO and NC switches at a +2.7 V supply.
Both parts feature break-before-make switching action (2ns) with $\mathrm{t}_{\mathrm{ON}}=50 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{OFF}}=40 \mathrm{~ns}$ at +3 V . The digital logic inputs are 1.8 V logic-compatible with $\mathrm{a}+2.7 \mathrm{~V}$ to +3.3 V supply.
The MAX4684/MAX4685 are packaged in the chipscale package (UCSP) ${ }^{\mathrm{TM}}$, significantly reducing the required PC board area. The chip occupies only a $2.0 \mathrm{~mm} \times 1.50 \mathrm{~mm}$ area. The $4 \times 3$ array of solder bumps are spaced with a 0.5 mm bump pitch.

## Applications

- Speaker Headset Switching
- MP3 Players
- Power Routing
- Battery-Operated Equipment
- Relay Replacement
- Audio and Video Signal Routing
- Communications Circuits
- PCMCIA Cards
- Cellular Phones
- Modems


## Benefits and Features

- 12-Bump, 0.5mm-Pitch UCSP
- NC Switch RON
- $0.5 \Omega$ max (+2.7V Supply) (MAX4684)
- $0.8 \Omega$ max (+2.7V Supply) (MAX4685)
- NO Switch RON
- $0.8 \Omega$ max (+2.7V Supply)
- RON Match Between Channels
- $0.06 \Omega$ (max)
- RoN Flatness Over Signal Range
- $0.15 \Omega$ (max)
- +1.8 V to +5.5 V Single-Supply Operation
- Rail-to-Rail Signal Handling
- 1.8V Logic Compatibility
- Low Crosstalk: -68dB (100kHz)
- High Off-Isolation: $-64 \mathrm{~dB}(100 \mathrm{kHz})$
- THD: 0.03\%
- 50nA (max) Supply Current
- Low Leakage Currents
- $1 \mathrm{nA}(\max )$ at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

UCSP is a trademark of Maxim Integrated Products, Inc. $\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

Ordering Information appears at end of data sheet.

## 0.5 $/ 0.8 \Omega$ Low-Voltage, Dual SPDT Analog Switches in UCSP

## Absolute Maximum Ratings

(All Voltages Referenced to GND)
V+, IN_..............................................................-0.3V to +6V
COM_, NO_, NC_(Note1) ....................-0.3V to (V+ +0.3 V )
Continuous Current NO_, NC_, COM_.................. $\pm 300 \mathrm{~mA}$
Peak Current NO_, NC_, COM_-
(pulsed at $1 \mathrm{~ms}, 50 \%$ duty cycle) ................................ $\pm 400 \mathrm{~mA}$
Peak Current NO_, NC_, COM_
pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle) .................................. $\pm 500 \mathrm{~mA}$


Note 1: Signals on NO_, NC_, and COM_ exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.
Note 2: This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the device can be exposed to during board level solder attach and rework. This limit permits only the use of the solder profiles recommended in the industry-standard specification, JEDEC 020A, paragraph 7.6, Table 3 for IR/VPR and Convection reflow. Preheating is required. Hand or wave soldering is not allowed.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Package Information

| PACKAGE TYPE | PACKAGE CODE | DOCUMENT NO. |
| :---: | :---: | :---: |
| 12 UCSP | $\mathrm{B} 12-4$ | $\underline{21-0104}$ |
| 10 TDFN-EP | $\mathrm{T} 1033-1$ | $\underline{21-0137}$ |
| $10 \mu \mathrm{MAX}$ | $\mathrm{U} 10-2$ | $\underline{21-0061}$ |

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

## Electrical Characteristics-+3V Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at +3 V and $+25^{\circ} \mathrm{C}$. $)$ (Notes 3, 9, 10)

| PARAMETER | SYMBOL | CONDITIONS |  | TA | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH |  |  |  |  |  |  |  |  |
| Analog Signal Range | $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$, $\mathrm{V}_{\mathrm{COM}}$ |  |  | E | 0 |  | V+ | V |
| NC_On-Resistance (Note 4) | RON(NC) | $\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V} ; \mathrm{ICOM}_{\mathrm{CO}}=100 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NC}_{-}}=0 \text { to } \mathrm{V}+ \end{aligned}$ | MAX4684 | $+25^{\circ} \mathrm{C}$ |  | 0.3 | 0.5 | $\Omega$ |
|  |  |  |  | E |  |  | 0.5 |  |
|  |  |  | MAX4685 | $+25^{\circ} \mathrm{C}$ |  | 0.45 | 0.8 |  |
|  |  |  |  | E |  |  | 0.8 |  |
| NO_On-Resistance (Note 4) | Ron(NO) | $\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}+ \end{aligned}$ |  | $+25^{\circ} \mathrm{C}$ |  | 0.45 | 0.8 | $\Omega$ |
|  |  |  |  | E |  |  | 0.8 |  |
| On-Resistance Match Between Channels (Notes 4, 5) | $\Delta \mathrm{R}_{\mathrm{ON}}$ | $\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{COM}}^{-}=100 \mathrm{~mA} ; \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=1.5 \mathrm{~V} \end{aligned}$ |  | $+25^{\circ} \mathrm{C}$ |  |  | 0.06 | $\Omega$ |
|  |  |  |  | E |  |  | 0.06 |  |
| NC_On-Resistance Flatness (Note 6) | $\mathrm{R}_{\mathrm{FLAT}}(\mathrm{NC})$ | $\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NC}}=0 \text { to } \mathrm{V}+ \end{aligned}$ | MAX4684 | E |  |  | 0.15 | $\Omega$ |
|  |  |  | MAX4685 | E |  |  | 0.35 |  |
| NO_On-Resistance Flatness (Note 6) | RFLAT (NO) | $\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}+ \end{aligned}$ |  | E |  |  | 0.35 | $\Omega$ |

Electrical Characteristics-+3V Supply (continued)
$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at +3 V and $+25^{\circ} \mathrm{C}$.) (Notes 3, 9, 10)


Note 3: The algebraic convention used in this data sheet is where the most negative value is a minimum and the most positive value a maximum.
Note 4: Guaranteed by design.
Note 5: $\quad \Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}(\mathrm{MAX})}-\mathrm{R}_{\mathrm{ON}(\mathrm{MIN})}$, between NC1 and NC2 or between NO1 and NO2.
Note 6: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
Note 7: Leakage parameters are $100 \%$ tested at $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$, and guaranteed by correlation over rated temperature range.
Note 8: Off-isolation $=20 \log _{10}\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 9: UCSP and TDFN parts are $100 \%$ tested at $+25^{\circ} \mathrm{C}$ only and guaranteed by design and correlation at the full hot-rated temperature.
Note 10: $-40^{\circ} \mathrm{C}$ specifications are guaranteed by design.

## 0.5 $/$ /0.8 $\Omega$ Low-Voltage, Dual SPDT Analog Switches in UCSP

## Typical Operating Characteristics

( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)








NO ON-RESISTANCE vs. COM VOLTAGE


Typical Operating Characteristics (continued)
( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


Pin Configurations/Functional Diagrams/Truth Table


Pin Description

| NAME | PIN |  | FUNCTION |
| :---: | :---: | :---: | :--- |
|  | UCSP | $\mu$ MAX/TDFN |  |
| NC_ | A1, C1 | 5,7 | Analog Switch—Normally Closed Terminal |
| IN_ | A2, C2 | 4,8 | Digital Control Input |
| COM_ $_{-}$ | A3, C3 | 3,9 | Analog Switch—Common Terminal |
| NO_ $^{2}$ | A4, C4 | 2,10 | Analog Switch—Normally Open Terminal |
| V+ | B4 | 1 | Positive Supply Voltage Input |
| GND | B1 | 6 | Ground |
| EP | - | - | Exposed Pad. Connect EP to GND (for TDFN only.) |

## 0.5 $/ 0.8 \Omega$ Low-Voltage, Dual SPDT Analog Switches in UCSP

## Detailed Description

The MAX4684/MAX4685 are low on-resistance, lowvoltage, dual SPDT analog switches that operate from a +1.8 V to +5.5 V supply. The devices are fully specified for nominal 3V applications. The MAX4684/MAX4685 have break-before-make switching and fast switching speeds ( $\mathrm{t}_{\mathrm{ON}}=50 \mathrm{~ns}$ max, $\mathrm{t}_{\mathrm{OFF}}=40 \mathrm{~ns}$ max).
The MAX4684 offers asymmetrical normally closed (NC) and normally open (NO) $\mathrm{R}_{\mathrm{ON}}$ for applications that require asymmetrical loads (examples include speaker headsets and internal speakers). The part features a $0.5 \Omega$ max $\mathrm{R}_{\mathrm{ON}}$ for its NC switch and a $0.8 \Omega$ max RON for its NO switch at the 2.7 V supply. The MAX4685 features a $0.8 \Omega$ max on-resistance for both NO and NC switches at the +2.7 V supply.

## Applications Information

## Digital Control Inputs

The MAX4684/MAX4685 logic inputs accept up to +5.5 V regardless of supply voltage. For example, with a +3.3 V supply, IN_ may be driven low to GND and high to 5.5 V . Driving $I \bar{N}_{\text {_ }}$ rail-to-rail minimizes power consumption. Logic levels for a +1.8 V supply are 0.5 V (low) and 1.4 V (high).

## Analog Signal Levels

Analog signals that range over the entire supply voltage (V+ to GND) are passed with very little change in onresistance (see Typical Operating Characteristics). The switches are bidirectional, so the NO_, NC_, and COM_ pins can be either inputs or outputs.

## Power-Supply Sequencing and Overvoltage Protection

Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to devices.
Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals, especially if the analog signal is not current limited. If this sequencing is not possible, and if the analog inputs are not current limited to $<20 \mathrm{~mA}$, add a small signal diode (D1) as shown in Figure 1. Adding a protection diode reduces the analog range to a diode drop (about 0.7 V ) below $\mathrm{V}+$ (for D 1 ). RON increases slightly at low
supply voltages. Maximum supply voltage ( $\mathrm{V}+$ ) must not exceed +6 V . Protection diode D1 also protects against some overvoltage situations. No damage will result on Figure 1's circuit if the supply voltage is below the absolute maximum rating applied to an analog signal pin.

## UCSP Package Consideration

For general UCSP package information and PC layout considerations, please refer to the Maxim Application Note (Wafer-Level Ultra-Chip-Board-Scale Package).

## UCSP Reliability

The chip-scale package (UCSP) represents a unique packaging form factor that may not perform equally to a packaged product through traditional mechanical reliability tests. UCSP reliability is integrally linked to the user's assembly methods, circuit board material, and usage environment. The user should closely review these areas when considering use of a UCSP package. Performance through Operating Life Test and Moisture Resistance remains uncompromised as it is primarily determined by the wafer-fabrication process.
Mechanical stress performance is a greater consideration for a UCSP package. UCSPs are attached through direct solder contact to the user's PC board, foregoing the inherent stress relief of a packaged product lead frame. Solder joint contact integrity must be considered. Information on Maxim's qualification plan, test data, and recommendations are detailed in the UCSP application note, which can be found on Maxim's website at www.maximintegrated.com.


Figure 1. Overvoltage Protection Using Two External Blocking Diodes

Test Circuits/Timing Diagrams


Figure 2. Switching Time


Figure 3. Break-Before-Make Interval


Figure 4. Charge Injection

## 0.5 $/$ /0.8 $\Omega$ Low-Voltage, Dual SPDT Analog Switches in UCSP

## Test Circuits/Timing Diagrams (continued)



OFF-ISOLATION $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$ ON-LOSS $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$ CROSSTALK $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$

MEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT IC TERMINALS.
OFF-ISOLATION IS MEASURED BETWEEN COM_ AND "OFF" NO_ OR NC_ TERMINAL ON EACH SWITCH.
ON-LOSS IS MEASURED BETWEEN COM_ AND "ON" NO_ OR NC_ TERMINAL ON EACH SWITCH.
CROSSTALK IS MEASURED FROM ONE CHANNEL TO ALL OTHER CHANNELS.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.
Figure 5. On-Loss, Off-Isolation, and Crosstalk


Figure 6. Channel Off/On-Capacitance

## Ordering Information

| PART | TEMP RANGE | PIN/BUMPPACKAGE | TOP MARK |
| :---: | :---: | :---: | :---: |
| MAX4684EBC+T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 12 UCSP* | AAF |
| MAX4684ETB+T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 10 TDFN-EP** | AAG |
| MAX4684EUB+T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $10 \mu \mathrm{MAX}^{\circledR}$ |  |
| MAX4684AEBC+T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 12 UCSP* | AEJ |
| MAX4685EBC+T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 12 UCSP* | AAG |
| MAX4685ETB+T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 10 TDFN-EP | AAH |
| MAX4685EUB+T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $10 \mu \mathrm{MAX}$ |  |

+Denotes a lead(Pb)-free/RoHS-compliant package.
Note: Requires special solder temperature profile described in the Absolute Maximum Ratings section.
*UCSP reliability is integrally linked to the user's assembly methods, circuit board material, and environment. Refer to the UCSP Reliability Notice in the UCSP Reliability section of this data sheet for more information.
${ }^{* *} E P=$ Exposed Pad
$T=$ Tape and reel.
Chip Information
PROCESS: BiCMOS

## 0.5 $/ 0.8 \Omega$ Low-Voltage, Dual SPDT Analog Switches in UCSP

## Revision History

| REVISION <br> NUMBER | REVISION <br> DATE | DESCRIPTION | PAGES <br> CHANGED |
| :---: | :---: | :--- | :---: |
| 3 | $2 / 03$ | Added TDFN packaging, noted parts are now UCSP qualified | - |
| 4 | $1 / 09$ | Added lead-free packaging and exposed pad note | $1,2,6-9$ |
| 5 | $10 / 19$ | Updated the Electrical Characteristics table and added MAX4684AEBC+T to the <br> Ordering Information table | 3,9 |

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118

