Fault-Protected, Single 8-to-1/ Dual 4-to-1 Multiplexers

General Description

The MAX4708/MAX4709 8-to-1 and dual 4-to-1 fault-protected multiplexers are pin compatible with the industrystandard DG508/DG509. The MAX4708/MAX4709 are similar to the MAX4508/MAX4509, but these devices do not have clamp diodes to the supply rails on the switch outputs. These multiplexers feature fault-protected inputs, rail-to-rail signal-handling capability, and do not require power-supply sequencing.

Both devices offer $\pm 40 \mathrm{~V}$ overvoltage protection with the supplies off, $\pm 36 \mathrm{~V}$ protection with the supplies on, and feature 400Ω (max) on-resistance with 15Ω (max) matching between channels. The MAX4708/MAX4709 operate with dual supplies of $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ or a single supply of +9 V to +36 V . All digital inputs have TTL logiccompatible thresholds, ensuring both TTL and CMOS logic compatibility when using a single +12 V supply or dual $\pm 15 \mathrm{~V}$ supplies.

For low-voltage applications requiring fault protection, refer to the MAX4711/MAX4712/MAX4713 data sheet.

Applications

Data-Acquisition Systems
Industrial and Process Control
Avionics
Signal Routing
Redundancy/Backup Systems
ATE Systems
Hot Swap

Features

- No Power-Supply Sequencing Required
- All Channels Off with Power Off
- Rail-to-Rail Signal Handling
- 400 (max) On-Resistance
- $\pm 40 \mathrm{~V}$ Fault Protection with Power Off
- $\pm 25 \mathrm{~V}$ Fault Protection with $\pm 15 \mathrm{~V}$ Supplies
- 100ns Fault-Response Time
- $\pm 4.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ Dual Supplies
- +9V to +36V Single Supply
- TTL/CMOS-Compatible Logic Inputs

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4708ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX4708EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX4708EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4709ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX4709EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX4709EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP

Pin Configurations/Functional Diagrams

Pin Configurations/Functional Diagrams continued at end of data sheet

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Fault-Protected, Single 8-to-1/
 Dual 4-to-1 Multiplexers

ABSOLUTE MAXIMUM RATINGS

(All Voltages Referenced to GND)	
	-0.3V to +44.0V
V-	-44.0V to +0.3 V
V+ to V-	-0.3V to +44.0V
COM_, A_, EN (Note 1)	$(\mathrm{V}++0.3 \mathrm{~V})$ to ($\mathrm{V}--0.3 \mathrm{~V}$)
NO	(V+-40V) to (V-+40V)
NO_ to COM_	-36 V to +36V
NO_ Voltage with Switch Power On	-30 V to +30V
NO_Voltage with Switch Power Off	-40 V to +40 V
Continuous Current into any Terminal $\pm 30 \mathrm{~mA}$
Peak Current into any Terminal (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)	$\pm 100 \mathrm{~mA}$

	(issipation ($\mathrm{T}_{\text {A }}=+70{ }^{\text {C }}$)
	16 Narrow SO (derate $8.70 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)696mW
	16 Plastic DIP (derate $10.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots . . .842 \mathrm{~mW}$
	16 Wide SO (derate $9.52 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).......... 762 mW
	Operating Temperature Range
	MAX4708E_ E/MAX4709E_E-40 ${ }^{\circ} \mathrm{C}$ to +85
	Junction Temperature ... $+150^{\circ} \mathrm{C}$
	Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
	Lead Temperature (soldering, 10s)+300

Note 1: COM_, EN, and A_{-}pins are not fault protected. Signals on COM_ EN, or A_{-}exceeding $V+$ or V - are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}} \mathrm{H}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}} \mathrm{L}=+0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to T_{MAX}, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH								
Fault-Free Analog Signal Range	V_{NO}	(Notes 3, 4)		E	V-		V+	V
On-Resistance	Ron	$\mathrm{V}_{\mathrm{COM}_{-}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}_{-}}=0.2 \mathrm{~mA}$		$+25^{\circ} \mathrm{C}$		300	400	Ω
				E			500	
On-Resistance Match Between Channels	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}_{-}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}_{-}}=0.2 \mathrm{~mA} \\ & (\text { Note 5) } \end{aligned}$		$+25^{\circ} \mathrm{C}$			15	Ω
				E			20	
NO_Off-Leakage Current	INO_(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}^{-} \\ & = \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}_{-}}= \pm 10 \mathrm{~V} \\ & (\text { Note } 6) \end{aligned}$		$+25^{\circ} \mathrm{C}$	-0.5		+0.5	nA
				E	-5		+5	
COM_ Off-Leakage Current	ICOM_(OFF)	$\begin{aligned} & V_{\text {COM }_{-}}= \pm 10 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NO_ }}= \pm 10 \mathrm{~V} \\ & \text { (Note 6) } \end{aligned}$	MAX4708	$+25^{\circ} \mathrm{C}$	-2		+2	nA
				E	-20		+20	
			MAX4709	$+25^{\circ} \mathrm{C}$	-1		+1	
				E	-10		+10	
COM_ On-Leakage Current	ICOM_(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}= \pm 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}}= \pm 10 \mathrm{~V} \text {, or } \\ & \text { floating (Note 6) } \end{aligned}$	MAX4708	$+25^{\circ} \mathrm{C}$	-2		+2	nA
				E	-25		+25	
			MAX4709	$+25^{\circ} \mathrm{C}$	-1		+1	
				E	-15		+15	

Fault-Protected, Single 8-to-1/ Dual 4-to-1 Multiplexers

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}_{-}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}_{-} \mathrm{L}}=+0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		TA	MIN	TYP	MAX	UNITS
FAULT PROTECTION								
Fault-Protected Analog Signal	V_{NO}	Power on		$+25^{\circ} \mathrm{C}$	-25		+25	V
Range (Notes 3, 4)		Power off			-40		+40	
COM_ Output Leakage Current, Supplies On	ICOM_	$\mathrm{V}_{\text {NO_ }}= \pm 25, \mathrm{~V}_{\mathrm{EN}}=0$		$+25^{\circ} \mathrm{C}$	-1		+1	$\mu \mathrm{A}$
				E	-10		+10	
NO_ Input Leakage Current, Supplies On	INO_	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-}}= \pm 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}= \pm 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EN}}=0 \end{aligned}$		$+25^{\circ} \mathrm{C}$	-1		+1	$\mu \mathrm{A}$
				E	-10		+10	
NO_ Input Leakage Current, Supplies Off	INO_	$\begin{aligned} & \mathrm{V}_{\text {NO_ }}= \pm 40 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0, \\ & \mathrm{~V}+=0, \mathrm{~V}-=0 \end{aligned}$		$+25^{\circ} \mathrm{C}$	-1		+1	$\mu \mathrm{A}$
				E	-10		+10	
Fault-Trip Threshold				E	$\begin{gathered} \text { V- } \\ -0.4 \end{gathered}$		$\begin{gathered} V_{+} \\ +0.4 \end{gathered}$	V
\pm Fault Output Turn-Off Delay		$R \mathrm{~L}=10 \mathrm{k} \Omega, \mathrm{V}_{\text {NO_ }}= \pm 25 \mathrm{~V}$		$+25^{\circ} \mathrm{C}$	100			ns
\pm Fault Recovery Time		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\text {NO_ }}= \pm 25 \mathrm{~V}$		$+25^{\circ} \mathrm{C}$	1.5			$\mu \mathrm{s}$
LOGIC INPUT ($\mathrm{V}_{\text {EN }}, \mathrm{V}_{\mathrm{A}}$)								
Logic Threshold High	V_{IH}			E	2.4			V
Logic Threshold Low	VIL			E			0.8	V
Input Leakage Current	IIN	$\mathrm{V}_{\mathrm{A}_{-}}=0.8 \mathrm{~V}$ or 2.4 V		E	-1		+1	$\mu \mathrm{A}$
SWITCH DYNAMIC CHARACTERISTICS								
Enable Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF}, \text { Figure } 3(\text { Note } 7) \end{aligned}$		$+25^{\circ} \mathrm{C}$		160	275	ns
				E			400	
Enable Turn-Off Time	tOFF	$\begin{aligned} & V_{N O}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \text { Figure } 3(\text { Note } 7) \end{aligned}$		$+25^{\circ} \mathrm{C}$		120	200	ns
				E			250	
Transition Time	ttrans	$R_{L}=1 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF},$ Figure 2 (Note 7)		$+25^{\circ} \mathrm{C}$		170	350	ns
				E			500	
Settling Time	tSETT	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	0.1\%	E		1		$\mu \mathrm{s}$
			0.01\%			2.5		
Break-Before-Make Time Delay	tBBM	$\mathrm{V}_{\mathrm{NO}_{-}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, Figure 4 (Note 4)		E	10	80		ns
Charge Injection	Q	$\mathrm{V}_{\mathrm{NO}_{-}}=0, \mathrm{RS}_{\mathrm{S}}=0, \mathrm{CL}_{\mathrm{L}}=1.0 \mathrm{nF},$ Figure 5		$+25^{\circ} \mathrm{C}$		0		pC
Off-Isolation	VISO	$\begin{aligned} & f=1 \mathrm{MHz}, V_{N O_{-}}=1 V_{\mathrm{RMS}}, R_{\mathrm{L}}=75 \Omega, \\ & \left.C_{L}=15 \mathrm{pF}, \text { Figure } 6 \text { (Note } 8\right) \end{aligned}$		$+25^{\circ} \mathrm{C}$		-70		dB

Fault-Protected, Single 8-to-1/
 Dual 4-to-1 Multiplexers

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)
$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}_{-}} \mathrm{H}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}} \mathrm{L}=+0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		TA	MIN	TYP	MAX	UNITS
Channel-to-Channel Crosstalk	$V_{C T}$	$\begin{aligned} & f=1 \mathrm{MHz}, V_{N O}=1 V_{\mathrm{RMS}}, R_{L}=75 \Omega, \\ & C_{L}=15 \mathrm{pF}, \text { Figure } 7(\text { Note } 9) \end{aligned}$		$+25^{\circ} \mathrm{C}$		-62		dB
NO_ Off-Capacitance	CN_(OFF)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 8		$+25^{\circ} \mathrm{C}$		10		pF
COM_ Off-Capacitance	CCOM_(OFF)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 8	MAX4708	$+25^{\circ} \mathrm{C}$		19		pF
			MAX4709			14		
COM_ On-Capacitance	CCOM_(ON)	$f=1 \mathrm{MHz}$, Figure 8	MAX4708	$+25^{\circ} \mathrm{C}$		28		pF
			MAX4709			22		
POWER SUPPLY								
Power-Supply Range	V+, V-			E	± 4.5		± 20.0	V
V+ Supply Current	I+	$\begin{aligned} & \text { All } \mathrm{V}_{\mathrm{A}_{-}}=0 \text { or } 5 \mathrm{~V}, \mathrm{~V}_{\text {NO_ }}=0, \\ & \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V} \end{aligned}$		$+25^{\circ} \mathrm{C}$		370	525	$\mu \mathrm{A}$
				E			750	
V- Supply Current	I-	$\begin{aligned} & \text { All } \mathrm{V}_{\mathrm{A}_{-}}=0 \text { or } 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}_{-}}=0, \\ & \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V} \end{aligned}$		$+25^{\circ} \mathrm{C}$		200	300	$\mu \mathrm{A}$
				E			400	
GND Supply Current	IGND	$\begin{aligned} & \text { All } \mathrm{V}_{\mathrm{A}_{-}}=0 \text { or } 5 \mathrm{~V}, \mathrm{~V}_{\text {NO_ }}=0, \\ & \mathrm{~V}_{\text {EN }}=5 \mathrm{~V} \end{aligned}$		$+25^{\circ} \mathrm{C}$		200	300	$\mu \mathrm{A}$
				E			500	

ELECTRICAL CHARACTERISTICS—Single +12V Supply

$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}-=0, \mathrm{~V}_{\mathrm{A}_{-} \mathrm{H}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A} _} \mathrm{L}=+0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH								
Fault-Free Analog Signal Range	V_{NO}	Power on or off (Note 3)		E	-0.3		V+	V
On-Resistance	Ron	$\mathrm{V}_{\text {COM }}=10 \mathrm{~V}, \mathrm{INO}_{-}=0.2 \mathrm{~mA}$		$+25^{\circ} \mathrm{C}$		630	950	Ω
				E			1100	
On-Resistance Match Between Channels	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{\text {COM }}^{-}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}_{-}}=0.2 \mathrm{~mA} \\ & (\text { Note } 5) \end{aligned}$		$+25^{\circ} \mathrm{C}$		10	35	Ω
				C, E			50	
NO_ Off-Leakage Current	INO_(OFF)	$\begin{aligned} & \mathrm{V}_{\text {COM }}^{-}=10 \mathrm{~V}, 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}_{-}}=1 \mathrm{~V}, 10 \mathrm{~V} \\ & (\text { Notes } 6,10) \end{aligned}$		$+25^{\circ} \mathrm{C}$	-0.5	0.01	+0.5	nA
				E	-10		+10	
COM_ Off-Leakage Current	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{\text {COM }}=10 \mathrm{~V}, 1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}, 10 \mathrm{~V} \\ & (\text { Notes } 6,10) \end{aligned}$	MAX4708	$+25^{\circ} \mathrm{C}$	-2		+2	nA
				E	-20		+20	
			MAX4709	$+25^{\circ} \mathrm{C}$	-1		+1	
				E	-10		+10	

Fault-Protected, Single 8-to-1/ Dual 4-to-1 Multiplexers

ELECTRICAL CHARACTERISTICS—Single +12V Supply (continued)

$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}_{-}=0, \mathrm{~V}_{\mathrm{A}} \mathrm{H}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A} _} \mathrm{L}=+0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		TA	MIN	TYP	MAX	UNITS
COM_ On-Leakage Current	ICOM_(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=10 \mathrm{~V}, 1 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}}^{-}=10 \mathrm{~V}, 1 \mathrm{~V}, \text { or } \\ & \text { floating (Notes } 6,10) \end{aligned}$	MAX4708	$+25^{\circ} \mathrm{C}$	-2		+2	nA
				E	-25		+25	
			MAX4709	$+25^{\circ} \mathrm{C}$	-1		+1	
				E	-15		+15	
FAULT PROTECTION								
Fault-Protected Analog Signal	VNO_	Power on		E	-36		+36	V
Range (Notes 3, 10)		Power off			-40		+40	
COM_ Output Leakage Current, Supplies On	ICOM_	$\mathrm{V}_{\mathrm{NO}}= \pm 36 \mathrm{~V}, \mathrm{~V}+=12 \mathrm{~V}$ (Notes 3, 10)		$+25^{\circ} \mathrm{C}$	-1		+1	$\mu \mathrm{A}$
				E	-10		+10	
NO_ Input Leakage Current, Supplies On	INO_	$\begin{aligned} & V_{\mathrm{NO}_{-}}= \pm 36 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=0, \\ & \mathrm{~V}_{+}=12 \mathrm{~V}(\text { Notes } 3,10) \end{aligned}$		$+25^{\circ} \mathrm{C}$	-1		+1	$\mu \mathrm{A}$
				E	-10		+10	
NO_ Input Leakage Current, Supply Off	INO_	$\mathrm{V}_{\mathrm{NO}_{-}}= \pm 40 \mathrm{~V}, \mathrm{~V}+=0, \mathrm{~V}-=0$ (Notes 3, 10)		$+25^{\circ} \mathrm{C}$	-1		+1	$\mu \mathrm{A}$
				E	-10		+10	
LOGIC INPUT ($\mathrm{V}_{\text {EN }}, \mathrm{V}_{\mathrm{A}}$)								
Logic Threshold High	V_{IH}			E	2.4			V
Logic Threshold Low	VIL			E			0.8	V
Input Leakage Current	IIN	$\mathrm{V}_{\mathrm{A}_{-}}=0.8 \mathrm{~V}$ or 2.4 V		E	-1	0.03	+1	$\mu \mathrm{A}$
SWITCH-DYNAMIC CHARACTERISTICS								
Enable Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}^{-}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \text { Figure } 3(\text { Note } 7) \end{aligned}$		$+25^{\circ} \mathrm{C}$		240	500	ns
				E			700	
Enable Turn-Off Time	tOFF	$V_{C O M}=10 \mathrm{~V}, R_{L}=2 \mathrm{k} \Omega$, $C_{L}=35 p F$, Figure 3 (Note 7)		$+25^{\circ} \mathrm{C}$		100	250	ns
				E			350	
Transition Time	ttrans	$R_{L}=2 k \Omega, C_{L}=35 p F$, Figure 2 (Note 7)		$+25^{\circ} \mathrm{C}$		180	400	ns
				E			600	
Settling Time	tSETT	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	0.1\%	E		1		$\mu \mathrm{S}$
			0.01\%			2.5		
Break-Before-Make Time Delay	tBBM	$V_{C O M}=10 \mathrm{~V}, R_{L}=2 k \Omega$, Figure 4 (Note 4)		$+25^{\circ} \mathrm{C}$	50	100		ns
Charge Injection	Q	$\mathrm{V}_{\mathrm{NO}}{ }^{=}=0, R S=0, \mathrm{CL}_{\mathrm{L}}=1.0 \mathrm{nF}$, Figure 5		$+25^{\circ} \mathrm{C}$		2		pC
NO_ Off-Capacitance	CNO_(OFF)	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {NO_ }}=0$, Figure 8		$+25^{\circ} \mathrm{C}$		5		pF
COM_ Off-Capacitance	CCOM_(OFF)	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {NO_ }}=0$, Figure 8		$+25^{\circ} \mathrm{C}$		5		pF
COM_ On-Capacitance	CCOM_(ON)	$f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{COM}}^{-}=\mathrm{V}_{\mathrm{NO}_{-}}=0,$ Figure 8		$+25^{\circ} \mathrm{C}$		28		pF

Fault-Protected, Single 8-to-1/
 Dual 4-to-1 Multiplexers

ELECTRICAL CHARACTERISTICS-Single +12V Supply (continued)

$\left(\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}_{-}=0, \mathrm{~V}_{\mathrm{A}-\mathrm{H}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}} \mathrm{L}=+0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
Off-Isolation	VISO	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}}, R_{\mathrm{L}}= \\ & \left.75 \Omega, C_{L}=15 \mathrm{pF} \text {, Figure } 6 \text { (Note } 8\right) \end{aligned}$	$+25^{\circ} \mathrm{C}$		-70		dB
Channel-to-Channel Crosstalk	$V_{C T}$	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}= \\ & \left.75 \Omega, \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}, \text { Figure } 7 \text { (Note } 9\right) \end{aligned}$	$+25^{\circ} \mathrm{C}$		-62		dB
POWER SUPPLY							
Power-Supply Range	V+		E	9		36	V
V+ Supply Current	I+	All $\mathrm{V}_{\mathrm{A}_{-}}=\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}, \mathrm{~V}_{\text {NO_- }}=0$	$+25^{\circ} \mathrm{C}$		180	300	$\mu \mathrm{A}$
			E			450	
		$\begin{aligned} & \text { All } \mathrm{V}_{\mathrm{A}_{-}}=0 \text { or } \mathrm{V}_{+}, \mathrm{V}_{\mathrm{NO}_{-}}=0, \mathrm{~V}_{\mathrm{EN}}= \\ & 0 \text { or } \mathrm{V}_{+} \end{aligned}$	$+25^{\circ} \mathrm{C}$		112	250	
			E			375	

Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 3: NO_ pins are fault protected and COM_ pins are not fault protected. The max input voltage on NO_ pins depends on the COM_ load configuration. Generally, the max input voltage is $\pm 36 \mathrm{~V}$ with $\pm 15 \mathrm{~V}$ supplies and a load referred to ground. For more detailed information, see the NO_ Input Voltage section.
Note 4: Guaranteed by design and not production tested.
Note 5: $\quad \Delta$ RON $^{2}=$ RON(MAX) $-\operatorname{RON}_{\text {OMIN }}$).
Note 6: Leakage parameters are 100% tested at the maximum rated hot temperature and guaranteed by correlation at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$.
Note 7: Dynamic testing is 100\% functionally tested on the ATE system and correlated with the initial design characterization per Figures 2 and 3 .
Note 8: Off-Isolation $=20 \times \log _{10}\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}_{-}}\right)$, where $\mathrm{V}_{\mathrm{COM}}=$ output and $\mathrm{V}_{\mathrm{NO}}=$ input to open switch.
Note 9: Between any two analog inputs.
Note 10: Guaranteed by testing with dual supplies.

Typical Operating Characteristics

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Fault-Protected, Single 8-to-1/ Dual 4-to-1 Multiplexers

Typical Operating Characteristics (continued)

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Fault-Protected, Single 8-to-1/ Dual 4-to-1 Multiplexers

$\left(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

INPUT OVERVOLTAGE vs. OUTPUT VOLTAGE

Typical Operating Characteristics (continued)

INPUT OVERVOLTAGE vs. OUTPUT VOLTAGE

FAULT RESPONSE TIME (POSITIVE INPUT)

FAULT CURRENT vs. FAULT VOLTAGE (SINGLE SUPPLY)

FAULT RECOVERY TIME (POSITIVE INPUT)

FAULT RESPONSE TIME (NEGATIVE INPUT)

100ns/div

Fault-Protected, Single 8-to-1/ Dual 4-to-1 Multiplexers

Pin Descriptions
MAX4708 (Single 8-to-1 Mux)

PIN	NAME	FUNCTION
1	A0	Address Bit 0
2	EN	Mux Enable
3	V-	Negative Supply Voltage. Bypass to GND with a 0.1 $\mu \mathrm{F}$ capacitor.
4	NO1	Channel Input 1
5	NO2	Channel Input 2
6	NO3	Channel Input 3
7	NO4	Channel Input 4
8	COM	Analog Output
9	NO8	Channel Input 8
10	NO7	Channel Input 7
11	NO6	Channel Input 6
12	NO5	Channel Input 5
13	V+	Positive Supply Voltage. Bypass to GND with a 0.1 $\mu \mathrm{F}$ capacitor.
14	GND	Ground
15	A2	Address Bit 2
16	A1	Address Bit 1

MAX4709 (Dual 4-to-1 Mux)

PIN	NAME	FUNCTION
1	A0	Address Bit 0
2	EN	Mux Enable
3	V-	Negative Supply Voltage. Bypass to GND with a 0.1 μ F capacitor.
4	NO1A	Channel Input 1A
5	NO2A	Channel Input 2A
6	NO3A	Channel Input 3A
7	NO4A	Channel Input 4A
8	COMA	Mux Output A
9	COMB	Mux Output B
10	NO4B	Channel Input 4B
11	NO3B	Channel Input 3B
12	NO2B	Channel Input 2B
13	NO1B	Channel Input 1B
14	V+	Positive Supply Voltage. Bypass to GND with a 0.1 μ F capacitor.
15	GND	Ground
16	A1	Address Bit 1

Truth Tables

MAX4708 (Single 8-to-1 Mux)

$\mathbf{A 2}$	A1	A0	EN	ON SWITCH
X	X	X	0	None
0	0	0	1	NO1
0	0	1	1	NO2
0	1	0	1	NO3
0	1	1	1	NO4
1	0	0	1	NO5
1	0	1	1	NO6
1	1	0	1	NO7
1	1	1	1	NO8

$X=$ Don't care.

MAX4709 (Dual 4-to-1 Mux)

A1	A0	EN	COMA	COMB
X	X	0	None	None
0	0	1	NO1A	NO1B
0	1	1	NO2A	NO2B
1	0	1	NO3A	NO3B
1	1	1	NO4A	NO4B

Fault-Protected, Single 8-to-1/
 Dual 4-to-1 Multiplexers

Abstract

Detailed Description Several unique features differentiate the MAX4708/ MAX4709 from traditional fault-protected multiplexers. First, instead of the three series FETs utilized in older designs, the MAX4708/MAX4709 design employs two parallel FETs for lower on-resistance and improved flatness. Second, older devices limited the range of signal amplitudes the switch could pass by as much as 3 V below the supply rails. The MAX4708/MAX4709 feature rail-to-rail signal handling that allows the devices to transmit signals with amplitudes at or slightly beyond the supply rails. Finally, in former designs (MAX4508/ MAX4509), when a fault occurred, the devices clamped and held the output voltage at the appropriate supply rail until the fault was removed. Instead, the MAX4708/MAX4709 now disconnect COM_ from NO_ during a fault condition, making COM_ a high-impedance output as long as the fault is present. Operation is identical for both positive and negative fault polarities.

When the NO_ voltage ranges beyond supply rails (fault condition), the NO_ input becomes high impedance, regardless of the switch state or load resistance. If power is removed, and the fault voltage is still present, the NO_ terminals remain high impedance. The fault voltage can be up to $\pm 40 \mathrm{~V}$, with $\mathrm{V}+=\mathrm{V}-=0$.
The COM_ pins are not fault protected. Limit any voltage sources connected to COM_ to the supply rails.
Figure 1 shows the internal construction of a single normally open (NO) switch, with the analog signal paths shown in bold. The parallel combination of N -channel FET N1 and P-channel FET P1 form the analog switch. During normal operation, these FETs are driven on and off simultaneously according to the control voltages on A_. During a fault condition, both FETs turn off.

NO_ Input Voltage

The maximum allowable input voltage for safe operation depends on whether supplies are on or off, and the load configuration on COM_. If COM_ is referred to a voltage other than ground, but within the supplies, V_{NO} can range higher or lower than the supplies, provided the absolute value of $\mathrm{IV}_{\mathrm{NO}} \mathrm{N}_{-}-\mathrm{V}_{\text {COM }} \mathrm{I}$ is less than 40 V .
For example, with $\mathrm{V}_{+}=\mathrm{V}-=0$, if the load is referred to +10 V at COM_{-}, then the NO_{-}voltage range can be from +50 V to -30 V . If the supplies are $\pm 15 \mathrm{~V}$ and $\mathrm{COM} _$is referenced to ground through a load, the maximum $\overline{\mathrm{N}}$ _ voltage is $\pm 36 \mathrm{~V}$. If the supplies are off and the COM output is referenced to ground, the maximum NO _ voltage is $\pm 40 \mathrm{~V}$.

Normal Operation

Two comparators continuously compare the voltage on NO_ with $\mathrm{V}+$ and V - supply voltages. When the signal
on NO_{-}ranges between $\mathrm{V}+$ and V -, the multiplexer operates normally, with FETs N1 and P1 turning on and off in response to the control signals on A_ (Figure 1). When the switch state is on, the parallel combination of N1 and P1 forms a low-value resistor between NO_ and COM_ so that signals pass equally well in either direction. When the switch state is off, both NO_{-}and COM_ are high-impedance inputs.

Fault Conditions

A fault condition occurs when the voltage at any NO_{-} input exceeds the supply rail. At this point, the output of one of the two fault comparators goes high, effectively turning OFF both FETs N1 and P1. With the two FETs in the OFF position, both the switch input (NO_) and the output (COM_) go into a high-impedance state. They remain high impedance regardless of the state of the control voltages in A_{-}and $E N$, until the fault is removed. The input voltage must not exceed the absolute maximum rating at any moment (see the Absolute Maximum Ratings section).
A fault condition on the selected channel drives COM_{-} to a high-impedance state. However, the fault condition does not affect the performance of other channels. Therefore, while the selected channel is in fault condition, selecting another channel or operating under normal condition, drives COM_ out of high impedance.

Transient Fault Condition

When a fast rising or falling transient on NO_ exceeds $\mathrm{V}+$ or V -, there is a 100 ns delay before the fault protection turns on (see the Typical Operating Characteristics, Fault Response Time). COM_ follows NO_ until the fault protection turns on. This delay is due to the switch on-resistance and circuit capacitance to ground. When the input transient returns to within the supply rails, there is a longer output recovery time (see the Typical Operating Characteristics, Fault Response Times). These values depend on the COM_ output resistance and capacitance. Higher COM_ output resistance and capacitance increase the recovery times. The delays do not depend on the fault amplitude.

COM and A-

The GND, COM_, and A_{-}pins are not fault protected. ESD-protection diodes internally connect A_{-}to both V_{+} and V -. If a signal on GND, COM_, or A_{-}exceeds V + or V - by more than 300 mV , excessive current can flow to or from the supplies, possibly damaging the device.

Logic-Level Thresholds

The logic-level thresholds are CMOS and TTL compatible with $\mathrm{V}+=+15 \mathrm{~V}$ and $\mathrm{V}-=-15 \mathrm{~V}$. Logic levels change as $\mathrm{V}+$ increases (see the Typical Operating Characteristics, Logic-Level Threshold Voltage vs. Supply Voltage.)

Fault-Protected, Single 8-to-1/ Dual 4-to-1 Multiplexers

Applications Information

Ground

V+ and GND power the internal logic and logic-level translators. The logic-level translators convert the logic-level inputs to $V+$ and V - to drive the gates of the internal FETs. In this design, there is no galvanic connection inside the MAX4708/MAX4709 between the analog signal paths and GND. ESD-protection diodes connect $\mathrm{A} _$to $\mathrm{V}+$ and V -.

Supply Current Reduction

Driving the logic signals rail-to-rail from 0 to +15 V or -15 V to +15 V reduces the current consumption from $370 \mu \mathrm{~A}$ (typ) to $200 \mu \mathrm{~A}$ (typ) (see the Electrical Characteristics table, Power Supplies).

Power Supplies

The MAX4708/MAX4709 operate with bipolar supplies between $\pm 4.5 \mathrm{~V}$ and $\pm 20 \mathrm{~V}$. The V+ and V- supplies need not be symmetrical, but $V+-V$ - cannot exceed the 44 V absolute maximum rating.
The MAX4708/MAX4709 operate from single supplies between +9 V and +36 V when V - is connected to GND.

Chip Information
PROCESS: CMOS
SUBSTRATE INTERNALLY CONNECTED TO V+

Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
16 Narrow SO	-	$\underline{\mathbf{2 1 - 0 0 4 1}}$
16 Wide SO	-	$\underline{\mathbf{2 1 - 0 0 4 2}}$
16 Plastic DIP	-	$\underline{\mathbf{2 1 - 0 0 4 3}}$

Pin Configurations/Functional Diagrams (continued)

Figure 1. Functional Diagram

Fault-Protected, Single 8-to-1/
 Dual 4-to-1 Multiplexers

Figure 2. Address Transition Time

Figure 3. Enable Switching Time

Fault-Protected, Single 8-to-1/ Dual 4-to-1 Multiplexers

Test Circuits/Timing Diagrams (continued)

Figure 4. Break-Before-Make Interval

Figure 5. Charge Injection

Figure 6. Off-Isolation

Figure 7. Crosstalk

Fault-Protected, Single 8-to-1/ Dual 4-to-1 Multiplexers

Figure 8. NO_, COM_ Capacitance

Test Circuits/Timing Diagrams (continued)

Figure 9. Transient Behavior of Fault Condition

Functional Diagrams/Truth Tables

Fault-Protected, Single 8-to-1/ Dual 4-to-1 Multiplexers

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$9 / 02$	Initial release	-
1	$12 / 08$	Added chip process and packaging information; changed fault conditions information	10,11

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE PI3L100QE NLAS3257CMX2TCG PI5A3157BC6EX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G MAX4051AEEE+ HEF4053BT. 653 PI3L720ZHEX ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7
CD4053BPWRG4 ADG658TRUZ-EP 74HC4053D.653 74HCT4052PW. 118 74LVC2G53DP. 125 74HC4052DB. 112 74HC4052PW. 112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB. 112 74HCT4052D. 112 74HCT4052DB. 112 74HCT4351D.112 74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ ADG5207BCPZRL7

