MAX4715/MAX4716

General Description

The MAX4715/MAX4716 are low on-resistance, lowvoltage, single-pole/single-throw (SPST) analog switches that operate from $\mathrm{a}+1.6 \mathrm{~V}$ to +3.6 V single supply. The MAX4715 is normally open (NO), and the MAX4716 is normally closed (NC). These devices also have fast switching speeds (ton $=18 \mathrm{~ns}$ max, toff $=12 \mathrm{~ns}$ max).
When powered from a +3 V supply, the MAX4715/ MAX4716 offer 0.4Ω max on-resistance (R_{ON}) with 0.1Ω $\max \mathrm{R}_{\mathrm{ON}}$ flatness. Their digital logic inputs are +1.8 V CMOS compatible when using a single +3 V supply.
The MAX4715 is pin compatible with the MAX4594, and the MAX4716 is pin compatible with the MAX4595. The MAX4715/MAX4716 are available in SC70-5 packages.

Applications

- Power Routing
- Battery-Operated Equipment
- Audio and Video Signal Routing
- Low-Voltage Data-Acquisition Systems
- Communications Circuits
- PCMCIA Cards
- Cellular Phones
- Modems
- Hard Drives

0.4Ω, Low-Voltage, Single-Supply SPST Analog Switches in SC70

Benefits and Features

- Low RON
- 0.4Ω max (+3V Supply)
- 1.2Ω max (+1.8V Supply)
- 0.1Ω max RoN Flatness (+3V Supply)
- +1.6 V to +3.6 V Single-Supply Operation
- Available in 5-Pin SC70 Packages
- Fast Switching: $\mathrm{t}_{\mathrm{ON}}=18 \mathrm{~ns}$ max, tOFF $=12 \mathrm{~ns} \max$
- +1.8V CMOS Logic Compatible (+3V Supply)
- Pin Compatible with MAX4594 (MAX4715)

Pin Compatible with MAX4595 (MAX4716)

[^0]
0.4Ω, Low-Voltage, Single-Supply SPST Analog Switches in SC70

Operating Temperature Range
MAX471_EXK...................................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature ... $150^{\circ} \mathrm{C}$
Storage Temperature Range .. $0^{\circ} \mathrm{C}$

Absolute Maximum Ratings

Note 1: Signals on NO, NC, or COM exceeding V+ or GND are clamped by internal diodes.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

5-PIN SC70

Outline Number	$\underline{21-0076}$

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Electrical Characteristics-Single +3V Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\mathrm{V}_{\mathrm{COM}}$, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			0		V+	V
On-Resistance (Note 6)	R_{ON}	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.3	0.4	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.45	
On-Resistance Flatness (Note 4)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{I} \mathrm{ICOM}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.6,1.5 \mathrm{~V}, 2.1 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.05	0.09	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.1	
NO, NC Off-Leakage Current	In $^{\text {NO(OFF) }}$ or $I_{\mathrm{NC}(\mathrm{OFF})}$ or	$\begin{aligned} & \mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	0.01	1	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	
COM Off-Leakage Current	ICOM(OFF)	$\begin{aligned} & \mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	0.01	1	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	
COM On-Leakage Current	ICOM(ON)	$\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 3 \mathrm{~V} \text {, }$ V_{NO} or $\mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V}, 3 \mathrm{~V}$ or open	$+25^{\circ} \mathrm{C}$	-2		2	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	
DYNAMIC							
Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text {, } \\ & C_{\mathrm{L}}=35 \mathrm{pF} \text {, Figure } 1 \end{aligned}$	$+25^{\circ} \mathrm{C}$		12	18	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			20	
Turn-Off Time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \underline{\text { Figure } 1} \end{aligned}$	$+25^{\circ} \mathrm{C}$		6	12	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			15	
Charge Injection	Q	$\begin{aligned} & V_{G E N}=0, R_{G E N}=0, \\ & C_{L}=1.0 n F, \text { Figure 2 } \end{aligned}$	$+25^{\circ} \mathrm{C}$		20		pC
Off-Isolation (Note 5)	VISO	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}_{\mathrm{RMS}}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \text { Figure } 3 \\ & \hline \end{aligned}$	$+25^{\circ} \mathrm{C}$		-54		dB
Total Harmonic Distortion	THD	$\begin{aligned} & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{COM}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P},}, \mathrm{R}_{\mathrm{L}}=32 \Omega \\ & \hline \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.01		\%
NC or NO Off-Capacitance	$\mathrm{C}_{\mathrm{NO} \text { (OFF) }}$ $\mathrm{C}_{\mathrm{NC} \text { (OFF) }}$	$\mathrm{f}=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		55		pF
COM Off-Capacitance	$\mathrm{C}_{\text {COM (OFF) }}$	$\mathrm{f}=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		55		pF
COM On-Capacitance	$\mathrm{C}_{\text {COM(ON) }}$	$\mathrm{f}=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		80		pF
LOGIC INPUT							
Input Voltage Low	$\mathrm{V}_{\text {IL }}$					0.5	V
Input Voltage High	V_{IH}			1.4			V
Input Leakage Current	I_{IN}	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$		-1		1	$\mu \mathrm{A}$
SUPPLY							
Power-Supply Range	V+			1.6		3.6	V
Positive Supply Current	I+	$\mathrm{V}+=+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0$ or $\mathrm{V}+$	$+25^{\circ} \mathrm{C}$		0.04	0.2	$\mu \mathrm{A}$
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			2	

Electrical Characteristics—Single +1.8V Supply
$\left(\mathrm{V}+=+1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)($ Notes 2,3$)$

PARAMETER	SYMBOL	CONDITIONS	T_{A}	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$V_{\text {COM }}$, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.9 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.6	1.2	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			2.5	
NO or NC Off-Leakage Current	In $^{\text {No(OFF) }}$ or $I_{\text {NC(OFF) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 1.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1		1	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	
COM Off-Leakage Current	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 1.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1		1	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	
COM On-Leakage Current	ICOM(ON)	$\mathrm{V}_{\mathrm{COM}}=1.5 \mathrm{~V}, 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, 0.3 \mathrm{~V}$, or open	$+25^{\circ} \mathrm{C}$	-2		2	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	
DYNAMIC							
Turn-On Time	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $C_{L}=35 p F$, Figure 1	$+25^{\circ} \mathrm{C}$		18	25	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			30	
Turn-Off Time	toff	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $C_{L}=35 p F$, Figure 1	$+25^{\circ} \mathrm{C}$		9	20	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			25	
Charge Injection	Q	$\begin{aligned} & V_{G E N}=0, R_{G E N}=0, \\ & C_{L}=1 n F, \underline{\text { Figure } 2} \end{aligned}$	$+25^{\circ} \mathrm{C}$		40		pC
LOGIC INPUT							
Input Voltage Low	$\mathrm{V}_{\text {IL }}$					0.4	V
Input Voltage High	V_{IH}			1			V
Input Leakage Current	IN	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$				1	$\mu \mathrm{A}$
SUPPLY							
Positive Supply Current	+	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$	$+25^{\circ} \mathrm{C}$		0.04	0.2	$\mu \mathrm{A}$
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			2	

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Note 3: SC70-packaged parts are 100% tested at $+25^{\circ}$ C. Limits across the full temperature range are guaranteed by design and correlation.
Note 4: Flatness is defined as the difference between the maximum and minimum values of on-resistance as measured over the specified analog signal range.
Note 5: Off-Isolation $=20 \log _{10}\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NC}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NO}}\right)\right], \mathrm{V}_{\mathrm{COM}}=$ output, V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 6: Guaranteed by design.

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Configurations/Functional Diagrams/Truth Tables

Pin Description

BUMP			
MAX4715	MAX4716	NAME	
1	1	COM	Analog Switch—Common
2	-	NO	Analog Switch—Normally Open
-	2	NC	Analog Switch—Normally Closed
3	3	GND	Ground
4	4	IN	Digital Control Input
5	5	V+	Positive Supply Input

0.4Ω, Low-Voltage, Single-Supply SPST Analog Switches in SC70

Detailed Description

The MAX4715/MAX4716 are low on-resistance (RON), low-voltage, single-pole/single-throw (SPST) analog switches that operate from a +1.6 V to +3.6 V single supply. The MAX4715 is normally open (NO), and the MAX4716 is normally closed (NC).
When powered from a +3 V supply, their 0.4Ω RON allows high continuous currents to be switched in a variety of applications.

Applications Information

Logic Inputs

The MAX4715/MAX4716 logic inputs can be driven up to +3.6 V regardless of the supply voltage. For example,
with a +3.3 V supply, IN may be driven low to GND and high to +3.6 V . Driving IN Rail-to-Rail ${ }^{\circledR}$ minimizes power consumption.

Analog Signal Levels

Analog signals that range over the entire supply voltage (V+ to GND) can be passed with very little change in on-resistance (see the Typical Operating Characteristics section). The switches are bidirectional, so the NO, NC, and COM pins can be used as either inputs or outputs.

Rail-to-Rail is a registered trademark of Nippon Motorola Ltd.

Test Circuits/Timing Diagrams

Figure 1. Switching Time

Figure 2. Charge Injection

0.4Ω, Low-Voltage, Single-Supply SPST Analog Switches in SC70

Test Circuits/Timing Diagrams (continued)

MEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT IC TERMINALS.
OFF-ISOLATION IS MEASURED BETWEEN COM_ AND "OFF" NO_ OR NC_ TERMINAL ON EACH SWITCH.
ON-LOSS IS MEASURED BETWEEN COM_ AND "ON" NO_ OR NC_TERMINAL ON EACH SWITCH.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.

Figure 3. On-Loss and Off-Isolation

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	TOP MARK
MAX4715EXK +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{SC} 70-5$	ACJ
MAX4716EXK +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{SC} 70-5$	ACK

+ Denotes a lead(Pb)-free/RoHS-compliant package.
T = Tape and reel.

Chip Information
TRANSISTOR COUNT: 135
PROCESS: CMOS
Figure 4. Channel Off/On-Capacitance

0.4Ω, Low-Voltage, Single-Supply SPST Analog Switches in SC70

Revision History

REVISION NUMBER	REVISION DATE	PAGES CHANGED	
0	$4 / 01$	Initial release	-
1	$3 / 20$	Updated the Ordering Information table	8
2	$2 / 21$	Updated Pin 3 for MAX4715 in Pin Description.	6

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118

[^0]: Ordering Information appears at end of data sheet.

