20 , 300MHz Bandwidth, Dual SPDT Analog Switch in UCSP

Abstract

General Description The MAX4719 low-voltage, low on-resistance (RON), dual single-pole/double throw (SPDT) analog switch operates from a single +1.8 V to +5.5 V supply. The MAX4719 features 20Ω RON (max) with 1.2Ω flatness and 0.4Ω matching between channels. The switch offers break-before-make switching (1ns) with toN $<80 \mathrm{~ns}$ and tOFF $<40 \mathrm{~ns}$ at +2.7 V . The digital logic inputs are +1.8 V logic compatible with $\mathrm{a}+2.7 \mathrm{~V}$ to +3.6 V supply. The switch is packaged in a chip-scale package (UCSP ${ }^{T M}$), significantly reducing the required PC board area. The chip occupies only a $2.0 \mathrm{~mm} \times 1.50 \mathrm{~mm}$ area and has a 4×3 bump array with a bump pitch of 0.5 mm . The MAX4719 is also available in a 10-pin $\mu \mathrm{MAX}$ package.

Applications
Cell Phones
Battery-Operated Equipment
Audio/Video-Signal Routing
Low-Voltage Data-Acquisition Systems
Sample-and-Hold Circuits
PDAs

UCSP is a trademark of Maxim Integrated Products, Inc.
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Features

- -3dB Bandwidth: >300MHz
- Low 15pF On-Channel Capacitance
- Single-Supply Operation from +1.8 V to +5.5 V
- 20Ω Ron (max) Switch
0.4Ω (max) Ron Match (+3.0V Supply)
1.2Ω (max) RoN Flatness (+3.0V Supply)
- Rail-to-Rail® Signal Handling
- High Off-Isolation: -55dB (10MHz)
- Low Crosstalk: -80dB (10MHz)
- Low Distortion: 0.03\%
- +1.8V CMOS-Logic Compatible
- <0.5nA Leakage Current at $+25^{\circ} \mathrm{C}$

Ordering Information

PART	TEMP RANGE	PIN/BUMP- PACKAGE	TOP MARK
MAX4719EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$	-
MAX4719EBC $-T^{*}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$12 \mathrm{UCSP}-12$	ABJ

Note: UCSP package requires special solder temperature profile described in the Absolute Maximum Ratings section.
*UCSP reliability is integrally linked to the user's assembly methods, circuit board material, and environment. See the UCSP reliability notice in the UCSP Reliability section of this data sheet for more information.

Pin Configurations/Functional Diagrams/Truth Table

TOP VIEW (BUMP SIDE DOWN)	МАХІМ MAX4719 GND					MAXI/VI MAX4719		
NC1		NC2	MAX4719					10 N02
		NC2	IN_{-}	NO_	NC_	$\begin{array}{r\|r\|} v+ & 1 \\ \text { N01 } & 2 \\ \hline \end{array}$		
IN1	(c2) $-\quad \rightarrow$ (A2)	IN2	0	OFF	ON		\%	9 COM2
	(5		1	ON	OFF	COM1 3	$<$	8 IN2
COM1	(C3) $\rightarrow \therefore$ (AB	COM2	SWITCHES	N FOR	"0" INPUT	1N1		$7 \text { NC2 }$
N01	(C4)	N02				NC1 5		$6 \text { GND }$
	$\begin{gathered} V_{+} \\ \text {UCSP } \end{gathered}$						$\mu \mathrm{MAX}$	

$20 \Omega, 300 \mathrm{MHz}$ Bandwidth, Dual SPDT Analog Switch in UCSP

ABSOLUTE MAXIMUM RATINGS

(All Voltages Referenced to GND)

ES	kV
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature Range	- $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$\ldots+300^{\circ} \mathrm{C}$
Bump Temperature (soldering) (Note 2)	
Infrared (15s)	$+220^{\circ} \mathrm{C}$
Vapor Phase (60s)	$+215^{\circ} \mathrm{C}$

Note 1: Signals on COM_, NO_, or NC_ exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.
Note 2: This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the device can be exposed to during board level solder attach and rework. This limit permits only the use of the solder profiles recommended in the industry standard specification, JEDEC 020A, paragraph 7.6, table 3 for IR/VPR and convection reflow. Preheating is required. Hand or wave soldering is not allowed.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS-Single +3V Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 3, 4)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
Analog Signal Range	VCOM_, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$		TMIN to TMAX	0		V+	V
ANALOG SWITCH							
On-Resistance (Note 5)	Ron	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{ICOM}_{-}=10 \mathrm{~mA} ; \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC- }}=1.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		14	20	Ω
			TMIN to TMAX			25	
On-Resistance Match Between Channels (Notes 5, 6)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{ICOM}_{-}=10 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}_{-}}=1.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.15	0.4	Ω
			Tmin to TMAX			0.5	
On-Resistance Flatness (Note 7)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{ICOM}_{-}=10 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\text {NC_ }}=1.0 \mathrm{~V}, 1.5 \mathrm{~V}, 2.0 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.6	1.2	Ω
			TMIN to TMAX			1.5	
NO_, NC_ Off-Leakage Current (Note 8)	INO_(OFF), INC_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {COM }}^{-}=0.3 \mathrm{~V}, 3.3 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}_{-}}=3.3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	0.01	+0.5	nA
			Tmin to TMAX	-1		+1	
COM_ On-Leakage Current (Note 8)	ICOM_(ON)	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=0.3 \mathrm{~V}, 3.3 \mathrm{~V} \text {; }$ $\mathrm{V}_{\text {NO_ }}$ or $\mathrm{V}_{\text {NC_ }}=0.3 \mathrm{~V}$, 3.3 V , or floating	$+25^{\circ} \mathrm{C}$	-1	0.01	+1	nA
			TMIN to TMAX	-2		+2	
DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}$; $R_{L}=300 \Omega, C_{L}=35 p F$, Figure 1	$+25^{\circ} \mathrm{C}$		40	80	ns
			TMIN to TMAX			100	

20 , 300MHz Bandwidth, Dual SPDT Analog Switch in UCSP

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 3, 4)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
Turn-Off Time	toFF	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\text {NC_ }}=1.5 \mathrm{~V}$; $R_{L}=300 \Omega, C L=35 p F$, Figure 1	$+25^{\circ} \mathrm{C}$		20	40	ns
			TMIN to TMAX			50	
Break-Before-Make Time Delay (Note 8)	tBBM	$\mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC_ }}=1.5 \mathrm{~V}$; $R_{L}=300 \Omega, C L=35 p F$, Figure 2	$+25^{\circ} \mathrm{C}$		8		ns
			TMin to TMAX	1			
Charge Injection	Q	$\begin{aligned} & V_{G E N}=2 V, \text { RGEN }=0 \Omega ; \\ & C_{L}=1.0 n F \text {, Figure } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$		18		pC
Off-Isolation	VISO	$\begin{aligned} & \mathrm{f}=10 \mathrm{MHz} ; \mathrm{V}_{\mathrm{NO}_{-}}, \mathrm{V}_{\mathrm{NC}_{-}}=1 \mathrm{~V}_{\mathrm{P-P}} ; \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \text { Figure } 4 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-55		dB
		$\begin{aligned} & f=1 \mathrm{MHz} ; V_{N O_{-}}, V_{N_{C-}}=1 V_{P_{-P}} ; \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \text { Figure } 4 \end{aligned}$			-80		
Crosstalk (Note 9)	$V_{C T}$	$\begin{aligned} & \mathrm{f}=10 \mathrm{MHz} ; \mathrm{V}_{\mathrm{NO}_{-}}, \mathrm{V}_{\mathrm{NC}_{-}}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} ; \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{CL}_{\mathrm{L}}=5 \mathrm{pF}, \text { Figure } 4 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-80		dB
		$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{NO}_{-},} \mathrm{V}_{\mathrm{NC}_{-}}=1 \mathrm{~V}_{\text {P-P; }} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{CLL}_{\mathrm{L}}=5 \mathrm{pF} \text {, Figure } 4 \end{aligned}$			-110		
On-Channel -3dB Bandwidth	BW	Signal $=0 d B m, R L=50 \Omega$; $C L=5 p F$, Figure 4	$+25^{\circ} \mathrm{C}$		300		MHz
Total Harmonic Distortion	THD	$V_{C O M}=2 V_{P-P,} R_{L}=600 \Omega$	$+25^{\circ} \mathrm{C}$		0.03		\%
NO_, NC_ Off-Capacitance	CNO_(OFF) CNC_(OFF)	$f=1 \mathrm{MHz}$, Figure 5	$+25^{\circ} \mathrm{C}$		9		pF
Switch On-Capacitance	Con	$\mathrm{f}=1 \mathrm{MHz}$, Figure 5	$+25^{\circ} \mathrm{C}$		20		pF
DIGITAL I/O							
Input Logic High Voltage	V_{IH}		TMin to TMAX	1.4			V
Input Logic Low Voltage	VIL		TMin to TMAX			0.5	V
Input Leakage Current	IIN	$\mathrm{V}+=+3.6 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}_{-}}=0 \mathrm{~V}$ or 5.5 V	TMin to TMAX	-100		+100	nA
POWER SUPPLY							
Power-Supply Range	V+		Tmin to TMAX	1.8		5.5	V
Supply Current	I+	$\mathrm{V}+=+5.5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}_{-}}=0 \mathrm{~V}$ or V_{+}	Tmin to TMAX			1	$\mu \mathrm{A}$

20ת, 300MHz Bandwidth, Dual SPDT Analog Switch in UCSP

ELECTRICAL CHARACTERISTICS—Single +5V Supply

$\left(\mathrm{V}+=+4.2 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+5.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 3, 4)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
Analog Signal Range	VCOM_, $\mathrm{VNO}_{\mathrm{N}}, \mathrm{VNC}_{-}$		TMIN to TMAX	0		V+	V
ANALOG SWITCH							
On-Resistance (Note 5)	Ron	$\begin{aligned} & \mathrm{V}_{+}=4.2 \mathrm{~V}, \mathrm{ICOM}_{-}=10 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}_{-}}=3.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		12	20	Ω
			TMIN to TMAX			25	
On-Resistance Match Between Channels (Notes 5, 6)	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{+}=4.2 \mathrm{~V}, \mathrm{ICOM}_{-}=10 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}_{-} \text {or }} \mathrm{V}_{\mathrm{NC}_{-}}=3.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.15	0.4	Ω
			TMin to TMAX			0.5	
On-Resistance Flatness (Note 7)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}_{+}=4.2 \mathrm{~V}, \mathrm{ICOM}_{-}=10 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\text {NC_ }}=1.0 \mathrm{~V}, 2.0 \mathrm{~V}, 4.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.4	1	Ω
			Tmin to TMAX			1.2	
NO_, NC_ Off-Leakage Current (Note 8)	INO_(OFF), INC_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V} ; \mathrm{V}_{\text {COM }}^{-}=1.0 \mathrm{~V}, 4.5 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=4.5 \mathrm{~V}, 1.0 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	+0.01	+0.5	nA
			TMin to TMAX	-1		+1	
COM_ On-Leakage Current (Note 8)	ICOM_(ON)	$\mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=1.0 \mathrm{~V}, 4.5 \mathrm{~V} \text {; }$ V_{NO} or $\mathrm{V}_{\mathrm{NC}} \mathrm{V}_{-}=1.0 \mathrm{~V}, 4.5 \mathrm{~V}$, or floating	$+25^{\circ} \mathrm{C}$	-1	+0.01	+1	nA
			TMin to TMAX	-2		+2	
DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}_{-}}=3.0 \mathrm{~V}$; $R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}$, Figure 1	$+25^{\circ} \mathrm{C}$		30	80	ns
			TMin to TMAX			100	
Turn-Off Time	tofF	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}_{-}}=3.0 \mathrm{~V}$; $R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}$, Figure 1	$+25^{\circ} \mathrm{C}$		20	40	ns
			TMIN to TMAX			50	
Break-Before-Make Time Delay (Note 8)	$t_{\text {tBBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}-=3.0 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF} \text {, Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$		8		ns
			TMin to TMAX	1			
DIGITAL I/O							
Input Logic High Voltage	V_{IH}		TMin to TMAX	2.0			V
Input Logic Low Voltage	VIL		TMIN to TMAX			0.8	V
Input Leakage Current	In	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}_{-}}=0 \mathrm{~V}$ or V_{+}	Tmin to TMAX	-0.1		+0.1	$\mu \mathrm{A}$

20,, 300MHz Bandwidth, Dual SPDT Analog Switch in UCSP

ELECTRICAL CHARACTERISTICS—Single +5 V Supply (continued)

$\left(\mathrm{V}+=+4.2 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+5.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 3, 4)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
POWER SUPPLY							
Power-Supply Range	V+		TMIn to TMAX	1.8		5.5	V
Supply Current	$1+$	$\mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}_{-}}=0 \mathrm{~V}$ or V_{+}	Tmin to TMAX			1	$\mu \mathrm{A}$

Note 3: UCSP parts are 100% tested at $+25^{\circ} \mathrm{C}$ only, and guaranteed by design over the specified temperature range. $\mu \mathrm{MAX}$ parts are 100% tested at $T_{\text {MAX }}$ and guaranteed by design over the specified temperature range.
Note 4: The algebraic convention used in this data sheet is where the most negative value is a minimum and the most positive value is a maximum.
Note 5: Guaranteed by design for UCSP parts.
Note 6: $\quad \Delta \operatorname{RON}_{\mathrm{O}}=\operatorname{RON}(\mathrm{MAX})-\operatorname{RON}(\mathrm{MIN})$.
Note 7: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
Note 8: Guaranteed by design.
Note 9: Between any two switches.

Typical Operating Characteristics

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

20ת, 300MHz Bandwidth, Dual SPDT Analog Switch in UCSP

Typical Operating Characteristics (continued)
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

20 , 300MHz Bandwidth, Dual SPDT Analog Switch in UCSP

Typical Operating Characteristics (continued)
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN		NAME	FUNCTION
UCSP	$\boldsymbol{\mu M A X}$	A1	7
NC2	Analog Switch 2-Normally Closed Terminal		
A2	8	IN2	Digital Control Input for Analog Switch 2
A3	9	COM2	Analog Switch 2-Common Terminal
A4	10	NO2	Analog Switch 2-Normally Open Terminal
B1	6	GND	Ground
B4	1	V+	Positive-Supply Voltage Input
C1	5	NC1	Analog Switch 1-Normally Closed Terminal
C2	4	IN1	Digital Control Input for Analog Switch 1
C3	3	COM1	Analog Switch 1-Common Terminal
C4	2	NO1	Analog Switch 1-Normally Open Terminal

Detailed Description
The MAX4719 high-speed, low-voltage, 20Ω RON, dual SPDT analog switch operates from a single +1.8 V to +5.5 V supply. The switch features break-before-make switching operation and fast switching speeds (tON = 80ns (max), tOFF $=40 n s(\max)$).

Applications Information

Digital Control Inputs

The MAX4719 logic inputs accept up to +5.5 V regardless of supply voltage. For example, with $\mathrm{a}+3.3 \mathrm{~V}$ supply, IN_ can be driven low to GND and high to +5.5 V allowing for mixing of logic levels in a system. Driving the control logic inputs rail-to-rail minimizes power consumption. For a +3 V supply voltage, the logic thresholds are 0.5 V (low) and 1.4 V (high); for a +5 V supply voltage, the logic thresholds are 0.8 V (low) and 2.0 V (high).

Analog Signal Levels

The on-resistance of the MAX4719 changes very little for analog input signals across the entire supply voltage range (see the Typical Operating Characteristics). The switches are bidirectional, so the NO_{-}, NC_, and COM_ pins can be either inputs or outputs.

20,, 300MHz Bandwidth, Dual SPDT Analog Switch in UCSP

Power-Supply Sequencing and Overvoltage Protection

 Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the device.Proper power-supply sequencing is recommended for all CMOS devices. Always apply $\mathrm{V}+$ before applying analog signals, especially if the analog signal is not current-limited.

UCSP Package Considerations
For general UCSP package information and PC layout considerations, please refer to the Maxim Application Note (Wafer-Level Chip-Scale Package).

UCSP Reliability

The chip-scale package (UCSP) represents a unique packaging form factor that may not perform equally to a packaged product through traditional mechanical reliability tests. UCSP reliability is integrally linked to the user's assembly methods, circuit board material, and
usage environment. The user should closely review these areas when considering use of a UCSP package. Performance through Operating Life Test and Moisture Resistance remains uncompromised as it is primarily determined by the wafer-fabrication process.
Mechanical stress performance is a greater consideration for a UCSP package. UCSPs are attached through direct solder contact to the user's PC board, foregoing the inherent stress relief of a packaged product lead frame. Solder joint contact integrity must be considered. Information on Maxim's qualification plan, test data, and recommendations are detailed in the UCSP application note, which can be found on Maxim's website at www.maxim-ic.com.

Chip Information
TRANSISTOR COUNT: 235
PROCESS: BiCMOS

Test Circuits/Timing Diagrams

Figure 1. Switching Time

Figure 2. Break-Before-Make Interval

20,, 300MHz Bandwidth, Dual SPDT Analog Switch in UCSP

Test Circuits/Timing Diagrams (continued)

Figure 3. Charge Injection

OFF-ISOLATION $=2010 g \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
$O N-L O S S=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
CROSSTALK $=20 \log \frac{V_{O U T}}{V_{\text {IN }}}$

MEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT IC TERMINALS.
OFF-ISOLATION IS MEASURED BETWEEN COM_ AND "OFF" NO_ OR NC_ TERMINAL ON EACH SWITCH.
ON-LOSS IS MEASURED BETWEEN COM_ AND "ON" NO_OR NC_ TERMINAL ON EACH SWITCH.
CROSSTALK IS MEASURED FROM ONE CHANNEL TO THE OTHER CHANNEL.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.
Figure 4. On-Loss, Off-Isolation, and Crosstalk

Figure 5. Channel Off/On-Capacitance

20ת, 300MHz Bandwidth, Dual SPDT Analog Switch in UCSP

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

$20 \Omega, 300 \mathrm{MHz}$ Bandwidth, Dual SPDT Analog Switch in UCSP

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118

