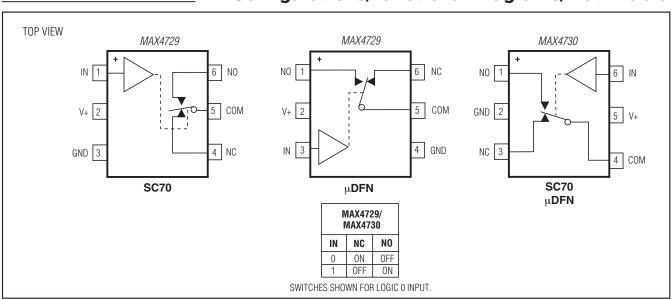


Low-Voltage 3.5Ω, SPDT, CMOS Analog Switches

General Description

The MAX4729/MAX4730 single-pole/double-throw (SPDT) switches operate from a single supply ranging from +1.8V to +5.5V. These switches provide low 3.5Ω on-resistance (RoN), as well as 0.45Ω RoN flatness with a +2.7V supply. These devices typically consume only 1nA of supply current, making them ideal for use in low-power, portable applications. The MAX4729/MAX4730 feature low-leakage currents over the extended temperature range, TTL/CMOS-compatible digital logic, and excellent AC characteristics.

The MAX4729/MAX4730 are available in small 6-pin SC70 and 6-pin μ DFN packages. The MAX4729/MAX4730 are offered in three pinout configurations to ease design. The MAX4729/MAX4730 are specified over the extended -40°C to +85°C temperature range.


Applications

Battery-Operated Equipment
Audio and Video-Signal Routing
Low-Voltage Data-Acquisition Systems
Sample-and-Hold Circuits
Communications Circuits
Relay Replacement

_ Features

- ♦ Low 3.5Ω Ron (+2.7V Supply)
- ♦ 0.45Ω Ron Flatness (+2.7V Supply)
- ♦ 0.05Ω Ron Match Between Channels (+2.7V Supply)
- ♦ Tiny SC70 and µDFN Packages
- ♦ -3dB Bandwidth: 300MHz
- ♦ Low On-Capacitance: 19.5pF
- ♦ 0.036% Total Harmonic Distortion
- ♦ Low Supply Current: 1nA
- ♦ +1.8V to +5.5V Single-Supply Operation

Pin Configurations/Functional Diagrams/Truth Table

Low-Voltage 3.5 Ω , SPDT, CMOS Analog Switches

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to ground.)	
V+, IN	0.3V to +6V
COM, NO, NC (Note 1)	
Continuous Current (IN, V+, GND)	±30mA
Continuous Current (COM, NO, NC)	
Peak Current COM, NO, NC	
(Pulsed at 1ms, 10% Duty Cycle)	±150mA

Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
μDFN (derate 2.1mW/°C above +70°C)	
SC70 (derate 3.1mW/°C above +70°C)	245mW
Operating Temperature Range	40°C to +85°C
Maximum Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Note 1: Signals on NO, NC, or COM exceeding V+ or GND are clamped by internal diodes. Signals on IN exceeding GND are clamped by an internal diode. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V+=+2.7V \text{ to } +3.6V, V_{IH}=+2.0V, V_{IL}=+0.4V, T_A=-40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.}$ Typical values are at $T_A=+25^{\circ}C.$) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
ANALOG SWITCH	ANALOG SWITCH							
Analog Signal Range	V _{COM} , V _{NO,} V _{NC}			0		V+	V	
On-Resistance (Note 6)	Ron	V+ = 2.7V, I _{COM} = 10mA,	T _A = +25°C		3.5	5.5	Ω	
On-nesistance (Note o)	TION	V_{NO} or $V_{NC} = 0V$ to $V+$	$T_A = -40^{\circ}\text{C to } +85$			5.7	22	
		$V+ = 2.7V$, $I_{COM} = 10mA$, V_{NO} or $V_{NC} = 0.7V$, 1.2V, 2V	T _A = +25°C		0.05	0.15		
On-Resistance Match Between Channels	A.D.o.	(MAX4729)	$T_A = -40^{\circ}C \text{ to } +85$			0.2	Ω	
(Notes 3, 6)	ΔR _{ON}	$V + = 2.7V$, $I_{COM} = 10mA$,	T _A = +25°C		0.2	0.34		
		V_{NO} or $V_{NC} = 0.7V$, 1.2V, 2V (MAX4730)	$T_A = -40^{\circ}C \text{ to } +85$			0.37		
	R _{FLAT} (ON)	V+ = 2.7V, I _{COM} = 10mA, V _{NO} or V _{NC} = 0.7V, 1.2V, 2V (MAX4729)	T _A = +25°C		0.8	1.5	Ω	
On-Resistance Flatness (Note 4)			$T_A = -40^{\circ}C \text{ to } +85$			2.2		
		V+ = 2.7V, I _{COM} = 10mA, V _{NO} or V _{NC} = 0.7V, 1.2V, 2V (MAX4730)	T _A = +25°C		0.45	0.95		
			$T_A = -40^{\circ}C \text{ to } +85$			1.3		
NO, NC Off-Leakage	INO (OFF),	V+ = 3.3V, V _{COM} = 1V, 3V,	T _A = +25°C	-2	+0.01	+2	nA	
Current	INC (OFF)	V_{NO} or $V_{NC} = 3V$, 1V	$T_A = -40^{\circ}C \text{ to } +85$	-3		+3		
COM On-Leakage Current	ICOM (ON)	$V+ = 3.3V$, $V_{COM} = 1V$ or 3V, V_{NO} or $V_{NC} = 1V$, 3V, or float	T _A = +25°C	-3	+0.01	+3	nA	
			$T_A = -40^{\circ}C \text{ to } +85$	-4		+4		
DIGITAL INPUTS								
Input Logic High	VIH		$T_A = -40^{\circ}C \text{ to } +85$	2.0			V	
Input Logic Low	VIL		$T_A = -40^{\circ}C \text{ to } +85$			0.4	V	
Input Leakage Current	I _{IN}	V _{IN} = 0V or 3.6V	$T_A = -40^{\circ}C \text{ to } +85$	-1	+0.005	+1	μΑ	

Low-Voltage 3.5 Ω , SPDT, CMOS Analog Switches

ELECTRICAL CHARACTERISTICS (continued)

 $(V+=+2.7V \text{ to } +3.6V, V_{IH}=+2.0V, V_{IL}=+0.4V, T_A=-40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $T_A=+25^{\circ}\text{C}.)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS TA		MIN	TYP	MAX	UNITS	
DYNAMIC							•	
T 0 T (N + 5)		V_{NO} , $V_{NC} = 2V$, $R_L = 300\Omega$,	T _A = +25°C		18	45		
Turn-On Time (Note 5)	ton	C _L = 35pF, Figure 1	$T_A = -40^{\circ}C \text{ to } +85$			45	ns	
Turn-Off Time (Note 5)		V_{NO} , $V_{NC} = 2V$, $R_L = 300\Omega$,	T _A = +25°C		10	26		
rum-on time (Note 5)	toff	C _L = 35pF, Figure 1	$T_A = -40^{\circ}C \text{ to } +85$			26	ns	
Break-Before-Make (Note 5)		V_{NO} , $V_{NC} = 2V$, $R_L = 300\Omega$,	$T_A = +25^{\circ}C$		5		ns	
break-before-Make (Note 3)		C _L = 35pF, Figure 1	$T_A = -40^{\circ}C \text{ to } +85$	1				
Charge Injection	Q	V _{GEN} = 0V, R _{GEN} = 0, C _L = 1	.0nF, Figure 3		3		рС	
NO, NC Off-Capacitance	C _{NO(OFF)} , C _{NC(OFF)}	f = 1MHz, Figure 4		6.5		pF		
Switch On-Capacitance	Con	f = 1MHz, Figure 4	f = 1MHz, Figure 4				рF	
Off Inclotion (Note 7)	V _{ISO}	V _{NO} = V _{NC} = 1V _{RMS} , R _L =	f = 1MHz		-67		dB	
Off-Isolation (Note 7)		50Ω , C _L = 5pF, Figure 2	f = 10MHz		-45			
On-Channel Bandwidth -3dB	BW	Signal = 0dBm, 50Ω in and o	Signal = 0dBm, 50Ω in and out, Figure 2		300		MHz	
Crosstalk (Note 8)	\/	NO or NC = 1V _{RMS} , C _L =	f = 1MHz		-67		dB	
Crossiaik (Note 6)	V _{CT}	5pF, $R_L = 50\Omega$, Figure 2	F, $R_L = 50\Omega$, Figure 2 $f = 10MHz$		-52			
Total Harmonic Distortion	THD	$R_L = 600\Omega$, V_{NC} or $V_{NO} =$ $2V_{P-P}$, $f = 20Hz$ to $20kHz$ +25°C			0.035		%	
POWER SUPPLY								
Power-Supply Range	V+			1.8	•	5.5	V	
Popitivo Supply Current	l+	\\. E E\\ \\\. \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	T _A = +25°C		0.001			
Positive Supply Current		$V + = 5.5V$, $V_{IN} = 0V$ or $5.5V$	$T_A = -40^{\circ}C \text{ to } +85$			1	μΑ	

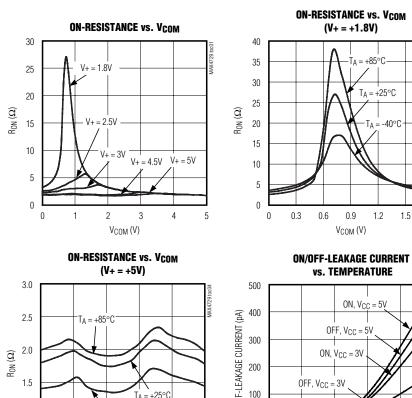
Note 2: SC70 and μ DFN parts are 100% tested at T_A = +25°C. Limits across the full-temperature range are guaranteed by design and correlation.

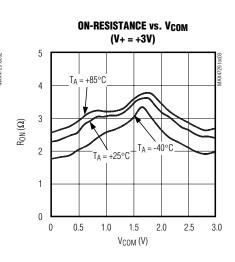
Note 3: $\Delta R_{ON} = R_{ON(MAX)} - R_{ON(MIN)}$.

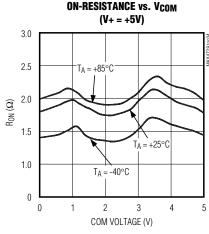
Note 4: RoN flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

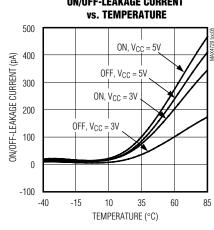
Note 5: Guaranteed by design.

Note 6: µDFN is guaranteed by design.

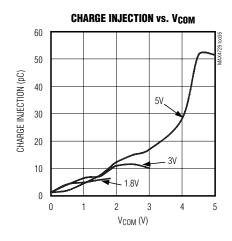

Note 7: Off-Isolation = 20log10 (VO / VI), where VO is V_{COM} and VI is either V_{NC} or V_{NO} from the network analyzer.

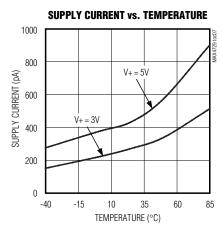

Note 8: Crosstalk is measured between the two switches.

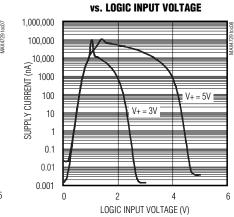

Low-Voltage 3.5 Ω , SPDT, CMOS Analog Switches

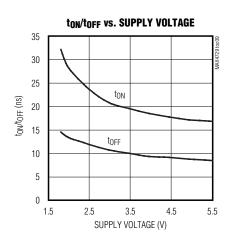

Typical Operating Characteristics

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

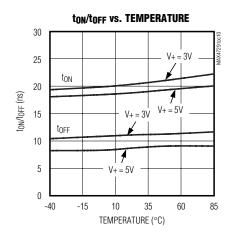


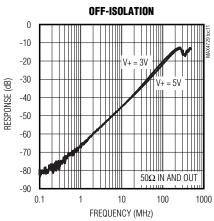


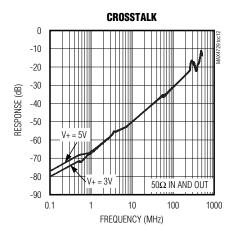


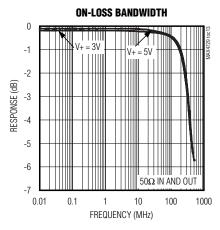


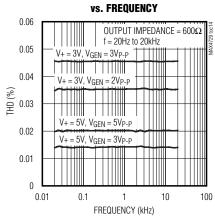
SUPPLY CURRENT

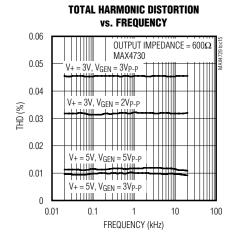





Low-Voltage 3.5 Ω , SPDT, CMOS Analog Switches


Typical Operating Characteristics (continued)


 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$



TOTAL HARMONIC DISTORTION

Pin Description

	PIN			FUNCTION	
MAX	4729	MAX4730	NAME		
SC70	μDFN	SC70/µDFN			
1	3	6	IN	Logic-Control Input	
2	2	5	V+	Positive Supply Voltage	
3	4	2	GND	Ground	
4	6	3	NC	Analog Switch Normally Closed Terminal	
5	5	4	COM	Analog Switch Common Terminal	
6	1	1	NO	Analog Switch Normally Open Terminal	

Low-Voltage 3.5 Ω , SPDT, CMOS Analog Switches

Detailed Description

The MAX4729/MAX4730 single-pole/double-throw (SPDT) switches operate from a single supply ranging from +1.8V to +5.5V. These switches provide low 3.5Ω on-resistance (RoN), as well as 0.45Ω RoN flatness with a 2.7V supply. These devices typically consume only 1nA of supply current, making them suitable for use in low-power, portable applications. The MAX4729/MAX4730 feature low-leakage currents over the entire temperature range, TTL/CMOS-compatible digital logic, and excellent AC characteristics.

Applications Information

Digital Control Inputs

The MAX4729/MAX4730 logic inputs accept up to +5.5V, regardless of supply voltage. For example, with a +3.3V

supply, IN can be driven low to GND and high to +5.5V, allowing for mixing of logic levels in a system. With a 2.7V to 3.6V power-supply voltage range, the logic thresholds are set so $V_{IL} = 0.4V$ (max) and $V_{IH} = 2V$ (min).

Power-Supply Sequencing and Overvoltage Protection

Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the device. Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals, especially if the analog signal is not current limited.

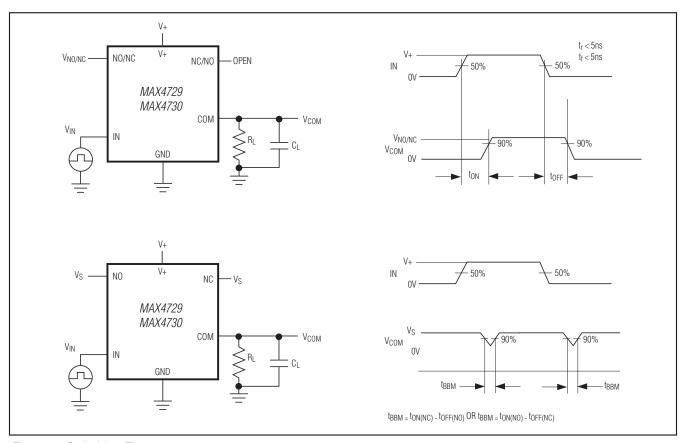


Figure 1. Switching Times

Low-Voltage 3.5 Ω , SPDT, CMOS Analog Switches

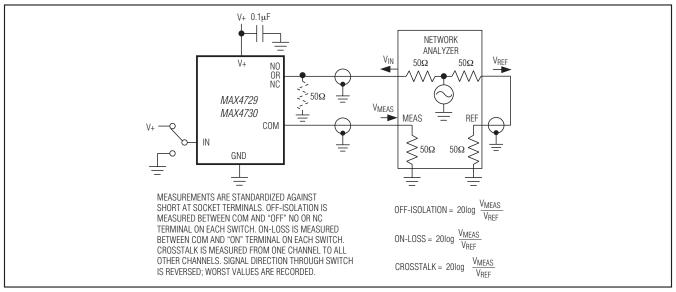


Figure 2. Off-Isolation/On-Loss Bandwidth, Crosstalk

Figure 3. Charge Injection

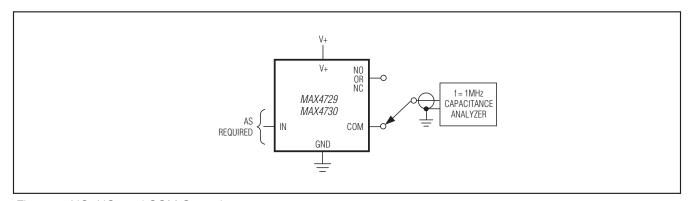


Figure 4. NO, NC, and COM Capacitance

Low-Voltage 3.5 Ω , SPDT, CMOS Analog Switches

___Chip Information

PROCESS: CMOS

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4729EXT+T	-40°C to +85°C	6 SC70
MAX4729ELT+T	-40°C to +85°C	6 µDFN
MAX4730EXT+T	-40°C to +85°C	6 SC70
MAX4730ELT+T	-40°C to +85°C	6 μDFN

⁺Denotes lead(Pb)-free/RoHS-compliant package.

_Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
6 SC70	X6SN+1	21-0077	<u>90-0189</u>
6 µDFN	L611+1	21-0147	90-0080

Low-Voltage 3.5 Ω , SPDT, CMOS Analog Switches

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
2	6/14	ELT+ production status corrected	

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue Switch ICs category:

Click to view products by Maxim manufacturer:

Other Similar products are found below:

FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC.125 DG3257DN-T1-GE4 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DI01500WL12