50 Ω, Dual SPST Analog Switches in UCSP

General Description

_Features

The MAX4731/MAX4732/MAX4733 low-voltage, dual, single-pole/single-throw (SPST) analog switches operate from a single +2 V to +11 V supply and handle rail-to-rail analog signals. These switches exhibit low leakage current (0.1 nA) and consume less than 0.5 nW (typ) of quiescent power, making them ideal for batterypowered applications.
When powered from a +3 V supply, these switches feature 50Ω (max) on-resistance (Ron) with 3.5Ω (max) matching between channels, and 9Ω (max) flatness over the specified signal range.
The MAX4731 has two normally open (NO) switches, the MAX4732 has two normally closed (NC) switches, and the MAX4733 has one NO and one NC switch. The MAX4731/MAX4732/MAX4733 are available in 9-bump chip-scale packages (UCSPTM), along with 8-pin TDFN and 8 -pin $\mu \mathrm{MAX}{ }^{\circledR}$ packages. The tiny UCSP occupies a $1.52 \mathrm{~mm} \times 1.52 \mathrm{~mm}$ area and significantly reduces the required PC board area.

Applications
Battery-Powered Systems
Audio/Video-Signal Routing
Low-Voltage Data-Acquisition Systems
Cell Phones
Communications Circuits
PDAs

UCSP is a trademark of Maxim Integrated Products, Inc.

- $1.52 \mathrm{~mm} \times 1.52 \mathrm{~mm}$ UCSP Package
- Guaranteed On-Resistance (Ron) 25Ω (max) at +5 V 50Ω (max) at +3 V
- On-Resistance Matching 3Ω (max) at +5 V
3.5Ω (max) at +3 V
- Guaranteed < 0.1nA Leakage Current at
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
- Single-Supply Operation from +2.0V to +11V
- TTL/CMOS-Logic Compatible
- -108dB Crosstalk (1MHz)
- -72dB Off-Isolation (1 MHz)
- Low Power Consumption: 0.5nW (typ)
- Rail-to-Rail Signal Handling

Ordering Information

PART	TEMP RANGE	PIN/BUMP- PACKAGE	TOP MARK
MAX4731EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX4731ETA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 TDFN-EP**	ALG
MAX4731EBL-	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	9 UCSP-9	ABV
MAX4732EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX4732ETA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 TDFN-EP**	ALH
MAX4732EBL-	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$9 \mathrm{UCSP}-9$	ABT
MAX4733EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX4733ETA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 TDFN-EP**	ALI
MAX4733EBL-	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	9 UCSP-9	ABS

*Future product-contact factory for availability. HMAX is a registered trademark of Maxim Integrated Products, Inc.

50 , Dual SPST Analog Switches in UCSP

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)

Note 1: Signals on $\mathrm{IN}_{-}, \mathrm{NO}_{-}, \mathrm{NC}_{-}$, or COM_ exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.
Note 2: This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the device can be exposed to during board level solder attach and rework. This limit permits only the use of the solder profiles recommended in the industry-standard specification, JEDEC 020A, paragraph 7.6, Table 3 for IR/VPR and Convection reflow. Preheating is required. Hand or wave soldering is not allowed.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +3V Supply

$\left(\mathrm{V}+=+3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$ (Notes 3, 4)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	VCOM $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=+2.7 \mathrm{~V}, \\ & \mathrm{I}_{2} \mathrm{COM}_{-}=5 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}_{-} \text {or }} \mathrm{V}_{\mathrm{NC}_{-}}=+1.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		19	50	Ω
			TMIN to TMAX			60	
On-Resistance Matching Between Channels (Notes 5, 6)	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}+=+2.7 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=5 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}}^{-} \end{aligned}=+1.5 \mathrm{~V} .$	$+25^{\circ} \mathrm{C}$		0.8	3.5	Ω
			Tmin to TMAX			4.5	
On-Resistance Flatness (Note 7)	RFLAt(ON)	$\begin{aligned} & \mathrm{V}+=+2.7 \mathrm{~V}, \\ & \mathrm{I}_{+} \mathrm{COM}=5 \mathrm{~mA} ; \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}=+1 \mathrm{~V},+1.5 \mathrm{~V},+2 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		2.3	9	Ω
			TMIN to TMAX			11	
NO_ or NC_ Off-Leakage Current (Note 8)	$\begin{aligned} & \text { INO_(OFF) } \\ & \text { INC_(OFF) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{+}=+3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\text {COM }}=+0.3 \mathrm{~V},+3 \mathrm{~V} ; \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}=+3 \mathrm{~V},+0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.1		+0.1	nA
			TMIN to TMAX	-2		+2	
COM_ Off-Leakage Current (Note 8)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}+=+3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\text {COM }}=+0.3 \mathrm{~V},+3 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\mathrm{NC}}^{-} \end{aligned}=+3 \mathrm{~V},+0.3 \mathrm{~V} .$	$+25^{\circ} \mathrm{C}$	-0.1		+0.1	nA
			TMIN to TMAX	-2		+2	
COM_ On-Leakage Current (Note 8)	ICOM_(ON)	$\begin{aligned} & \mathrm{V}_{+}=+3.6 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\text {com }}=+0.3 \mathrm{~V},+3.0 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}}^{-} \text {or } \mathrm{V}_{\mathrm{NC}_{-}}=+0.3 \mathrm{~V},+3 \mathrm{~V} \text {, or } \\ & \text { floating } \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.2		+0.2	nA
			TMIN to TMAX	-4		+4	

50 Ω, Dual SPST Analog Switches in UCSP

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

$\left(\mathrm{V}+=+3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$ (Notes 3, 4)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=+1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega \text {, } \\ & \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF} \text {, Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$		70	150	ns
			TMin to TMAX			170	
Turn-Off Time	toff	$\mathrm{V}_{\text {NO_ }}$ or $\mathrm{V}_{\mathrm{NC}} \mathrm{C}_{-}=+1.5 \mathrm{~V}$, $R_{L}=300 \Omega, C_{L}=35 p F$, Figure 2	$+25^{\circ} \mathrm{C}$		30	60	ns
			TMIN to TMAX			70	
Break-Before-Make (MAX4733 Only, Note 8)	tBBM	$\mathrm{V}_{\text {NO_ }}$ or $\mathrm{V}_{\mathrm{NC}_{-}}=+1.5 \mathrm{~V}$, $R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}$, Figure 3	$+25^{\circ} \mathrm{C}$		40		ns
			TMin to TMAX	1			
Charge Injection	Q	$V_{G E N}=0 V, R_{G E N}=0, C L=1.0 n F,$ Figure 4	$+25^{\circ} \mathrm{C}$		7.5		pC
On-Channel -3dB Bandwidth	BW	Signal $=0 \mathrm{dBm}, 50 \Omega$ in and out	$+25^{\circ} \mathrm{C}$		300		MHz
Off-Isolation (Note 9)	VISO	$\begin{aligned} & \hline f=1 \mathrm{MHz}, V_{C O M}=1 V_{\text {RMS }}, \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \\ & \text { Figure 5 } \end{aligned}$	$+25^{\circ} \mathrm{C}$		-72		dB
Crosstalk (Note 10)	$V_{C T}$	$\begin{aligned} & \hline \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{COM}}^{-}=1 \mathrm{~V}_{\mathrm{RMS}}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{CL}=5 \mathrm{pF}, \\ & \text { Figure } 6 \\ & \hline \end{aligned}$	$+25^{\circ} \mathrm{C}$		-108		dB
NO_ or NC_ Off-Capacitance	COFF	$\mathrm{f}=1 \mathrm{MHz}$, Figure 7	$+25^{\circ} \mathrm{C}$		20		pF
COM_ Off-Capacitance	CCOM_(OFF)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 7	$+25^{\circ} \mathrm{C}$		20		pF
COM_ On-Capacitance	CCOM_(ON)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 7	$+25^{\circ} \mathrm{C}$		40		pF
LOGIC INPUT							
Input Logic High	V_{IH}			1.4			V
Input Logic Low	VIL					0.8	V
Input Leakage Current	IIN	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0 \mathrm{~V}$ or V_{+}		-1	+0.005	+1	$\mu \mathrm{A}$
SUPPLY							
Power-Supply Range	V+			2.0		11	V
Positive Supply Current	$1+$	$\mathrm{V}+=+5.5 \mathrm{~V}, \mathrm{~V}_{1 N_{-}}=0 \mathrm{~V} \text { or } \mathrm{V}_{+} \text {, }$ all switches on or off			0.0001	1	$\mu \mathrm{A}$

50 Ω, Dual SPST Analog Switches in UCSP

ELECTRICAL CHARACTERISTICS—Single +5V Supply
$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$ (Notes 3, 4)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	VCOM $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}+=+4.5 \mathrm{~V}, \\ & \mathrm{ICOM}_{-}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}}^{-} \end{aligned}=+3.5 \mathrm{~V} .$	$+25^{\circ} \mathrm{C}$		8.5	25	Ω
			TMIN to TMAX			30	
On-Resistance Matching Between Channels (Notes 5, 6)	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}+=+4.5 \mathrm{~V}, \\ & \mathrm{ICOM}_{-}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {NO_ }} \text { or } \mathrm{V}_{\mathrm{NC}}=+3.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.2	3	Ω
			TMIN to TMAX			4	
On-Resistance Flatness (Note 7)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}+=+4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}=+1 \mathrm{~V},+2 \mathrm{~V},+3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		2	5	Ω
			TMIN to TMAX			7	
NO_ or NC_ Off-Leakage Current (Note 8)	INO_(OFF) INC_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=+5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {COM }}=+1 \mathrm{~V},+4.5 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}}^{-} \end{aligned}=+4.5 \mathrm{~V},+1 \mathrm{~V} \text { in }$	$+25^{\circ} \mathrm{C}$	-0.1		+0.1	nA
			TMIN to TMAX	-2		+2	
COM_ Off-Leakage Current (Note 8)	ICOM_(OFF)		$+25^{\circ} \mathrm{C}$	-0.1		+0.1	nA
			TMIN to TMAX	-2		+2	
COM_ On-Leakage Current (Note 8)	ICOM_(ON)	$\begin{aligned} & \mathrm{V}_{+}=+5.5 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\text {COM }}=+1 \mathrm{~V},+4.5 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\text {NC_ }}=+1 \mathrm{~V},+4.5 \mathrm{~V} \text {, or } \\ & \text { floating } \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.2		+0.2	nA
			TMIN to TMAX	-4		+4	
DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	$\mathrm{V}_{\text {NO_ }}$ or $\mathrm{V}_{\text {NC_ }}=+3.0 \mathrm{~V}$, $R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}$, Figure 2	$+25^{\circ} \mathrm{C}$		47	85	ns
			TMIN to TMAX			95	
Turn-Off Time	toff	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=+3.0 \mathrm{~V}$, $R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}$, Figure 2	$+25^{\circ} \mathrm{C}$		23	45	ns
			TMin to TMAX			55	
Break-Before-Make (MAX4733 Only, Note 8)	tBBM	$\mathrm{V}_{\text {NO_ }}$ or $\mathrm{V}_{\text {NC_ }}=+3.0 \mathrm{~V}$, $R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}$, Figure 3	$+25^{\circ} \mathrm{C}$		25		ns
			TMin to TMAX	1			
Charge Injection	Q	$\begin{aligned} & V_{G E N}=0 V, \text { RGEN }=0, \\ & C_{L}=1.0 n F \text {, Figure } 4 \end{aligned}$	$+25^{\circ} \mathrm{C}$		7.5		pC
On-Channel Bandwidth	BW	Signal $=0 \mathrm{dBm}$, 50Ω in and out	$+25^{\circ} \mathrm{C}$		300		MHz
Off-Isolation (Note 9)	VISO	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{COM}}^{-}=1 \mathrm{~V}_{\mathrm{RMS}}, \\ & R_{\mathrm{L}}=50 \Omega, \mathrm{CL}=5 \mathrm{pF}, \\ & \text { Figure } 5 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-72		dB

50 Ω, Dual SPST Analog Switches in UCSP

ELECTRICAL CHARACTERISTICS—Single +5V Supply

$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$ (Notes 3, 4)

PARAMETER	SYMBOL	CONDITIONS	$\mathrm{T}_{\text {A }}$	MIN	TYP	MAX	UNITS
Crosstalk (Note 10)	V_{C} T	$\begin{aligned} & f=1 \mathrm{MHz}, V_{C O M}=1 V_{R M S}, \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \\ & \text { Figure 6 } \end{aligned}$	$+25^{\circ} \mathrm{C}$		-108		dB
NO_ or NC_ Off-Capacitance	COFF	$\mathrm{f}=1 \mathrm{MHz}$, Figure 7	$+25^{\circ} \mathrm{C}$		20		pF
COM_ Off-Capacitance	CCOM_(OFF)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 7	$+25^{\circ} \mathrm{C}$		20		pF
COM_ On-Capacitance	CCOM_(ON)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 7	$+25^{\circ} \mathrm{C}$		40		pF
LOGIC INPUT							
Input Logic High	V_{IH}			2.0			V
Input Logic Low	VIL					0.8	V
Input Leakage Current	IIN	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0 \mathrm{~V}$ or $\mathrm{V}+$		-1	+0.005	+1	$\mu \mathrm{A}$
SUPPLY							
Power-Supply Range	V+			2.0		11	V
Positive Supply Current	I+	$\mathrm{V}_{+}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \mathrm{V}+$ all switches on or off			0.0001	1	$\mu \mathrm{A}$

Note 3: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Note 4: UCSP and TDFN parts are 100% tested at $+25^{\circ} \mathrm{C}$ only, and guaranteed by design over temperature. $\mu \mathrm{MAX}$ parts are 100% tested at $+85^{\circ} \mathrm{C}$ and $+25^{\circ} \mathrm{C}$ and guaranteed by design over temperature.
Note 5: $\quad \Delta \mathrm{RON}_{\mathrm{ON}}=\operatorname{RON}($ MAX $)-\operatorname{RON}(\mathrm{MIN})$.
Note 6: UCSP on-resistance matching between channels and on-resistance flatness guaranteed by design.
Note 7: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
Note 8: Guaranteed by design.
Note 9: Off-Isolation = $20 \log _{10}\left(\mathrm{~V}_{\mathrm{NO}_{-}} / \mathrm{VCOM}_{\mathrm{C}}\right), \mathrm{V}_{\mathrm{NO}_{-}}=$output, $\mathrm{V}_{\mathrm{COM}}=$ input to off switch.
Note 10: Between any two switches.

50 , Dual SPST Analog Switches in UCSP

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

ON/OFF-LEAKAGE CURRENT
vs. TEMPERATURE

LOGIC THRESHOLD VOLTAGE vs. SUPPLY VOLTAGE

CHARGE INJECTION vs. VCOM

TURN-ON/OFF TIME vs. SUPPLY VOLTAGE

50 Ω, Dual SPST Analog Switches in UCSP

Typical Operating Characteristics (continued)
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN						NAME	FUNCTION
MAX4731		MAX4732		MAX4733			
UCSP	μ MAX/ TDFN	UCSP	μ MAX/ TDFN	UCSP	μ MAX/ TDFN		
A1	1	-	-	A1	1	NO1	Analog-Switch Normally Open Terminal
A2	2	A2	2	A2	2	COM1	Analog-Switch Common Terminal
A3	4	A3	4	A3	4	GND	Ground. Connect to digital ground.
B1	7	B1	7	B1	7	IN1	Logic-Control Digital Input
B3	3	B3	3	B3	3	IN2	Logic-Control Digital Input
C1	8	C1	8	C1	8	V+	Positive Supply Voltage Input
C2	6	C2	6	C2	6	COM2	Analog-Switch Common Terminal
C3	5	-	-	-	-	NO2	Analog-Switch Normally Open Terminal
-	-	A1	1	-	-	NC1	Analog-Switch Normally Closed Terminal
-	-	C3	5	C3	5	NC2	Analog-Switch Normally Closed Terminal
-	$\begin{gathered} \text { EP (TDFN } \\ \text { only) } \end{gathered}$	-	$\begin{aligned} & \text { EP (TDFN } \\ & \text { only) } \end{aligned}$	-	$\begin{aligned} & \text { EP (TDFN } \\ & \text { only) } \end{aligned}$	EP	Exposed Pad. Connect to V+.

Applications Information

Operating Considerations for High-Voltage Supply
The MAX4731/MAX4732/MAX4733 operate to +11V with some precautions. The absolute maximum rating for $\mathrm{V}+$ is +12 V (referenced to GND). When operating near this region, bypass $\mathrm{V}+$ with a minimum $0.1 \mu \mathrm{~F}$ capacitor to ground as close to the IC as possible.

Logic Levels

The MAX4731/MAX4732/MAX4733 are TTL compatible when powered from a single +5 V supply. When powered from other supply voltages, the logic inputs should be driven rail-to-rail. For example, with a +11V supply, IN1 and IN2 should be driven low to 0 V and high to 11 V . With a +3.3 V supply, IN1 and IN2 should be driven low to 0 V and high to 3.3V. Driving IN1 and IN2 rail-to-rail minimizes power consumption.

50 , Dual SPST Analog Switches in UCSP

Analog Signal Levels

Analog signals that range over the entire supply voltage (GND to V^{+}) pass with very little change in RON (see Typical Operating Characteristics). The bidirectional switches allow NO_, NC_, and COM_ connections to be used as either inputs or outputs.

Power-Supply Sequencing and Overvoltage Protection

CAUTION: Do not exceed the absolute maximum ratings. Stresses beyond the listed ratings can cause permanent damage to the devices.
Proper power-supply sequencing is recommended for all CMOS devices. Always apply $V+$ before applying analog signals, especially if the analog signal is not current limited. If this sequencing is not possible, and if the analog inputs are not current limited to $<20 \mathrm{~mA}$, add a small-signal diode, D1, as shown in Figure 1. If the analog signal can dip below GND, add D2. Adding protection diodes reduces the analog signal range to a diode drop (about 0.7 V) below $\mathrm{V}+$ (for D 1), and to a diode drop above ground (for D2). Leakage is unaffected by adding the diodes. On-resistance increases slightly at low supply voltages. Maximum supply voltage ($\mathrm{V}+$) must not exceed +11 V .
Adding protection diodes causes the logic thresholds to be shifted relative to the power-supply rails. The most significant shift occurs when using low supply voltages (+5 V or less). With a +5 V supply, TTL compatibility is not guaranteed when protection diodes are added. Driving IN1 and IN2 all the way to the supply rails (i.e., to a diode drop higher than the $\mathrm{V}+\mathrm{pin}$, or to a diode drop lower than the GND pin) is always acceptable.
Protection diodes D1 and D2 also protect against some overvoltage situations. Using the circuit in Figure 1, no damage results if the supply voltage is below the absolute maximum rating $(+12 \mathrm{~V})$ and if a fault voltage up to the absolute maximum rating $(\mathrm{V}++0.3 \mathrm{~V})$ is applied to an analog signal terminal.

UCSP Applications Information
For the latest application details on USCP construction, dimensions, tape carrier information, printed circuit board techniques, bump-pad layout, and recommended reflow temperature profile as well as the latest information on reliability testing results, go to the Maxim web site at www.maxim-ic.com/ucsp to find the Application Note: UCSP-A Wafer-Level Chip-Scale Package.

Test Circuits/Timing Diagrams

Figure 1. Overvoltage Protection Using External Blocking Diodes

50 , , Dual SPST Analog Switches in UCSP

Test Circuits/Timing Diagrams (continued)

Figure 2. Switching Time

Figure 3. Break-Before-Make Interval (MAX4733 only)

Figure 4. Charge Injection

50 , Dual SPST Analog Switches in UCSP

Test Circuits/Timing Diagrams (continued)

Figure 6. Crosstalk

Chip Information
TRANSITOR COUNT: 68
PROCESS: CMOS

50 , Dual SPST Analog Switches in UCSP

Pin Configurations/Functional Diagrams/Truth Tables (continued)

50 , Dual SPST Analog Switches in UCSP

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

50 ，Dual SPST Analog Switches in UCSP

Package Information（continued）

（The package drawing（s）in this data sheet may not reflect the most current specifications．For the latest package outline information go to www．maxim－ic．com／packages．）

50 Ω, Dual SPST Analog Switches in UCSP

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Revision History
Pages changed at Rev 2: 1, 2, 7, 8, 11, 14

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118

