General Description

The MAX4736 is a low on-resistance, low-voltage, dual single-pole/double throw (SPDT) analog switch that operates from a single 1.6 V to 4.2 V supply. This device has fast switching speeds ($\mathrm{t}_{\mathrm{ON}}=25 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{OFF}}=20 \mathrm{~ns}$ max), handles rail-to-rail analog signals, and consumes less than $4 \mu \mathrm{~W}$ of quiescent power. The MAX4736 has break-before-make switching.
When powered from a 3 V supply, the MAX4736 features low 0.6Ω on-resistance (R_{ON}), with $0.1 \Omega \mathrm{R}_{\mathrm{ON}}$ matching and $0.05 \Omega \mathrm{R}_{\mathrm{ON}}$ flatness. The digital logic input is 1.8 V CMOS compatible when using a single 3 V supply.
The MAX4736 has one normally open (NO) switch and one normally closed (NC) switch, and is available in 12-pin TQFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$), 10-pin $\mu \mathrm{MAX}$, and 10-pin $\mu \mathrm{DFN}(2 \mathrm{~mm} \times 2 \mathrm{~mm})$ packages.

Applications

- Power Routing
- Battery-Powered Systems
- Audio and Video Signal Routing
- Low-Voltage Data-Acquisition Systems
- Communications Circuits
- PCMCIA Cards
- Cellular Phones
- Modems
- Hard Drives

Benefits and Features

- Low RON
0.6Ω (3V Supply)
1.5Ω (1.8V Supply)
- 0.1Ω max RoN Flatness (3V Supply)
- Single-Supply Operation Down to 1.6 V
- Available in TQFN, μ DFN, and μ MAX Packages
- 1.8V CMOS Logic Compatible (3V Supply)
- Fast Switching: $\mathrm{t}_{\mathrm{ON}}=25 \mathrm{~ns}$, tofF $=20 \mathrm{~ns}$

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4736EUB +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$
MAX4736EUB +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$
MAX4736ETC +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	12 TQFN $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$
MAX4736ETC +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	12 TQFN $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$
MAX4736ELB+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{DFN}$ $(2 \mathrm{~mm} \times 2 \mathrm{~mm})$
MAX4736ELB +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{FFN}$ $(2 \mathrm{~mm} \times 2 \mathrm{~mm})$

T = Tape and reel.
+Denotes lead(Pb)-free/RoHS-compliant package.

Pin Configurations/Functional Diagrams/Truth Table

 TOP VIEW

MAX4736		
NN_{-}	OO_ $_{-}$	NC_
0	OFF	ON
1	ON	OFF

SWITCHES SHOWN
FOR LOGIC 0 INPUT
NOTE: CONNECT EXPOSED PAD ON TQFN AND μ DFN TO GND.

0.6Ω, Low-Voltage, Single-Supply, Dual SPDT Analog Switch

Absolute Maximum Ratings

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
$10-\mathrm{Pin} \mu \mathrm{DFN}$ (derate $5.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above +70
10-Pin μ MAX (derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).......... 444 mW
12-Pin TQFN (derate $14.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1176 mW
Operating Temperature Range......................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Junction Temperature.................................. $+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)............................... $300^{\circ} \mathrm{C}$
Soldering Temperature (reflow).................................. $+260^{\circ} \mathrm{C}$

Note 1: Signals on COM_, NO_, or NC_ exceeding V+ or GND are clamped by internal diodes. Limit forward current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics-Single 3V Supply

$\left(\mathrm{V}+=2.7 \mathrm{~V}\right.$ to $4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified. Typical values are at $\mathrm{V}+=3.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$V_{\text {COM_, }}$ $\mathrm{V}_{\text {NO_ }}$, V_{NC}			0		V+	V
On-Resistance (Note 4)	R_{ON}	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}_{-}}=1.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.6	0.8	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1	
On-Resistance Match Between Channels (Notes 4, 5)	$\Delta \mathrm{R}_{\text {ON }}$	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.1	0.2	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		0.3		
On-Resistance Flatness (Note 6)	$\mathrm{R}_{\text {FLAT(ON) }}$	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~m} \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 1.5 \mathrm{~V}, 2 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.05	0.1	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		0.2		
NO_ or NC_ Off-Leakage Current (Note 10)	${ }^{1}{ }^{n} \mathrm{NO}_{-}$(OFF), ${ }^{\text {INC_ }}$ (OFF)	$\begin{aligned} & \mathrm{V}+=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 3.3 \mathrm{~V} ; \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\mathrm{NC}}=3.3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	± 0.002	+1	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		+5	
COM_On-Leakage Current (Note 10)	ICOM_(ON)	$\begin{aligned} & \mathrm{V}+=3.6 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 3.3 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V}, 3.3 \mathrm{~V} \text {, } \\ & \text { or floating } \end{aligned}$	$+25^{\circ} \mathrm{C}$	-2	± 0.002	+2	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		+10	

Electrical Characteristics—Single 3V Supply (continued)

$\left(\mathrm{V}+=2.7 \mathrm{~V}\right.$ to $4.2 \mathrm{~V}, \mathrm{~V}_{I H}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified. Typical values are at $\mathrm{V}+=3.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=1.5 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \overline{\mathrm{C}}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { Figure } 1 \end{aligned}$	$+25^{\circ} \mathrm{C}$		20	25	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			30	
Turn-Off Time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-},} \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \overline{\mathrm{C}}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { Figure } 1 \end{aligned}$	$+25^{\circ} \mathrm{C}$		15	20	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			25	
Break-Before-Make (Note 7)	$t_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-}}, \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \text {; } \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$		5		ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	1			
Charge Injection	Q	$\begin{aligned} & \mathrm{V}_{\mathrm{GEN}}=0, \mathrm{R}_{\mathrm{GEN}}=0, \\ & \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \text { Figure } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$		60		pC
NO_ or NC_ OffCapacitance	$\mathrm{C}_{\text {OFF }}$	$\mathrm{f}=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		33		pF
COM_Off-Capacitance	$\mathrm{C}_{\text {COM }}$ (OFF)	$f=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		60		pF
COM_ On-Capacitance	$\mathrm{C}_{\text {COM(ON) }}$	$f=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		85		pF
-3dB On-Channel Bandwidth	BW	$\begin{aligned} & \text { Signal }=0, R_{I N}=R_{\text {OUT }}= \\ & 50 \Omega, C_{L}=5 \mathrm{pF}, \text { Figure } 5 \end{aligned}$			130		MHz
Off-Isolation (Note 8)	$\mathrm{V}_{\text {ISO }}$	$\begin{aligned} & f=1 \mathrm{MHz}, V_{C O M}=1 V_{P-P}, \\ & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \text { Figure } 5 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-52		dB
Crosstalk (Note 9)	V_{CT}	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \text { Figure } 5 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-78		dB
Total Harmonic Distortion	THD	$\begin{aligned} & f=20 H z \text { to } 20 k H z, V_{C O M}= \\ & 2 V_{P-P}, R_{L}=32 \Omega \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.018		\%
LOGIC INPUT (A_, IN_)							
Input Logic High	V_{IH}			1.4			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$					0.5	V
Input Leakage Current	IN	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0$ or 3.6 V		-1	+0.005	+1	$\mu \mathrm{A}$
POWER SUPPLY							
Power-Supply Range	V+			1.6		3.6	V
Positive Supply Current	I+	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \text { or } \mathrm{V}+\text {, }$ all channels on or off			0.006	1	$\mu \mathrm{A}$

Electrical Characteristics—Single 1.8V Supply

$\left(\mathrm{V}+=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\mathrm{V}_{\mathrm{COM}}$, V_{NO}, V_{NC}			0		V+	V
On-Resistance	R_{ON}	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}_{-}}=1 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		1.5	2	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			3	
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}^{-}=35 \mathrm{pF}, \end{aligned}$ Figure 1	$+25^{\circ} \mathrm{C}$		25	30	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			35	
Turn-Off Time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V} \text {; } \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { Figure } 1 \end{aligned}$	$+25^{\circ} \mathrm{C}$		18	25	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			28	
Break-Before-Make (Note 7)	$t_{\text {BBM }}$	$\begin{aligned} & V_{N O}, \text { or } V_{N C}=1 \mathrm{~V} ; \\ & R_{\mathrm{L}}=50 \Omega, C_{\mathrm{L}}^{-}=35 \mathrm{pF}, \end{aligned}$ Figure 2	$+25^{\circ} \mathrm{C}$		7		ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	1			
Charge Injection	Q	$\begin{aligned} & \mathrm{V}_{\mathrm{GEN}}=0, \mathrm{R}_{\mathrm{GEN}}=0, \\ & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \text { Figure } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$		35		pC
Off-Isolation (Note 8)	VISO	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{NC}} \\ & =1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{R}_{\mathrm{L}}=\overline{5} 0 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \text { Figure } 5 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-52		dB
Crosstalk (Note 9)	V_{CT}	$\begin{aligned} & f=1 \mathrm{MHz}, V_{C O M}=1 V_{P-P}, \\ & R_{L}=50 \Omega, C_{L}=5 p F, \text { Figure } 5 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-78		dB
LOGIC INPUT (IN_)							
Input Logic High	$\mathrm{V}_{\text {IH }}$			1			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$					0.4	V
Input Leakage Current	IIN	$\mathrm{V}_{\text {IN }}=0$ or 3.6 V				1	$\mu \mathrm{A}$

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value is a maximum, is used in this data sheet.
Note 3: $-40^{\circ} \mathrm{C}$ specifications are guaranteed by design.
Note 4: $R_{O N}$ and $\triangle R_{O N}$ matching specifications for TQFN packaged parts are guaranteed by design.
Note 5: $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}(\mathrm{MAX})}-\mathrm{R}_{\mathrm{ON}(\mathrm{MIN})}$.
Note 6: Flatness is defined as the difference between the maximum and the minimum value of on-resistance as measured over the specified analog signal ranges.
Note 7: Guaranteed by design.
Note 8: Off-Isolation $=20 \log _{10}\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}_{-}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}_{-}}=$input to OFF switch.
Note 9: Between two switches.
Note 10: Leakage parameters are 100\% tested at hot temperature and guaranteed by correlation at room.
Note 11: Devices are guaranteed to 1 million cycles of operation. (Cycle $=$ switch on \rightarrow switch off \rightarrow switch on)
Note 12: The minimum load resistance is 8Ω.

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Typical Operating Characteristics (continued)
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN		NAME	FUNCTION
$\boldsymbol{\mu}$ MAX/ $\boldsymbol{\mu D F N}$	TQFN		
1	12	IN1	Digital Control Input Switch 1
2	1	NO1	Analog Switch 1—Normally Open Terminal
3	2	GND	Ground
4	3	NO2	Analog Switch 2—Normally Open Terminal
5	4	IN2	Digital Control Input Switch 2
6	5	COM2	Analog Switch 2—Common Terminal
7	7	NC2	Analog Switch 2—Normally Closed Terminal
8	8	V+	Positive-Supply Voltage Input
9	9	NC1	Analog Switch 1—Normally Closed Terminal
10	11	COM1	Analog Switch 1—Common Terminal
-	6,10	N.C.	No Connection
-	EP	EP	Exposed Pad. Connect to ground.

0.6Ω, Low-Voltage, Single-Supply, Dual SPDT Analog Switch

Detailed Description

The MAX4736 is a low 0.8Ω max (at $\mathrm{V}+=2.7 \mathrm{~V}$) onresistance, low-voltage, dual SPDT analog switch that operates from a 1.6 V to 4.2 V single supply. CMOS switch construction allows switching analog signals that range from GND to $\mathrm{V}+$.
When powered from a 2.7 V supply, the $0.8 \Omega \mathrm{max} \mathrm{R}_{\mathrm{ON}}$ allows high continuous currents to be switched in a variety of applications.

Applications Information

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings; stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence $\mathrm{V}+$ on first, followed by NO_, NC_, or COM_.
Although it is not required, power-supply bypassing improves noise margin and prevents switching noise propagation from the $\mathrm{V}+$ supply to other components. A $0.1 \mu \mathrm{~F}$ capacitor, connected from $\mathrm{V}+$ to GND , is adequate for most applications.

Logic Inputs

The MAX4736 logic inputs can be driven up to 3.6 V , regardless of the supply voltage. For example, with a 1.8 V supply, IN_ can be driven low to GND and high to 3.6 V . Driving $I N$ _ rail-to-rail minimizes power consumption.

Analog Signal Levels

Analog signals that range over the entire supply voltage ($\mathrm{V}+$ to GND) can be passed with very little change in onresistance (see Typical Operating Characteristics). The switches are bidirectional, so the NO_, NC_, and COM_ pins can be used as either inputs or outputs.

Layout

High-speed switches require proper layout and design procedures for optimum performance. Reduce stray inductance and capacitance by keeping traces short and wide. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible.

Test Circuits/Timing Diagrams

LOGIC INPUT WAVEFORMS INVERTED FOR SWITCHES THAT HAVE THE OPPOSITE LOGIC SENSE.

Figure 1. Switching Time

Test Circuits/Timing Diagrams (continued)

Figure 2. Break-Before-Make Interval

Figure 3. Charge Injection

Chip Information
TRANSISTOR COUNT: 379
PROCESS: CMOS

Figure 4. Channel Off/On-Capacitance

MEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT IC TERMINALS.
OFF-ISOLATION IS MEASURED BETWEEN COM_ AND "OFF" NO_ OR NC_ TERMINAL ON EACH SWITCH.
ON-LOSS IS MEASURED BETWEEN COM_ AND "ON" NO_ OR NC_ TERMINAL ON EACH SWITCH.
CROSSTALK IS MEASURED FROM ONE CHANNEL TO ALL OTHER CHANNELS.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.

Figure 5. On-Loss, Off-Isolation, and Crosstalk

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
10 MDFN	$\mathrm{L} 1022+1$	$\underline{21-0164}$	$\underline{90-0006}$
10 MMAX	$\mathrm{U} 10+2$	$\underline{21-0061}$	$\underline{90-0330}$
12 TQFN	$\mathrm{T} 1233+1$	$\underline{21-0136}$	$\underline{90-0066}$

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
3	$1 / 14$	Added QFN package	$1,2,4,6,10$
4	$11 / 16$	Removed reference to EV kit manual, QFN package option, and corrected Ordering Information table	$1,2,4,6,9$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
PI5A100QEX DG9233EDY-GE3 NLAS4684FCTCG NLAS5223BLMNR2G NLV74HC4066ADR2G MC74HC4067ADTG
NCN2612BMTTWG NLX2G66DMUTCG NS5A4684SMNTAG 732480R 733995E 425541DB 425528R 099044FB FSA221UMX MAX4888ETI+T MAX4760EWX+T NLAS3799BMNR2G NLAS5123MNR2G NLAS7222AMTR2G MAX14807ECB+ MAX4968ECM+ PI5A4157CEX NLV14066BDG LC78615E-01US-H PI5A4599BCEX PI5A3157BZUEX NLAS4717EPFCT1G PI5A3167CCEX MAX4744ELB+T MAX4802ACXZ+ SLAS3158MNR2G PI5A392AQE MAX4744HELB+T PI5A4157ZUEX MC74HC4067ADTR2G PI5A4158ZAEX PI5A3166TAEX MAX4901EBL+T MAX14510EEVB+T PI3A3899ZTEX MAX4996ETG+T MAX4889AETO+T MAX14508EEVB+T MAX4701ETE+T MAX4996LETG+T NLX2G66FCTAG TMUX136RSER HV2605FG-G ISL43141IRZ

