0.6Ω, Low-Voltage, Single-Supply, Dual SPDT Analog Switch

General Description

The MAX4736 is a low on-resistance, low-voltage, dual single-pole/double throw (SPDT) analog switch that operates from a single 1.6V to 4.2V supply. This device has fast switching speeds (t_{ON} = 25ns, t_{OFF} = 20ns max), handles rail-to-rail analog signals, and consumes less than 4µW of quiescent power. The MAX4736 has breakbefore-make switching.

When powered from a 3V supply, the MAX4736 features low 0.6 Ω on-resistance (R_{ON}), with 0.1 Ω R_{ON} matching and 0.05 Ω R_{ON} flatness. The digital logic input is 1.8V CMOS compatible when using a single 3V supply.

The MAX4736 has one normally open (NO) switch and one normally closed (NC) switch, and is available in 12-pin TQFN (3mm x 3mm), 10-pin μ MAX, and 10-pin μ DFN (2mm x 2mm) packages.

Applications

- Power Routing
- Battery-Powered Systems
- Audio and Video Signal Routing
- Low-Voltage Data-Acquisition Systems
- Communications Circuits
- PCMCIA Cards
- Cellular Phones
- Modems
- Hard Drives

Benefits and Features

- Low R_{ON} 0.6Ω (3V Supply) 1.5Ω (1.8V Supply)
- 0.1Ω max R_{ON} Flatness (3V Supply)
- Single-Supply Operation Down to 1.6V
- Available in TQFN, µDFN, and µMAX Packages
- 1.8V CMOS Logic Compatible (3V Supply)
- Fast Switching: t_{ON} = 25ns, t_{OFF} = 20ns

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4736EUB+	-40°C to +85°C	10 µMAX
MAX4736EUB+T	-40°C to +85°C	10 µMAX
MAX4736ETC+	-40°C to +85°C	12 TQFN (3mm x 3mm)
MAX4736ETC+T	-40°C to +85°C	12 TQFN (3mm x 3mm)
MAX4736ELB+	-40°C to +85°C	10 µDFN (2mm x 2mm)
MAX4736ELB+T	-40°C to +85°C	10 µDFN (2mm x 2mm)

T = Tape and reel.

+Denotes lead(Pb)-free/RoHS-compliant package.

Pin Configurations/Functional Diagrams/Truth Table

0.6Ω, Low-Voltage, Single-Supply, Dual SPDT Analog Switch

Absolute Maximum Ratings

(Voltages referenced to GND.)	
V+, IN	0.3V to +4.6V
COM_, NO_, NC_ (Note 1)	0.3V to (V+ + 0.3V)
Continuous Current COM_, NO_, NC	±300mA
Continuous Current (all other pins)	±20mA
Peak Current COM_, NO_, NC_	
(pulsed at 1ms 10% duty cycle)	±500mA

Continuous Power Dissipation ($T_A = +70^{\circ}$ C) 10-Pin µDFN (derate 5.3mW/°C above +70°C)423.7mW 10-Pin µMAX (derate 5.6mW/°C above +70°C)444mW 12-Pin TQFN (derate 14.7mW/°C above +70°C)1176mW Operating Temperature Range40°C to +85°C Maximum Junction Temperature+150°C Storage Temperature Range65°C to +150°C

Note 1: Signals on COM_, NO_, or NC_ exceeding V+ or GND are clamped by internal diodes. Limit forward current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics—Single 3V Supply

(V+ = 2.7V to 4.2V, V_{IH} = 1.4V, V_{IL} = 0.5V, T_A = T_{MIN} to T_{MAX}, unless otherwise specified. Typical values are at V+ = 3.0V, T_A = +25°C.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
ANALOG SWITCH								
Analog Signal Range	V _{COM} _, V _{NO} _, V _{NC} _			0		V+	V	
On Desistance (Note 4)		V+ = 2.7V , +25°C	+25°C		0.6	0.8	0	
On-Resistance (Note 4)	R _{ON}	I _{COM} _ = 100mA; V _{NO} _ or V _{NC} _ = 1.5V	T _{MIN} to T _{MAX}			1	Ω	
On-Resistance Match	ΔR _{ON}	I _{COM} = 100mA;	+25°C		0.1	0.2	Ω	
Between Channels (Notes 4, 5)			T _{MIN} to T _{MAX}		0.3			
On-Resistance Flatness	R _{FLAT(ON)} I _C	V+ = 2.7V, I _{COM} _= 100m A; V _{NO} _or V _{NC} _= 1V, 1.5V, 2V	+25°C		0.05	0.1	0	
(Note 6)			T _{MIN} to T _{MAX}		0.2		Ω	
NO_ or NC_ Off-Leakage	C_Off-Leakage	V _{COM} = 0.3V, 3.3V;	+25°C	-1	±0.002	+1	24	
Current (Note 10)	INC_(OFF)		T _{MIN} to T _{MAX}	-5		+5	nA	
COM_ On-Leakage Current (Note 10)		V+ = 3.6V, V _{COM} = 0.3V, 3.3V; +25	+25°C	-2	±0.002	+2	nA	
		V _{NO} _or V _{NC} _= 0.3V, 3.3V, or floating	T_{MIN} to T_{MAX}	-10		+10		

0.6Ω, Low-Voltage, Single-Supply, Dual SPDT Analog Switch

Electrical Characteristics—Single 3V Supply (continued)

(V+ = 2.7V to 4.2V, V_{IH} = 1.4V, V_{IL} = 0.5V, T_A = T_{MIN} to T_{MAX}, unless otherwise specified. Typical values are at V+ = 3.0V, T_A = +25°C.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
SWITCH DYNAMIC CHARA	CTERISTICS	,	1					
Turn-On Time	ton	V _{NO_} , V _{NC_} = 1.5V; R _L = 50Ω, C _L = 35pF,	+25°C		20	25	ns	
	UN	Figure 1	T_{MIN} to T_{MAX}			30	113	
Turn-Off Time	tOFF	V _{NO_} , V _{NC} _ = 1.5V; R _L = 50Ω, C _L = 35pF,	+25°C		15	20	ns	
	"OFF	Figure 1	T_{MIN} to T_{MAX}			25	113	
Break-Before-Make	topu	V _{NO_} , V _{NC_} = 1.5V; R _L = 50Ω, C _L = 35pF,	+25°C		5		ns	
(Note 7)	^t ввм	Figure 2	T_{MIN} to T_{MAX}	1				
Charge Injection	Q	V _{GEN} = 0, R _{GEN} = 0, C _L = 1.0nF, Figure 3	+25°C		60		рС	
NO_ or NC_ Off- Capacitance	C _{OFF}	f = 1MHz, Figure 4	+25°C		33		pF	
COM_ Off-Capacitance	C _{COM(OFF)}	f = 1MHz, Figure 4	+25°C		60		pF	
COM_ On-Capacitance	C _{COM(ON)}	f = 1MHz, Figure 4	+25°C		85		pF	
-3dB On-Channel Bandwidth	BW	Signal = 0, $R_{IN} = R_{OUT} =$ 50 Ω , $C_L =$ 5pF, Figure 5			130		MHz	
Off-Isolation (Note 8)	V _{ISO}	f = 1MHz, V_{COM} = 1 V_{P-P} , R _L = 50Ω, C _L = 5pF, Figure 5	+25°C		-52		dB	
Crosstalk (Note 9)	V _{CT}	f = 1MHz, V_{COM} = 1 V_{P-P} , R _L = 50Ω, C _L = 5pF, Figure 5	+25°C		-78		dB	
Total Harmonic Distortion	THD	f = 20Hz to 20kHz, V _{COM} = 2V _{P-P} , R _L = 32Ω	+25°C		0.018		%	
LOGIC INPUT (A_, IN_)		I	1				1	
Input Logic High	VIH			1.4			V	
Input Logic Low	V _{IL}					0.5	V	
Input Leakage Current	I _{IN}	V _{IN} _ = 0 or 3.6V		-1	+0.005	+1	μA	
POWER SUPPLY								
Power-Supply Range	V+			1.6		3.6	V	
Positive Supply Current	+	V+ = 3.6V, V _{IN} _ = 0 or V+, all channels on or off			0.006	1	μA	

0.6Ω, Low-Voltage, Single-Supply, Dual SPDT Analog Switch

Electrical Characteristics—Single 1.8V Supply

(V+ = 1.8V, V_{IH} = 1.0V, V_{IL} = 0.4V, T_A = T_{MIN} to T_{MAX} , unless otherwise specified. Typical values are at T_A = +25°C.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH	I	J	11				
Analog Signal Range	V _{COM_} , V _{NO_} , V _{NC_}			0		V+	v
On-Resistance	Paul	I _{COM} = 100mA;	+25°C		1.5	2	Ω
On-rresistance	R _{ON}	V_{NO} or V_{NC} = 1V	T _{MIN} to T _{MAX}			3	
SWITCH DYNAMIC CHAP	RACTERISTICS						
Turn-On Time	t _{ON}	V_{NO} , or V_{NC} = 1V; R _I = 50 Ω , C _I = 35pF,	+25°C		25	30	ns
	-011	Figure 1	T_{MIN} to T_{MAX}			35	
Turn-Off Time	tOFF	$R_{L} = 50\Omega, C_{L} = 35pF,$	+25°C		18	25	- ns
	OFF		T_{MIN} to T_{MAX}			28	
Break-Before-Make	t ==		+25°C		7		ns
(Note 7)	^t BBM		T_{MIN} to T_{MAX}	1			115
Charge Injection	Q	V_{GEN} = 0, R_{GEN} = 0, C_L = 1nF, Figure 3	+25°C		35		рС
Off-Isolation (Note 8)	V _{ISO}	$ f = 1MHz, V_{NO} = V_{NC} $ $ = 1V_{P-P}, R_L = 50\Omega, $ $ C_L = 5pF, Figure 5 $	+25°C		-52		dB
Crosstalk (Note 9)	V _{CT}	$ \begin{array}{l} \mbox{f = 1MHz, V_{COM} = 1V_{P-P},} \\ \mbox{R}_L = 50\Omega, \mbox{C}_L = 5pF, \mbox{ Figure 5} \end{array} $	+25°C		-78		dB
LOGIC INPUT (IN_)		,					
Input Logic High	VIH			1			V
Input Logic Low	VIL					0.4	V
Input Leakage Current	I _{IN}	V _{IN} = 0 or 3.6V				1	μA

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value is a maximum, is used in this data sheet.

Note 3: -40°C specifications are guaranteed by design.

Note 4: R_{ON} and ΔR_{ON} matching specifications for TQFN packaged parts are guaranteed by design.

Note 5: $\Delta R_{ON} = R_{ON(MAX)} - R_{ON(MIN)}$.

Note 6: Flatness is defined as the difference between the maximum and the minimum value of on-resistance as measured over the specified analog signal ranges.

Note 7: Guaranteed by design.

Note 8: Off-Isolation = $20\log_{10}(V_{COM}/V_{NO})$, V_{COM} = output, V_{NO} = input to OFF switch.

Note 9: Between two switches.

Note 10: Leakage parameters are 100% tested at hot temperature and guaranteed by correlation at room.

Note 11: Devices are guaranteed to 1 million cycles of operation. (Cycle = switch on \rightarrow switch off \rightarrow switch on)

Note 12: The minimum load resistance is 8Ω .

0.6Ω, Low-Voltage, Single-Supply, Dual SPDT Analog Switch

Typical Operating Characteristics

(T_A = +25°C, unless otherwise noted.)

0.6Ω, Low-Voltage, Single-Supply, Dual SPDT Analog Switch

Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

Pin Description

PIN			FUNCTION	
µMAX/µDFN	TQFN	NAME	FUNCTION	
1	12	IN1	Digital Control Input Switch 1	
2	1	NO1	Analog Switch 1—Normally Open Terminal	
3	2	GND	Ground	
4	3	NO2	Analog Switch 2—Normally Open Terminal	
5	4	IN2	Digital Control Input Switch 2	
6	5	COM2	Analog Switch 2—Common Terminal	
7	7	NC2	Analog Switch 2—Normally Closed Terminal	
8	8	V+	Positive-Supply Voltage Input	
9	9	NC1	Analog Switch 1—Normally Closed Terminal	
10	11	COM1	Analog Switch 1—Common Terminal	
	6,10	N.C.	No Connection	
	EP	EP	Exposed Pad. Connect to ground.	

Detailed Description

The MAX4736 is a low 0.8Ω max (at V+ = 2.7V) onresistance, low-voltage, dual SPDT analog switch that operates from a 1.6V to 4.2V single supply. CMOS switch construction allows switching analog signals that range from GND to V+.

When powered from a 2.7V supply, the 0.8Ω max R_{ON} allows high continuous currents to be switched in a variety of applications.

Applications Information

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings; stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V+ on first, followed by NO_, NC_, or COM_.

Although it is not required, power-supply bypassing improves noise margin and prevents switching noise propagation from the V+ supply to other components. A 0.1μ F capacitor, connected from V+ to GND, is adequate for most applications.

Logic Inputs

The MAX4736 logic inputs can be driven up to 3.6V, regardless of the supply voltage. For example, with a 1.8V supply, IN_ can be driven low to GND and high to 3.6V. Driving IN_ rail-to-rail minimizes power consumption.

Analog Signal Levels

Analog signals that range over the entire supply voltage (V+ to GND) can be passed with very little change in onresistance (see *Typical Operating Characteristics*). The switches are bidirectional, so the NO_, NC_, and COM_ pins can be used as either inputs or outputs.

Layout

High-speed switches require proper layout and design procedures for optimum performance. Reduce stray inductance and capacitance by keeping traces short and wide. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible.

Figure 1. Switching Time

0.6Ω, Low-Voltage, Single-Supply, Dual SPDT Analog Switch

Test Circuits/Timing Diagrams (continued)

Figure 2. Break-Before-Make Interval

Figure 3. Charge Injection

Figure 4. Channel Off/On-Capacitance

Chip Information

TRANSISTOR COUNT: 379 PROCESS: CMOS

0.6Ω, Low-Voltage, Single-Supply, Dual SPDT Analog Switch

Figure 5. On-Loss, Off-Isolation, and Crosstalk

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
10 MDFN	L1022+1	<u>21-0164</u>	<u>90-0006</u>
10 MMAX	U10+2	<u>21-0061</u>	<u>90-0330</u>
12 TQFN	T1233+1	<u>21-0136</u>	<u>90-0066</u>

0.6Ω, Low-Voltage, Single-Supply, Dual SPDT Analog Switch

Revision History

 EVISION IUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
3	1/14	Added QFN package	1, 2, 4, 6, 10
4	11/16	Removed reference to EV kit manual, QFN package option, and corrected Ordering Information table	1, 2, 4, 6, 9

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analog Switch ICs category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

PI5A100QEX DG9233EDY-GE3 NLAS4684FCTCG NLAS5223BLMNR2G NLV74HC4066ADR2G MC74HC4067ADTG NCN2612BMTTWG NLX2G66DMUTCG NS5A4684SMNTAG 732480R 733995E 425541DB 425528R 099044FB FSA221UMX MAX4888ETI+T MAX4760EWX+T NLAS3799BMNR2G NLAS5123MNR2G NLAS7222AMTR2G MAX14807ECB+ MAX4968ECM+ PI5A4157CEX NLV14066BDG LC78615E-01US-H PI5A4599BCEX PI5A3157BZUEX NLAS4717EPFCT1G PI5A3167CCEX MAX4744ELB+T MAX4802ACXZ+ SLAS3158MNR2G PI5A392AQE MAX4744HELB+T PI5A4157ZUEX MC74HC4067ADTR2G PI5A4158ZAEX PI5A3166TAEX MAX4901EBL+T MAX14510EEVB+T PI3A3899ZTEX MAX4996ETG+T MAX4889AETO+T MAX14508EEVB+T MAX4701ETE+T MAX4996LETG+T NLX2G66FCTAG TMUX136RSER HV2605FG-G ISL43141IRZ