MAX4800A/MAX4802A Low-Charge-Injection, 8-Channel, High-Voltage Analog Switches with 20MHz Serial Interface

General Description

The MAX4800A/MAX4802A provide high-voltage switching on eight channels for ultrasonic imaging and printer applications. The devices utilize BCDMOS process technology to provide eight high-voltage low-charge-injection SPST switches, controlled by a 20 MHz serial interface. Data is clocked into an internal 8-bit shift register and retained by a programmable latch with enable and clear inputs. A power-on reset function ensures that all switches are open on power-up.
The devices operate with a wide range of high-voltage supplies including: $\mathrm{V}_{\mathrm{PP}} / \mathrm{V}_{\mathrm{NN}}=+100 \mathrm{~V} /-100 \mathrm{~V},+185 \mathrm{~V} /-15 \mathrm{~V}$, and $+40 \mathrm{~V} /-160 \mathrm{~V}$. The digital interface operates from a separate V_{DD} supply from +2.7 V to +6 V . Digital inputs DIN, CLK, $\overline{L E}$, and CLR are +6V tolerant, independent of the V_{DD} supply voltage. The MAX4802A provides integrated $35 \mathrm{k} \Omega$ bleed resistors on each switch terminal to discharge capacitive loads.
The devices are drop-in replacements for the Supertex HV2203 and HV2303. They are available in the 48-pin LQFP, 26-bump CSBGA, and 28-pin PLCC packages. All devices are specified for the commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Applications

- Ultrasound Imaging
- Printers

Features

- Fast SPI ${ }^{\text {TM }}$ Interface 20 MHz
- Pin-Compatible Replacement for Supertex HV2203 (MAX4800A)
- Pin-Compatible Replacement for Supertex HV2303 (MAX4802A)
- Flexible High-Voltage Supplies Up to $\mathrm{V}_{\mathrm{PP}}-\mathrm{V}_{\mathrm{NN}}=$ 200V
- Low-Charge-Injection, Low-Capacitance 22Ω Switches
- DC to 50 MHz Analog-Signal Frequency Range
- -77 dB Off-Isolation at 5 MHz
- Low $10 \mu \mathrm{~A}$ Quiescent Current
- Integrated Bleed Resistors (MAX4802A Only)
- Available in Standard PLCC, LQFP, and CSBGA Packages

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

PACKAGE TYPE: 26 CSBGA	
Package Code	$\mathrm{X} 07265+1$
Outline Number	$\underline{21-0158}$
Land Pattern Number	$\underline{90-0184}$
THERMAL RESISTANCE, FOUR-LAYER BOARD	
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$	$85^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case $\left(\theta_{\mathrm{JC}}\right)$	$23^{\circ} \mathrm{C} / \mathrm{W}$

PACKAGE TYPE: 28 PLCC	
Package Code	Q28+13
Outline Number	$\underline{21-0049}$
Land Pattern Number	$\underline{90-0235}$
THERMAL RESISTANCE, FOUR-LAYER BOARD	
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$	$44^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case $\left(\theta_{\mathrm{JC}}\right)$	$10^{\circ} \mathrm{C} / \mathrm{W}$

PACKAGE TYPE: 48 LQFP	$\mathrm{C} 48+6$
Package Code	$\underline{21-0054}$
Outline Number	$\underline{90-0093}$
Land Pattern Number	$44^{\circ} \mathrm{C} / \mathrm{W}$
THERMAL RESISTANCE, FOUR-LAYER BOARD	
Junction to Ambient $\left(\theta_{\mathrm{JA}}\right)$	$10^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case $\left(\theta_{\mathrm{JC}}\right)$	

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Low-Charge-Injection, 8-Channel, High-Voltage Analog Switches with 20MHz Serial Interface

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}\right.$ to $+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+40 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}\right), \mathrm{V}_{\mathrm{NN}}=-40 \mathrm{~V}$ to $-160 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
ANALOG SWITCH								
Analog-Signal Range	$\mathrm{V}_{\mathrm{COM}},$ V_{NO}	(Note 2)			$\begin{gathered} \mathrm{V}_{\mathrm{NN}}+ \\ 10 \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{PP}}- \\ 10 \end{gathered}$	V
Small-Signal Switch On-Resistance	Rons	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}^{-} \end{aligned}$	I COM $=5 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			30	Ω
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		26	38	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			48	
			$\mathrm{I}_{\text {com }}=200 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			25	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		22	27	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			32	
		$\begin{aligned} & V_{P P}=+100 \mathrm{~V}, \\ & V_{\mathrm{NN}}=-100 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\text {com }}=5 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			25	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		22	27	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			30	
			$\mathrm{I}_{\text {com }}=200 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			18	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		18	24	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			27	
Small-Signal Switch On-Resistance	Rons	$\begin{aligned} & V_{\mathrm{PP}}=+160 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{COM}}=5 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			23	Ω
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		20	25	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			30	
			$\mathrm{I}_{\text {com }}=200 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			22	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		16	25	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			27	
Small-Signal Switch On-Resistance Matching	$\Delta \mathrm{R}_{\text {ONS }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=5 \mathrm{~mA} \end{aligned}$				5	20	\%
Large-Signal Switch On-Resistance	RONL	$\mathrm{V}_{\text {COM }}=\mathrm{V}_{\text {PP }}-10 \mathrm{~V}, \mathrm{I}_{\text {COM }}=1 \mathrm{~A}$				15		Ω
Shunt Resistance (MAX4802A only)	$\mathrm{R}_{\text {INT }}$	NO_ or COM_ to RGND, switch off			30	35	50	k Ω
Switch-Off Leakage	ICOM_(OFF), INO (OFF)	$\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}$ or unconnected; (MAX4 $\overline{8} 000 \mathrm{~A}$ ōly)					2 10	$\mu \mathrm{A}$
Switch-Off DC Offset		$\begin{aligned} & R_{L}=100 \mathrm{k} \Omega(\mathrm{n} \\ & \text { no load (MAX } \end{aligned}$	$\begin{aligned} & \text { (AX4800A), } \\ & 802 \mathrm{~A}) \end{aligned}$			0	10	mV
Switch-On DC Offset		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega(\mathrm{M} \\ & \text { no load (MAX4 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AX4800A), } \\ & 802 A) \\ & \hline \end{aligned}$			0	10	mV
Switch-Output Peak Current (Note 3)		ICOM_duty cycle $\leq 0.1 \%$		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	3			A
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	2	3		
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$	2			
Switch-Output Isolation Diode Current		300 ns pulse width, 2\% duty cycle (Note 3)			300			mA

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}\right.$ to $+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+40 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}\right), \mathrm{V}_{\mathrm{NN}}=-40 \mathrm{~V}$ to $-160 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
SWITCH DYNAMIC CHARACTERISITICS								
Off-Isolation (Note 3)	$\mathrm{V}_{\text {ISO }}$	$\mathrm{f}=5 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			-30	-33		dB
		$\mathrm{f}=5 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$			-58	-77		
Crosstalk	V_{CT}	$\mathrm{f}=5 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ (Note 3)			-60	-80		dB
$\begin{aligned} & \text { COM_, NO_- } \\ & \text { Off-Capacitance } \end{aligned}$	CCOM_(OFF), C_{NO} (OFF)	$\mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}_{-}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ (Note 3)			4	11	18	pF
COM_On-Capacitance	$\mathrm{C}_{\text {COM }}$ (ON)	$\mathrm{V}_{\text {COM }}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ (Note 3)			20	36	56	pF
Output Voltage Spike	$\mathrm{V}_{\text {SPK }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega$ (Note 3)			-150		+150	mV
Charge Injection (MAX4802A only)	Q	$\mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-160 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}$				820		pC
		$\mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-100 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=0 \mathrm{~V}$				600		
		$\mathrm{V}_{\mathrm{PP}}=+160 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}$				350		
LOGIC LEVELS								
Logic-Input Low Voltage	$\mathrm{V}_{\text {IL }}$						0.75	V
Logic-Input High Voltage	$\mathrm{V}_{\text {IH }}$				$V_{\text {DD }}-0.75$			V
Logic Input Capacitance	$\mathrm{C}_{\text {IN }}$	(Note 3)					10	pF
Logic Input Leakage	In				-1		+1	$\mu \mathrm{A}$
DOUT Low Voltage	V_{OL}	$\mathrm{I}_{\text {SINK }}=1 \mathrm{~mA}$					0.4	V
DOUT High Voltage	V_{OH}	$I_{\text {SOURCE }}=0.75 \mathrm{~mA}$			$V_{D D}-0.5$			V
POWER SUPPLIES								
$\mathrm{V}_{\text {DD }}$ Supply Voltage	V_{DD}				2.7		6.0	V
$\mathrm{V}_{\text {PP }}$ Supply Voltage	$V_{\text {PP }}$					40	$\mathrm{V}_{\text {NN }}+200$	V
$\mathrm{V}_{\text {NN }}$ Supply Voltage	V_{NN}				-160		-15	V
VDD Supply Quiescent Current	IDDQ	$\mathrm{V}_{\text {IL }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IH }}=\mathrm{V}_{\text {PSD }}, \mathrm{f}_{\text {CLK }}=0 \mathrm{~Hz}$					3	$\mu \mathrm{A}$
$\mathrm{V}_{\text {DD }}$ Supply Dynamic Current	IDD	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+5 \mathrm{~V}, \\ & \mathrm{f}_{\mathrm{CLK}}=5 \mathrm{MHz} \end{aligned}$					2	mA
VPP Supply Quiescent Current	IPPQ	All switches remain on or off, $\mathrm{I}_{\mathrm{COM}}^{(\mathrm{ON})}=5 \mathrm{~mA}$				10	50	$\mu \mathrm{A}$
VPP Supply Dynamic Current	IPP	50 kHz output switching frequency with no load		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			6.5	mA
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			6.5	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			6.5	
				$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			4.0	
			$V_{P P}=+100 \mathrm{~V}$, $V_{N N}=-100 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			4.0	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			4.0	
			$\begin{aligned} & V_{P P}=+160 \mathrm{~V}, \\ & V_{N N}=-40 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			4.0	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			4.0	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			4.0	
$\mathrm{V}_{\text {NN }}$ Supply Quiescent Current	${ }^{\text {INNQ }}$	All switches remain on or off, $\mathrm{I}_{\mathrm{COM}}(\mathrm{ON})=5 \mathrm{~mA}$				10	50	$\mu \mathrm{A}$

Low-Charge-Injection, 8-Channel, High-Voltage Analog Switches with 20MHz Serial Interface

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}\right.$ to $+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+40 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}\right), \mathrm{V}_{\mathrm{NN}}=-40 \mathrm{~V}$ to $-160 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP MAX	UNITS
$\mathrm{V}_{\text {NN }}$ Supply Dynamic Current	${ }^{\text {INN }}$	50 kHz output switching frequency with no load	$\begin{aligned} & V_{\mathrm{PP}}=+40 \mathrm{~V}, \\ & V_{\mathrm{NN}}=-160 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$		6.5	mA
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		6.5	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$		6.5	
			$\begin{aligned} & V_{\mathrm{PP}}=+100 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$		4.0	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		4.0	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$		4.0	
			$\begin{aligned} & V_{P P}=+160 \mathrm{~V}, \\ & V_{\mathrm{NN}}=-40 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$		4.0	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		4.0	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$		4.0	
ANALOG SWITCH							
Turn-On Time	${ }^{\text {toN }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V} \\ & \text { to }-1 \overline{6} 0 \mathrm{~V} \end{aligned}$				5	$\mu \mathrm{s}$
Turn-Off Time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V} \\ & \text { to }-1 \overline{6} 0 \mathrm{~V} \end{aligned}$				5	$\mu \mathrm{s}$
Output Switching Frequency	fsw	Duty cycle = 50\%				50	kHz
Maximum VCOM_, $\mathrm{V}_{\text {NO }}$ Slew Rate	dV/dt	(Note 3)			20		V/ns
LOGIC TIMING (Figure 1)							
CLK Frequency	$\mathrm{f}_{\text {CLK }}$	Daisy chainin	$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%$			20	MHz
			$V_{D D}=+3 V$	$\pm 10 \%$		10	
DIN to CLK Setup Time	${ }_{\text {t }}$ S	$V_{\text {DD }}=+5 \mathrm{~V} \pm 10 \%$			10		ns
		$V_{\text {DD }}=+3 \mathrm{~V} \pm 10 \%$			16		
DIN to CLK Hold Time	${ }^{\text {t }}$ H	$V_{\text {DD }}=+5 \mathrm{~V} \pm 10 \%$			3		ns
		$\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V} \pm 10 \%$			3		
CLK to $\overline{\mathrm{LE}}$ Setup Time	${ }^{\text {t }}$ CS	$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%$			36		ns
		$\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V} \pm 10 \%$			65		
$\overline{\text { LE Low Pulse Width }}$	twL	$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%$			14		ns
		$V_{\text {DD }}=+3 \mathrm{~V} \pm 10 \%$			22		
CLR High Pulse Width	twc	$V_{\text {DD }}=+5 \mathrm{~V} \pm 10 \%$			20		ns
		$\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V} \pm 10 \%$			40		
CLK Rise and Fall Times (Note 3)	t_{R}, t_{F}	$\mathrm{V}_{\text {DD }}=+5 \mathrm{~V} \pm 10 \%$				50	ns
		$V_{\text {DD }}=+3 \mathrm{~V} \pm$				50	
CLK to DOUT Delay	too	$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}} \leq 20 \mathrm{pF}$			6	42	ns
		$\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}} \leq 20 \mathrm{pF}$			12	80	

Note 1: Specifications at $0^{\circ} \mathrm{C}$ are guaranteed by correlation and design.
Note 2: The analog-signal input $\mathrm{V}_{\mathrm{COM}}$ and $\mathrm{V}_{\mathrm{NO}_{-}}$must satisfy $\mathrm{V}_{\mathrm{NN}} \leq\left(\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NO}}\right) \leq \mathrm{V}_{\mathrm{PP}}$, or remain unconnected during power-up and power-down.
Note 3: Guaranteed by design and characterization; not production tested.

Typical Operating Characteristics

$\left(V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Pin/Bump Configurations

Pin/Bump Descriptions

PIN/BUMP			NAME	FUNCTION
MAX4800A LQFP	$\begin{gathered} \text { MAX4800A } \\ \text { CSBGA } \end{gathered}$	$\begin{aligned} & \text { MAX4800A } \\ & \text { PLCC } \end{aligned}$		
1	E4	26	COM5	Analog Switch 5-Common Terminal
$\begin{gathered} 2,4,6,7,9,11 \\ 13,15,17,19,21 \\ 23,26,27,30 \\ 31,32,38,40,42 \\ 44,46,48 \end{gathered}$	D6	9, 11, 15	N.C.	No Connection. Not connected internally.
3	E1	27	COM4	Analog Switch 4-Common Terminal
5	E3	28	NO4	Analog Switch 4-Normally Open Terminal
8	D1	1	COM3	Analog Switch 3-Common Terminal
10	D3	2	NO3	Analog Switch 3-Normally Open Terminal
12	D4	3	COM2	Analog Switch 2-Common Terminal
14	C3	4	NO2	Analog Switch 2-Normally Open Terminal
16	C4	5	COM1	Analog Switch 1-Common Terminal
18	A4	6	NO1	Analog Switch 1-Normally Open Terminal
20	C5	7	COM0	Analog Switch 0-Common Terminal
22	D5	8	NOO	Analog Switch 0-Normally Open Terminal
24	C6	10	$V_{\text {PP }}$	Positive High-Voltage Supply. Bypass VPp to GND with a $0.1 \mu \mathrm{~F}$ or greater ceramic capacitor.
25	C7	12	V_{NN}	Negative High-Voltage Supply. Bypass $\mathrm{V}_{\text {NN }}$ to GND with a $0.1 \mu \mathrm{~F}$ or greater ceramic capacitor.
28	D7	13	GND	Ground
29	D9	14	$V_{D D}$	Digital Supply Voltage. Bypass $V_{D D}$ to GND with a $0.1 \mu \mathrm{~F}$ or greater ceramic capacitor.
33	E9	16	DIN	Serial-Data Input
34	E7	17	CLK	Serial-Clock Input
35	E6	18	$\overline{\text { LE }}$	Latch-Enable Input, Active Low
36	F7	19	CLR	Latch Clear Input
37	F6	20	DOUT	Serial-Data Output
39	E5	21	COM7	Analog Switch 7-Common Terminal
41	F5	22	NO7	Analog Switch 7-Normally Open Terminal
43	F4	23	COM6	Analog Switch 6-Common Terminal
45	H4	24	NO6	Analog Switch 6-Normally Open Terminal
47	F3	25	NO5	Analog Switch 5-Normally Open Terminal

Low-Charge-Injection, 8-Channel, High-Voltage Analog Switches with 20MHz Serial Interface

Pin/Bump Descriptions (continued)

PIN/BUMP			NAME	FUNCTION
MAX4802A LQFP	$\begin{aligned} & \text { MAX4802A } \\ & \text { CSBGA } \end{aligned}$	$\begin{aligned} & \text { MAX4802A } \\ & \text { PLCC } \end{aligned}$		
1	E4	26	COM5	Analog Switch 5-Common Terminal
$\begin{gathered} 2,4,6,7,9 \\ 11,13,15,17, \\ 19,21,23,26 \\ 30,31,32,38 \\ 40,42,44,46,48 \end{gathered}$	-	9, 15	N.C.	No Connection. Not connected internally.
3	E1	27	COM4	Analog Switch 4-Common Terminal
5	E3	28	NO4	Analog Switch 4-Normally Open Terminal
8	D1	1	COM3	Analog Switch 3-Common Terminal
10	D3	2	NO3	Analog Switch 3-Normally Open Terminal
12	D4	3	COM2	Analog Switch 2-Common Terminal
14	C3	4	NO2	Analog Switch 2-Normally Open Terminal
16	C4	5	COM1	Analog Switch 1-Common Terminal
18	A4	6	NO1	Analog Switch 1-Normally Open Terminal
20	C5	7	COM0	Analog Switch 0-Common Terminal
22	D5	8	NOO	Analog Switch 0-Normally Open Terminal
24	C6	10	$V_{\text {PP }}$	Positive High-Voltage Supply. Bypass VPP to GND with a $0.1 \mu \mathrm{~F}$ or greater ceramic capacitor.
25	C7	12	V_{NN}	Negative High-Voltage Supply. Bypass $\mathrm{V}_{\text {NN }}$ to GND with a $0.1 \mu \mathrm{~F}$ or greater ceramic capacitor.
27	D6	11	RGND	Bleed Resistor Ground
28	D7	13	GND	Ground
29	D9	14	$V_{D D}$	Digital Supply Voltage. Bypass VDD to GND with a $0.1 \mu \mathrm{~F}$ or greater ceramic capacitor.
33	E9	16	DIN	Serial-Data Input
34	E7	17	CLK	Serial-Clock Input
35	E6	18	$\overline{\text { LE }}$	Latch-Enable Input, Active Low
36	F7	19	CLR	Latch Clear Input
37	F6	20	DOUT	Serial-Data Output
39	E5	21	COM7	Analog Switch 7-Common Terminal
41	F5	22	NO7	Analog Switch 7-Normally Open Terminal
43	F4	23	COM6	Analog Switch 6-Common Terminal
45	H4	24	NO6	Analog Switch 6-Normally Open Terminal
47	F3	25	NO5	Analog Switch 5-Normally Open Terminal

Figure 1. Serial Interface Timing*

Detailed Description

The MAX4800A/MAX4802A provide high-voltage switching on eight channels for ultrasound imaging and printer applications. The devices utilize BCDMOS process technology to provide eight high-voltage low-charge-injection SPST switches, controlled by a 20 MHz serial interface. Data is clocked into an internal 8-bit shift register and retained by a programmable latch with enable and clear inputs. A power-on reset function ensures that all switches are open on power-up.
The devices operate with a wide range of high-voltage supplies including: $\mathrm{V}_{\mathrm{PP}} / \mathrm{V}_{\mathrm{NN}}=+100 \mathrm{~V} /-100 \mathrm{~V},+185 \mathrm{~V} /-15 \mathrm{~V}$, or $+40 \mathrm{~V} /-160 \mathrm{~V}$. The digital interface operates from a separate V_{DD} supply from +2.7 V to +6 V . Digital inputs DIN, CLK, LE, and CLR are +6V tolerant, independent of the V_{DD} supply voltage. The MAX4802A provides
integrated $35 \mathrm{k} \Omega$ bleed resistors on each switch terminal to discharge capacitive loads.
The devices are drop-in replacements for the Supertex HV2203 and HV2303, respectively.

Analog Switch

The devices allow a peak-to-peak analog-signal range from $\mathrm{V}_{\mathrm{NN}}+10 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}$. Analog switch inputs must be unconnected, or satisfy $\mathrm{V}_{\mathrm{NN}} \leq\left(\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NO}}\right) \leq \mathrm{V}_{\mathrm{PP}}$ during power-up and power-down.

High-Voltage Supplies

The devices allow a wide range of high-voltage supplies. The devices operate with V_{NN} from -160 V to -15 V and V_{PP} from +40 V to ($\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}$). When $V_{N N}$ is connected to GND (single-supply applications), the devices operate with $V_{P P}$ up to +200 V .

Figure 2. Latch-Enable Interface Timing

The $V_{P P}$ and $V_{N N}$ high-voltage supplies are not required to be symmetrical, but the voltage difference $\mathrm{V}_{\mathrm{PP}}-\mathrm{V}_{\mathrm{NN}}$ must not exceed 200 V .

Bleed Resistors (MAX4802A)

The MAX4802A features integrated $35 \mathrm{k} \Omega$ bleed resistors to discharge capacitive loads such as piezoelectric transducers. Each analog-switch terminal is connected to RGND with a bleed resistor.

Serial Interface

The devices are controlled by a serial interface with an 8 -bit serial shift register and transparent latch. Each of the eight data bits controls a single analog switch (see Table 1). Data on DIN is clocked with the most significant bit (MSB) first into the shift register on the rising edge of CLK. Data is clocked out of the shift register onto DOUT on the rising edge of CLK. DOUT reflects the status of DIN, delayed by eight clock cycles (see Figures 1 and 2).

Latch Enable ($\overline{\mathrm{LE}}$)

Drive $\overline{\mathrm{LE}}$ logic-low to change the contents of the latch and update the state of the high-voltage switches (Figure 2). Drive $\overline{\mathrm{LE}}$ logic-high to freeze the contents of the latch and prevent changes to the switch states. To reduce noise due to clock feedthrough, drive $\overline{\mathrm{LE}}$ logic-high while data is clocked into the shift register. After the data shift register is loaded with valid data, pulse $\overline{\mathrm{LE}}$ logic-low to load the contents of the shift register into the latch.

Latch Clear (CLR)

The devices feature a latch clear input. Drive CLR logic-high to reset the contents of the latch to zero and open all switches. CLR does not affect the contents of the data shift register. Pulse $\overline{\mathrm{LE}}$ logic-low to reload the contents of the shift register into the latch.

Power-On Reset

The devices feature a power-on reset circuit to ensure all switches are open at power-on. The internal 8 -bit serial shift register and latch are set to zero on power-up.

Table 1. Serial Interface Programming

DATA BITS								CONTROL BITS		FUNCTION							
$\begin{gathered} \text { DO } \\ \text { (LSB) } \end{gathered}$	D1	D2	D3	D4	D5	D6	$\begin{gathered} \text { D7 } \\ \text { (MSB) } \end{gathered}$	$\overline{\mathrm{LE}}$	CLR	SW0	SW1	SW2	SW3	SW4	SW5	SW6	SW7
L								L	L	Off							
H								L	L	On							
	L							L	L		Off						
	H							L	L		On						
		L						L	L			Off					
		H						L	L			On					
			L					L	L				Off				
			H					L	L				On				
				L				L	L					Off			
				H				L	L					On			
					L			L	L						Off		
					H			L	L						On		
						L		L	L							Off	
						H		L	L							On	
							L	L	L								Off
							H	L	L								On
X	X	X	X	X	X	X	X	H	L	Hold Previous State							
X	X	X	X	X	X	X	X	X	H	Off							

$X=$ Don't care.

Applications Information

Logic Levels

The devices' digital interface inputs CLK, DIN, $\overline{\mathrm{LE}}$, and CLR are tolerant of up to +6 V , independent of the V_{DD} supply voltage, allowing compatibility with higher voltage controllers.

Daisy Chaining Multiple Devices

Digital output DOUT is provided to allow the connection of multiple devices by daisy-chaining (Figure 3). Connect each DOUT to the DIN of the subsequent device in the chain. Connect CLK, $\overline{\mathrm{LE}}$, and CLR inputs of all devices, and drive $\overline{\mathrm{LE}}$ logic-low to update all devices simultaneously. Drive CLR high to open all the switches simultaneously. Additional shift registers may be included anywhere in series with the MAX4800A/MAX4802A data chain.

Supply Sequencing and Bypassing

The devices do not require special sequencing of the $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{PP}}$, and V_{NN} supply voltages; however, analog switch inputs must be unconnected, or satisfy $\mathrm{V}_{\mathrm{NN}} \leq$ $\left(\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NO}_{-}}\right) \leq \mathrm{V}_{\mathrm{PP}}$ during power-up and power-down. Bypass $\bar{V}_{\text {DD }}, \bar{V}_{N N}$, and V_{PP} to GND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor as close to the device as possible.

Chip Information

PROCESS: BCDMOS

Figure 3. Interfacing Multiple Devices by Daisy-Chaining

Functional Diagrams

Functional Diagrams (continued)

Ordering Information/

Selector Guide

PART	BLEED RESISTORS	SECOND SOURCE	PIN- PACKAGE
MAX4800ACXZ+*	No	-	26 CSBGA
MAX4800ACQI+	No	HV2203PJ-G	28 PLCC
MAX4800ACCM+*	No	HV2203FG-G	48 LQFP
MAX4802ACXZ+*	Yes	-	26 CSBGA
MAX4802ACQI+	Yes	HV2303PJ-G	28 PLCC
MAX4802ACCM+*	Yes	HV2303FG-G	48 LQFP

Note: All devices are specified over the commercial $0^{\circ} \mathrm{C}$ to
$+70^{\circ} \mathrm{C}$ temperature range.
*Future product-contact factory for availability.
+Denotes a lead(Pb)-free/RoHS-compliant package.

Low-Charge-Injection, 8-Channel, High-Voltage Analog Switches with 20MHz Serial Interface

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$5 / 08$	Initial release	-
1	$2 / 11$	Changed the DC analog-signal frequency range to 50MHz in the Features section; changed the TQFP package to LQFP in the General Description, Ordering Information, Features, Pin/Bump Configurations, Pin/Bump Descriptions, and Package Information	$1,8,14$
2	$4 / 19$	Updated the Electrical Characteristics section	5

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
DG9233EDY-GE3 NLAS4684FCTCG NLAS5223BLMNR2G NLV74HC4066ADR2G MC74HC4067ADTG NLX2G66DMUTCG
NS5A4684SMNTAG 732480R 733995E 425541DB 425528R 099044FB FSA221UMX MAX4888ETI+T MAX4968CEXB+ MAX4760EWX+T NLAS3799BMNR2G NLAS5123MNR2G NLAS5213AMUTAG NLAS7222AMTR2G MAX14807ECB+ MAX4968ECM + NLV14066BDG LC78615E-01US-H PI5A4599BCEX PI5A3157BZUEX ADG613SRUZ-EP NLAS4717EPFCT1G PI5A3167CCEX MAX4744ELB+T MAX4802ACXZ+ DG4051EEN-T1-GE4 SLAS3158MNR2G PI5A3157BC6EX PI5A392AQE MAX4744HELB+T PI5A4157ZUEX MC74HC4067ADTR2G PI5A4158ZAEX PI5A3166TAEX MAX4901EBL+T MAX14510EEVB+T PI3A3899ZTEX MAX4996ETG+T MAX4889AETO+T MAX14508EEVB+T MAX4701ETE+T MAX4996LETG+T NLX2G66FCTAG HI1-5051-2

