Low-Charge Injection, 8-Channel, High-Voltage Analog Switches

General Description

The MAX4800/MAX4801/MAX4802 provide high-voltage switching on eight channels for ultrasonic imaging and printer applications. The devices utilize BCDMOS process technology to provide eight high-voltage low-charge-injection SPST switches, controlled by a digital interface. Data is clocked into an internal 8-bit shift register and retained by a programmable latch with enable and clear inputs. A power-on reset function ensures that all switches are open on power-up.
The MAX4800/MAX4801/MAX4802 operate with a wide range of high-voltage supplies including: VPP/VNN = $+100 \mathrm{~V} /-100 \mathrm{~V},+185 \mathrm{~V} /-15 \mathrm{~V}$, and $+40 \mathrm{~V} /-160 \mathrm{~V}$. The digital interface operates from a separate VDD supply from +2.7 V to +13.2 V . Digital inputs DIN, CLK, $\overline{\mathrm{LE}}$, and CLR are +13.2 V tolerant, independent of the VDD supply voltage. The MAX4802 provides integrated $35 \mathrm{k} \Omega$ bleed resistors on each switch terminal to discharge capacitive loads.

The MAX4800 and MAX4802 are drop-in replacements for the Supertex HV20220 and HV232. The devices are available in the 48-pin TQFP, 26-bump CSBGA, and 28pin PLCC packages. The MAX4801 is a drop-in replacement for the Supertex HV20320 and is available in the 28-pin PLCC package. All devices are specified for the commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range Features

- Pin-Compatible Replacement for Supertex HV20220 (MAX4800)
- Pin-Compatible Replacement for Supertex HV20320 (MAX4801)
- Pin-Compatible Replacement for Supertex HV232 (MAX4802)
- Flexible High-Voltage Supplies Up to VPP - V $\mathrm{NN}=$ 200V
- Low-Charge Injection, Low-Capacitance 22Ω Switches
- DC to 10MHz Analog-Signal Frequency Range
- -77dB Off Isolation at 5MHz
- Low 10нA Quiescent Current
- Integrated Bleed Resistors (MAX4802)
- Available in PLCC, TQFP, and CSBGA Packages

Ultrasound Imaging
Printers
Ordering Information/Selector Guide

PART	BLEED RESISTORS	SECOND SOURCE	PIN-PACKAGE
MAX4800CCM	No	HV20220FG	48 TQFP
MAX4800CQI	No	HV20220PJ	28 PLCC
MAX4800CXZ	No	HV220**	26 CSBGA
MAX4801CQI	No	HV20320PJ	28 PLCC
MAX4802CCM	Yes	HV232FG	48 TQFP
MAX4802CQI	Yes	HV232PJ	28 PLCC
MAX4802CXZ	Yes	HV230GA	26 CSBGA

Note: All devices are specified over the commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.
**Not pin-for-pin compatible.

Low-Charge Injection, 8-Channel, High-Voltage Analog Switches

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)
VDD Logic-Supply Voltage-0.5V to +15V
VPP - V NN Supply Voltage ... 220 V
Vpp Positive-Supply Voltage-0.5V to VNN +220 V
VNN Negative-Supply Voltage +0.5 V to -220V
Logic Inputs LE, CLR, CLK, DIN
-0.5 V to +15 V
DOUT
-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
RGND (MAX4802) \qquad -4.5 V to +0.5 V
COM, NO
... V_{NN} to V_{PP}
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
28-Pin PLCC (derate $10.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) \qquad .842 mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}\right.$ to $+13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+40 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-15 \mathrm{~V}$ to $-160 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
ANALOG SWITCH								
Analog Signal Range	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}} \end{aligned}$	(Note 2)			$\begin{gathered} \mathrm{V}_{\mathrm{NN}}+ \\ 10 \end{gathered}$		$\begin{gathered} \text { VPP - } \\ 10 \end{gathered}$	V
Small-Signal Switch On-Resistance	Rons	$\begin{aligned} & V_{P P}=+40 \mathrm{~V}, \\ & V_{\mathrm{NN}}=-160 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \end{aligned}$	$\mathrm{ICOM}=5 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			30	Ω
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		26	38	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			48	
			$\begin{aligned} & \text { ICOM }= \\ & 200 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			25	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		22	27	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			32	
		$\begin{aligned} & V_{\mathrm{PP}}=+100 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \end{aligned}$	$\mathrm{ICOM}=5 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			25	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		22	27	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			30	
			$\begin{aligned} & \text { ICOM }= \\ & 200 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			18	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		18	24	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			27	
		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+160 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V} \\ & \text { or } \\ & \mathrm{V}_{\mathrm{PP}}=+185 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \end{aligned}$	$I C O M=5 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			23	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		20	25	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			30	
			$\begin{aligned} & \text { ICOM }= \\ & 200 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			22	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		16	25	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			27	
Small-Signal Switch On-Resistance Matching	\triangle RONS	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0, \mathrm{ICOM}^{2}=5 \mathrm{~mA} \end{aligned}$				5	20	\%
Large-Signal Switch On-Resistance	Ronl	$V_{C O M}=V_{P P}-10 \mathrm{~V}, \mathrm{ICOM}=1 \mathrm{~A}$				15		Ω
Shunt Resistance	Rint	NO_ or COM_ to RGND (MAX4802), switch off			30	35	50	k Ω

Low-Charge Injection, 8-Channel, High-Voltage Analog Switches

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+2.7 \mathrm{~V}\right.$ to $+13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+40 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-15 \mathrm{~V}$ to $-160 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Switch-Off Leakage	$\begin{aligned} & \text { ICOM_(OFF), } \\ & \text { INO_(OFF) } \end{aligned}$	$\mathrm{V}_{\text {COM_ }}, \mathrm{V}_{\text {NO_ }}=\mathrm{V}_{\text {PP }}-10 \mathrm{~V}$ or unconnected; RGND unconnected (MAX4802)		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1	4	$\mu \mathrm{A}$
				$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to TMAX			10	
Switch-Off DC Offset		$\begin{aligned} & \text { RL = 100k } \Omega \text { (MAX4800/MAX4801), } \\ & \text { No load (MAX4802) } \end{aligned}$				100	300	mV
Switch-On DC Offset		$\begin{aligned} & \text { RL=100k } \Omega \text { (MAX4800/MAX4801), } \\ & \text { No load (MAX4802) } \end{aligned}$				100	500	mV
Switch-Output Peak Current (Note 3)		ICOM_duty cycle $\leq 0.1 \%$	$\mathrm{T}_{\mathrm{A}}=$	$0^{\circ} \mathrm{C}$	3			A
				$+25^{\circ} \mathrm{C}$	2	3		
			$\mathrm{T}_{\mathrm{A}}=$	$+70^{\circ} \mathrm{C}$	2			
Switch-Output Isolation Diode Current (Note 3)		300ns pulse width, 2% duty cycle		$\begin{aligned} & -\mathrm{V}_{\mathrm{NN}} \leq 200 \mathrm{~V} \\ & \mathrm{I}_{1}, \mathrm{NO} 1-\mathrm{NO} 7 \end{aligned}$	300			mA
				V_{NN} V, NOO	30			
				$\begin{aligned} & -\mathrm{V}_{\mathrm{NN}} \leq 160 \mathrm{~V} \\ & \mathrm{I}_{1}, \mathrm{NO}_{-} \end{aligned}$	750			
SWITCH DYNAMIC CHARACTERISITICS								
Off-Isolation (Note 3)	VISO	$f=5 \mathrm{MHz}, R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}$			-30	-33		dB
		$f=5 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$			-58	-77		
Crosstalk (Note 3)	V_{CT}	$f=5 \mathrm{MHz}, \mathrm{RL}_{\mathrm{L}}=50 \Omega$			-60	-80		dB
$\begin{aligned} & \text { COM_, NO_- } \\ & \text { Off-Capacitance } \\ & \text { (Note 3) } \end{aligned}$	Ссом (OFF), C_{NO} ((OFF)	$\mathrm{V}_{\text {COM }}{ }^{\text {a }}=0, \mathrm{~V}_{\text {NO_ }}=0, f=1 \mathrm{MHz}$			4	11	18	pF
COM_ On-Capacitance (Note 3)	CCOM_ (ON)	$\mathrm{V}_{\text {COM }}{ }_{\text {- }}=0, f=1 \mathrm{MHz}$			20	36	56	pF
Output-Voltage Spike (Note 3)	VSPK	$\mathrm{R}_{\mathrm{L}}=50 \Omega$			-150		+150	mV
Charge Injection	Q	$\mathrm{V}_{\mathrm{PP}}=+40 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-160 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=0$				820		pC
		$V_{\text {PP }}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=0$				600		
		$\mathrm{V}_{\mathrm{PP}}=+160 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=0$				350		
LOGIC LEVELS								
Logic-Input Low Voltage	VIL	$\mathrm{V}_{\mathrm{DD}} \geq+4.5 \mathrm{~V}$					1.5	V
		$\mathrm{V}_{\mathrm{DD}}<+4.5 \mathrm{~V}$					0.75	
Logic-Input High Voltage	V_{IH}	$V_{D D} \geq+4.5 \mathrm{~V}$			$\begin{gathered} \mathrm{V}_{\mathrm{DD}}- \\ 1.5 \end{gathered}$			V
		$\mathrm{V}_{\mathrm{DD}}<+4.5 \mathrm{~V}$			$\begin{gathered} \hline \text { VDD } \\ 0.75 \\ \hline \end{gathered}$			
Logic-Input Capacitance (Note 3)	CIN						10	pF
Logic-Input Leakage	IIN				-1		+1	$\mu \mathrm{A}$
DOUT Low Voltage	VOL	$\mathrm{V}_{\mathrm{DD}} \geq+4.5 \mathrm{~V}, \mathrm{ISINK}=1 \mathrm{~mA}$					0.4	V
		$\mathrm{V}_{\mathrm{DD}}<+4.5 \mathrm{~V}$, $\mathrm{ISINK}=0.5 \mathrm{~mA}$					0.4	V

Low-Charge Injection,
 8-Channel, High-Voltage Analog Switches

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+2.7 \mathrm{~V}\right.$ to $+13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+40 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-15 \mathrm{~V}$ to $-160 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
DOUT High Voltage	VOH	$\mathrm{V}_{\text {DD }} \geq+4.5 \mathrm{~V}$, ISOURCE $=0.5 \mathrm{~mA}$			$\begin{array}{r} \text { VDD } \\ 0.5 \end{array}$			V
		$\mathrm{V}_{\mathrm{DD}}<+4.5 \mathrm{~V}$, ISOURCE $=0.25 \mathrm{~mA}$			$\begin{gathered} \text { VDD }- \\ 0.5 \end{gathered}$			V
POWER SUPPLIES								
VDD Supply Voltage					2.7		13.2	V
VPP Supply Voltage					40		$\begin{gathered} V_{\text {NN }}+ \\ 200 \end{gathered}$	V
VNN Supply Voltage					-160		-15	V
VDD Supply Quiescent Current	IDDQ	$\mathrm{V}_{\mathrm{IL}}=0, \mathrm{~V}_{\text {IH }}=\mathrm{V}_{\text {DD }}, \mathrm{f} C L K=0$					15	$\mu \mathrm{A}$
VDD Supply Dynamic Current	IDD	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0, \mathrm{~V}_{\mathrm{IH}}=+5 \mathrm{~V}, \\ & \mathrm{f}_{\mathrm{CLK}}=5 \mathrm{MHz} \end{aligned}$					4	mA
VPP Supply Quiescent Current	IPPQ	All switches remain on or off, ICOM_(ON) = 5 mA				10	50	$\mu \mathrm{A}$
VPP Supply Dynamic Current	IPP	50 kHz output switching frequency with no load	$\begin{aligned} & V_{P P}=+40 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			6.5	mA
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			6.5	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			6.5	
			$\begin{aligned} & V_{P P}=+100 \mathrm{~V}, \\ & V_{\mathrm{NN}}=-100 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			4.0	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			4.0	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			4.0	
			$\begin{aligned} & V_{\mathrm{PP}}=+160 \mathrm{~V}, \\ & V_{\mathrm{NN}}=-40 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			4.0	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			4.0	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			4.0	
VNN Supply Quiescent Current	INNQ	All switches remain on or off, ICOM_(ON) = 5 mA				10	50	$\mu \mathrm{A}$
VNN Supply Dynamic Current	INN	50 kHz output switching frequency with no load	$\begin{aligned} & V_{\mathrm{PP}}=+40 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-160 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			6.5	mA
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			6.5	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			6.5	
			$\begin{aligned} & V_{\mathrm{PP}}=+100 \mathrm{~V}, \\ & V_{\mathrm{NN}}=-100 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			4.0	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			4.0	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			4.0	
			$\begin{aligned} & V_{\mathrm{PP}}=+160 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			4.0	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			4.0	
				$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			4.0	

Low-Charge Injection, 8-Channel, High-Voltage Analog Switches

TIMING CHARACTERISTICS

$\left(V_{D D}=+2.7 \mathrm{~V}\right.$ to $+13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+40 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-15 \mathrm{~V}$ to $-160 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP MAX	UNITS
ANALOG SWITCH						
Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V} \\ & \text { to }-160 \mathrm{~V} \end{aligned}$			5	$\mu \mathrm{s}$
Turn-Off Time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{NN}}=-40 \mathrm{~V} \\ & \text { to }-160 \mathrm{~V} \end{aligned}$			5	$\mu \mathrm{s}$
Output Switching Frequency	fsw	Duty cycle $=50 \%$			50	kHz
Maximum $\mathrm{V}_{\mathrm{COM}}$, $\mathrm{V}_{\text {NO_ }}$ Slew Rate	dV/dt	(Note 3)		20		V/ns
LOGIC TIMING (Figure 1)						
CLK Frequency	fCLK	Daisy chaining	$\mathrm{V}_{\mathrm{DD}} \geq+4.5 \mathrm{~V}$		5	MHz
			$\mathrm{V}_{\mathrm{DD}} \leq+4.5 \mathrm{~V}$		2.5	
		No daisy chaining	$V_{D D} \geq+4.5 \mathrm{~V}$		10	
			$\mathrm{V}_{\mathrm{DD}}<+4.5 \mathrm{~V}$		4	
DIN to CLK Setup Time	tDS	$V_{D D} \geq+4.5 \mathrm{~V}$		15		ns
		$\mathrm{V}_{\mathrm{DD}}<+4.5 \mathrm{~V}$		40		
DIN to CLK Hold Time	tDH	$\mathrm{V}_{\mathrm{DD}} \geq+4.5 \mathrm{~V}$		35		ns
		$\mathrm{V}_{\mathrm{DD}}<+4.5 \mathrm{~V}$		60		
CLK to LE Setup Time	tcS	$V_{D D} \geq+4.5 \mathrm{~V}$		150		ns
		$\mathrm{V}_{\mathrm{DD}}<+4.5 \mathrm{~V}$		300		
$\overline{\text { LE Low-Pulse Width }}$	twL	$V_{D D} \geq+4.5 \mathrm{~V}$		150		ns
		$\mathrm{V}_{\mathrm{DD}}<+4.5 \mathrm{~V}$		300		
CLR High-Pulse Width	twc	$V_{D D} \geq+4.5 \mathrm{~V}$		150		ns
		$\mathrm{V}_{\mathrm{DD}}<+4.5 \mathrm{~V}$		300		
CLK Rise and Fall Times	t_{R}, t_{F}	$V_{D D} \geq+4.5 \mathrm{~V}$ (Note 3)			1	$\mu \mathrm{S}$
		$\mathrm{V}_{\mathrm{DD}}<+4.5 \mathrm{~V}$ (Note 3)			1	
CLK to DOUT Delay	tDo	$\begin{aligned} & V_{D D}=+5 \mathrm{~V} \pm 10 \%, \\ & C_{L} \leq 50 \mathrm{pF} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	55	150	ns
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	60	150	
			$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$	70	150	
		$\begin{aligned} & V_{D D}=+3 V \pm 10 \%, \\ & C_{L} \leq 50 p F \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	70	280	

Note 1: Specifications at $0^{\circ} \mathrm{C}$ are guaranteed by correlation and design. Electrical parameters are tested at worst case conditions.
Note 2: The analog signal input $\mathrm{V}_{\mathrm{COM}}$ and $\mathrm{V}_{\text {NO_ }}$ must satisfy $\mathrm{V}_{\mathrm{NN}} \leq\left(\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NO}}\right) \leq \mathrm{V}_{\mathrm{PP}}$, or remain unconnected during power-up and power-down.
Note 3: Guaranteed by characterization; not production tested.

Low-Charge Injection, 8-Channel, High-Voltage Analog Switches

$\left(\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Low-Charge Injection, 8-Channel, High-Voltage Analog Switches

Pin Descriptions

PIN				NAME	FUNCTION
$\begin{gathered} \text { MAX4800 } \\ \text { TQFP } \end{gathered}$	$\begin{gathered} \text { MAX4800 } \\ \text { CSBGA } \end{gathered}$	$\begin{gathered} \text { MAX4800 } \\ \text { PLCC } \end{gathered}$	$\begin{aligned} & \text { MAX4801 } \\ & \text { PLCC } \end{aligned}$		
1	E4	26	26	COM5	Analog Switch 5 - Common Terminal
$\begin{gathered} 2,4,6,7,9, \\ 11,13,15, \\ 17,19,21, \\ 23,26,27, \\ 30,31,32, \\ 38,40,42, \\ 44,46,48 \end{gathered}$	D6	9, 11, 15	11, 14, 15	N.C.	No Connection. Not connected internally.
3	E1	27	27	COM4	Analog Switch 4 - Common Terminal
5	E3	28	28	NO4	Analog Switch 4 - Normally Open Terminal
8	D1	1	1	COM3	Analog Switch 3 - Common Terminal
10	D3	2	2	NO3	Analog Switch 3 - Normally Open Terminal
12	D4	3	3	COM2	Analog Switch 2 - Common Terminal
14	C3	4	4	NO2	Analog Switch 2 - Normally Open Terminal
16	C4	5	5	COM1	Analog Switch 1 - Common Terminal
18	A4	6	6	NO1	Analog Switch 1 - Normally Open Terminal
20	C5	7	7	COM0	Analog Switch 0 - Common Terminal
22	D5	8	8	NOO	Analog Switch 0 - Normally Open Terminal
24	C6	10	9	VPP	Positive High-Voltage Supply. Bypass Vpp to GND with a $0.1 \mu \mathrm{~F}$ or greater ceramic capacitor.
25	C7	12	10	V_{NN}	Negative High-Voltage Supply. Bypass VNN to GND with a $0.1 \mu \mathrm{~F}$ or greater ceramic capacitor.
28	D7	13	12	GND	Ground
29	D9	14	13	VDD	Digital-Supply Voltage. Bypass VDD to GND with a $0.1 \mu \mathrm{~F}$ or greater ceramic capacitor.
33	E9	16	16	DIN	Serial Data Input
34	E7	17	17	CLK	Serial Clock Input
35	E6	18	18	$\overline{\text { LE }}$	Latch Enable Input, Active Low
36	F7	19	19	CLR	Latch Clear Input
37	F6	20	20	DOUT	Serial Data Output
39	E5	21	21	COM7	Analog Switch 7 - Common Terminal
41	F5	22	22	NO7	Analog Switch 7 - Normally Open Terminal
43	F4	23	23	COM6	Analog Switch 6 - Common Terminal
45	H4	24	24	NO6	Analog Switch 6 - Normally Open Terminal
47	F3	25	25	NO5	Analog Switch 5 - Normally Open Terminal

Low-Charge Injection, 8-Channel, High-Voltage Analog Switches

Pin Descriptions (continued)

PIN			NAME	FUNCTION
$\begin{aligned} & \text { MAX4802 } \\ & \text { TQFP } \end{aligned}$	$\begin{gathered} \text { MAX4802 } \\ \text { CSBGA } \end{gathered}$	$\begin{aligned} & \text { MAX4802 } \\ & \text { PLCC } \end{aligned}$		
1	E4	26	COM5	Analog Switch 5 - Common Terminal
$\begin{gathered} 2,4,6,7,9 \\ 11,13,15,17, \\ 19,21,23,26, \\ 30,31,32,38, \\ 40,42,44,46, \\ 48 \end{gathered}$	-	9, 15	N.C.	Not Connected Internally
3	E1	27	COM4	Analog Switch 4 - Common Terminal
5	E3	28	NO4	Analog Switch 4 - Normally Open Terminal
8	D1	1	COM3	Analog Switch 3 - Common Terminal
10	D3	2	NO3	Analog Switch 3 - Normally Open Terminal
12	D4	3	COM2	Analog Switch 2 - Common Terminal
14	C3	4	NO2	Analog Switch 2 - Normally Open Terminal
16	C4	5	COM1	Analog Switch 1 - Common Terminal
18	A4	6	NO1	Analog Switch 1 - Normally Open Terminal
20	C5	7	COM0	Analog Switch 0 - Common Terminal
22	D5	8	NOO	Analog Switch 0 - Normally Open Terminal
24	C6	10	VPP	Positive High-Voltage Supply. Bypass VPp to GND with a $0.1 \mu \mathrm{~F}$ or greater ceramic capacitor.
25	C7	12	V_{NN}	Negative High-Voltage Supply. Bypass V_{NN} to GND with a $0.1 \mu \mathrm{~F}$ or greater ceramic capacitor.
27	D6	11	RGND	Bleed Resistor Ground
28	D7	13	GND	Ground
29	D9	14	$V_{D D}$	Digital-Supply Voltage. Bypass VDD to GND with a $0.1 \mu \mathrm{~F}$ or greater ceramic capacitor.
33	E9	16	DIN	Serial Data Input
34	E7	17	CLK	Serial Clock Input
35	E6	18	$\overline{\text { LE }}$	Latch Enable Input, Active Low
36	F7	19	CLR	Latch Clear Input
37	F6	20	DOUT	Serial Data Output
39	E5	21	COM7	Analog Switch 7 - Common Terminal
41	F5	22	NO7	Analog Switch 7 - Normally Open Terminal
43	F4	23	COM6	Analog Switch 6 - Common Terminal
45	H4	24	NO6	Analog Switch 6 - Normally Open Terminal
47	F3	25	NO5	Analog Switch 5 - Normally Open Terminal

Low-Charge Injection, 8-Channel, High-Voltage Analog Switches

Figure 1. Serial Interface Timing

Detailed Description

The MAX4800/MAX4801/MAX4802 provide high-voltage switching on eight channels for ultrasound imaging and printer applications. The devices utilize BCDMOS process technology to provide eight high-voltage low-charge-injection SPST switches, controlled by a digital interface. Data is clocked into an internal 8 -bit shift register and retained by a programmable latch with enable and clear inputs. A power-on reset function ensures that all switches are open on power-up.
The MAX4800/MAX4801/MAX4802 operate with a wide range of high-voltage supplies including: VPP/VNN = $+100 \mathrm{~V} /-100 \mathrm{~V},+185 \mathrm{~V} /-15 \mathrm{~V}$, or $+40 \mathrm{~V} /-160 \mathrm{~V}$. The digital interface operates from a separate VDD supply from +2.7 V to +13.2 V . Digital inputs DIN, CLK, LE, and CLR are +13.2 V tolerant, independent of the V_{DD} supply voltage. The MAX4802 provides integrated $35 \mathrm{k} \Omega$ bleed
resistors on each switch terminal to discharge capacitive loads.
The MAX4800 and MAX4802 are drop-in replacements for the Supertex HV20220 and HV232, respectively The MAX4801 is a drop-in replacement for the Supertex HV20320.

Analog Switch
The MAX4800/MAX4801/MAX4802 allow a peak-topeak analog signal range from $V_{N N}+10 \mathrm{~V}$ to Vpp - 10V. Analog switch inputs must be unconnected, or satisfy $\mathrm{V}_{\mathrm{NN}} \leq\left(\mathrm{VCOM}_{-}, \mathrm{V}_{\text {NO_ }}\right) \leq \mathrm{V}_{\mathrm{PP}}$ during power-up and power-down.

High-Voltage Supplies
The MAX4800/MAX4801/MAX4802 allow a wide range of high-voltage supplies. The devices operate with V_{NN} from -160 V to -15 V and V PP from +40 V to $\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}$.

Low-Charge Injection, 8-Channel, High-Voltage Analog Switches

Figure 2. Latch Enable Interface Timing

When V_{NN} is connected to GND (single-supply applications), the devices operate with VPP up to +200 V . The VPP and $V_{N N}$ high-voltage supplies are not required to be symmetrical, but the voltage difference VPP - VNN must not exceed 200V.

Bleed Resistors (MAX4802)
The MAX4802 features integrated $35 \mathrm{k} \Omega$ bleed resistors to discharge capacitive loads such as piezoelectric transducers. Each analog switch terminal is connected to RGND with a bleed resistor.

Serial Interface

The MAX4800/MAX4801/MAX4802 are controlled by a serial interface with an 8-bit serial shift register and transparent latch. Each of the eight data bits controls a single analog switch (see Table 1). Data on DIN is clocked with the most significant bit (MSB) first into the shift register on the rising edge of CLK. Data is clocked out of the shift register onto DOUT on the rising edge of CLK. DOUT reflects the status of DIN, delayed by eight clock cycles (see Figures 1 and 2).

Latch Enable (LE)

Drive $\overline{\mathrm{LE}}$ logic-low to change the contents of the latch and update the state of the high-voltage switches (Figure 2). Drive LE logic-high to freeze the contents of the latch and prevent changes to the switch states. To reduce noise due to clock feedthrough, drive LE logichigh while data is clocked into the shift register. After the data shift register is loaded with valid data, pulse $\overline{\mathrm{LE}}$ logic-low to load the contents of the shift register into the latch.

Latch Clear (CLR)

The MAX4800/MAX4801/MAX4802 feature a latch clear input. Drive CLR logic-high to reset the contents of the latch to zero and open all switches. CLR does not affect the contents of the data shift register. Pulse $\overline{\mathrm{LE}}$ logic-low to reload the contents of the shift register into the latch.

Power-On Reset

The MAX4800/MAX4801/MAX4802 feature a power-on reset circuit to ensure all switches are open at poweron. The internal 8-bit serial shift register and latch are set to zero on power-up.

Low-Charge Injection, 8-Channel, High-Voltage Analog Switches

Table 1. Serial Interface Programming

DATA BITS								CONTROL BITS		FUNCTION							
$\begin{gathered} \hline \mathrm{D} 0 \\ \text { (LSB) } \end{gathered}$	D1	D2	D3	D4	D5	D6	$\begin{gathered} \text { D7 } \\ \text { (MSB) } \end{gathered}$	$\overline{\mathrm{LE}}$	CLR	SW0	SW1	SW2	SW3	SW4	SW5	SW6	SW7
L								L	L	OFF							
H								L	L	ON							
	L							L	L		OFF						
	H							L	L		ON						
		L						L	L			OFF					
		H						L	L			ON					
			L					L	L				OFF				
			H					L	L				ON				
				L				L	L					OFF			
				H				L	L					ON			
					L			L	L						OFF		
					H			L	L						ON		
						L		L	L							OFF	
						H		L	L							ON	
							L	L	L								OFF
							H	L	L								ON
X	X	X	X	X	X	X	X	H	L				PREV	US S			
X	X	X	X	X	X	X	X	X	H	OFF							

$x=$ Don't Care

Applications Information

Logic Levels

The MAX4800/MAX4801/MAX4802 digital interface inputs CLK, DIN, LE, and CLR are tolerant of up to +13.2 V , independent of the V_{DD} supply voltage, allowing compatibility with higher voltage controllers.

Daisy Chaining Multiple Devices

Digital output DOUT is provided to allow the connection of multiple MAX4800/MAX4801/MAX4802 devices by daisy chaining (Figure 3). Connect each DOUT to the DIN of the subsequent device in the chain. Connect CLK, $\overline{L E}$, and CLR inputs of all devices, and drive $\overline{\mathrm{LE}}$ logic-low to update all devices simultaneously. Drive CLR high to open all the switches simultaneously. Additional shift registers may be included anywhere in series with the MAX4800/MAX4801/MAX4802 data chain.

Supply Sequencing and Bypassing The MAX4800/MAX4801/MAX4802 do not require special sequencing of the VDD, Vpp, and VNN supply voltages; however, analog switch inputs must be unconnected, or satisfy $\mathrm{V}_{\mathrm{NN}} \leq\left(\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NO}}\right) \leq \mathrm{V}_{\mathrm{PP}}$ during power-up and power-down. Bypass VDD, VNN and VPP to GND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor as close to the device as possible.

Chip Information
PROCESS: BCDMOS

Low-Charge Injection,

8-Channel, High-Voltage Analog Switches

Figure 3. Interfacing Multiple Devices by Daisy-Chaining

Low-Charge Injection, 8-Channel, High-Voltage Analog Switches

Functional Diagrams (continued)

Low-Charge Injection,
 8-Channel, High-Voltage Analog Switches

Low-Charge Injection, 8-Channel, High-Voltage Analog Switches

Pin Configurations (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
28 PLCC	Q28-4	$\underline{\mathbf{2 1 - 0 0 4 9}}$
26 CSBGA	X07265-1	$\underline{\mathbf{2 1 - 0 1 5 8}}$
48 TQFP	C48-6	$\underline{\mathbf{2 1 - 0 0 5 4}}$

Low-Charge Injection, 8-Channel, High-Voltage Analog Switches

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	8/06	Initial release.	-
1	3/07	- Updated "Second Source" column and revised two package codes in the Ordering Information/Selector Guide section. - Updated the pin numbers of the MAX4802 TQFN in the Pin Descriptions column. Replaced the TQFN Pin Configurations. - Added package drawing 21-0158 to the Package Information section.	$\begin{gathered} 1,7,8,14,18,19 \\ 20,21 \end{gathered}$
2	5/09	Deleted TQFN from the Ordering Information/Selector Guide, Pin Descriptions, Pin Configurations, and Package Information sections.	$1,7,8,14,20,21$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118

