Dual, Unipolar/Bipolar, High-Voltage

 Digital Pulsers
General Description

The MAX4806/MAX4807/MAX4808 integrated circuits generate high-voltage, high-frequency, unipolar or bipolar pulses from low-voltage logic inputs. These dual pulsers feature independent logic inputs, independent high-voltage pulser outputs with active clamps, and independent high-voltage supply inputs.
The MAX4806/MAX4807/MAX4808 feature a 6Ω output impedance for the high-voltage outputs, and a 20Ω impedance for the active clamp. The high-voltage outputs are guaranteed to provide 2A of output current.
All devices use three logic inputs per channel to control the positive and negative pulses and active clamp. Also included are two independant enable inputs. Disabling EN_ ensures the output MOSFETs are not accidentally turned on during fast power-supply ramping. This allows for faster ramp times and smaller delays between pulsing modes. A low-power shutdown mode reduces power consumption to less than $1 \mu \mathrm{~A}$. All digital inputs are CMOS compatible.
The MAX4806 includes clamp output overvoltage protection, while the MAX4807 features both pulser output and clamp output overvoltage protection. The MAX4808 does not provide overvoltage protection (see the Ordering Information/Selector Guide).
The MAX4806/MAX4807/MAX4808 are available in a $56-$ pin ($7 \mathrm{~mm} \times 7 \mathrm{~mm}$), TQFN exposed-pad package and are specified over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ commercial temperature range.

Applications

Ultrasound Medical Imaging		Flaw Detection Piezoelectric Drivers	
Industrial Sensors		Test Instruments	
	Order	ring Inf Selec	ormation/ or Guide
PART	PROTECTED OUTPUTS	OUTPUT CURRENT (A)	PINPACKAGE
MAX4806CTN+	OCP_, OCN_	2	56 TQFN-EP**
MAX4807CTN+	$\begin{gathered} \hline \mathrm{OCP}_{-}, \mathrm{OCN}_{-} \\ \mathrm{OP}_{-}, \mathrm{ON}_{-} \end{gathered}$	2	56 TQFN-EP**
MAX4808CTN+*	None	2	56 TQFN-EP**

Note: All devices are specified over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operating temperature range.
+Denotes a lead-free/RoHS-compliant package.
*Future product. Contact factory for availability.
${ }^{* *} E P=$ Exposed pad.
Warning: The MAX4806/MAX4807/MAX4808 are designed to operate with high voltages. Exercise caution.

Features

- Highly Integrated, High-Voltage, High-Frequency Unipolar/Bipolar Pulser
- 6Ω Output Impedance and 2A (min) Output Current
- 20Ω Active Clamp
- Pulser and Clamp Overvoltage Protection (MAX4806/MAX4807)
- 0 to +220 V Unipolar or $\pm 110 \mathrm{~V}$ Bipolar Outputs
- Matched Rise/Fall Times and Matched Propagation Delays
- CMOS-Compatible Logic Inputs
- 56-Pin, $7 \mathrm{~mm} \times 7 \mathrm{~mm}$, TQFN Package

Pin Configuration

*EP = EXPOSED PAD; CONNECT EP TO VSS

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND.)
VDD Logic Supply Voltage..-0.3V to +6V
$V_{C C}$ Output Driver Positive Supply Voltage-0.3V to +15 V
$V_{E E}$ Output Driver Negative Supply Voltage.........-15V to +0.3 V
VPP_ High Positive Supply Voltage. -0.3V to +230V
$V_{\text {NN_ }}$ High Negative Supply Voltage -230V to +0.3V
VSS Voltage ...(VPP_ - 250V) to VNN
VPP1 - VNN1, VPP2 - VNN2 Supply Voltage............-0.3V to +250V
INP_, INN_, INC_, EN_, SHDN Logic Input..-0.3V to (VDD +0.3 V)
OP_, OCP_, OCN_, ON_........... (-0.3V + VNN_) to (-0.3 V to V_{PP})
CGN_Voltage............................ $\left(-0.3 \mathrm{~V}+\mathrm{V}_{\mathrm{NN}}\right.$) to $\left(+15 \mathrm{~V}+\mathrm{V}_{\text {NN_ }}\right)$
CGP_Voltage (+0.3V + VPP_) to ($-15 \mathrm{~V}+\mathrm{V}_{\text {PP_ }}$)
CGC_Voltage..-15V to +15V

CDC_, CDP_, CDN_Voltage-0.3V to VCC
Peak Current per Output Channel33.0A
Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)($ Note 1)
$56-$ Pin TQFN (derate $40 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 3200 mW Thermal Resistance (Note 2)

OJCOperating Temperature RangeJunction Temperature...........Storage Temperature Range

Note 1: This specification is based on the thermal characteristic of the package, the maximum junction temperature, and the setup described by JEDEC 51. The maximum power dissipation for the MAX4806/MAX4807/MAX4808 might be limited by the thermal protection included in the device.
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}\right.$ to $+6 \mathrm{~V}, \mathrm{~V}_{C C_{-}}=+4.75 \mathrm{~V}$ to $+12.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12.6 \mathrm{~V}$ to $-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-200 \mathrm{~V}$ to $0 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=0 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}\right)$, $\mathrm{V}_{\mathrm{SS}} \leq$ the lower of $\mathrm{V}_{\mathrm{NN} 1}$ or $\mathrm{V}_{\mathrm{NN} 2}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{J}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \overline{\mathrm{C}}_{\text {. }}$) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY ($\mathbf{V}_{\text {DD }}, \mathrm{V}_{\mathbf{C C}}$, $\mathbf{V}_{\text {EE_, }}, \mathrm{VPP}_{\text {- }}, \mathrm{V}_{\text {NN_ }}$)						
Logic Supply Voltage	VDD		+2.7	+3	+6	V
Positive Drive Supply Voltage	VCC_		+4.75	+12	+12.6	V
Negative Drive Supply Voltage	$\mathrm{VEE}_{\text {_ }}$		-12.6	-12	-4.75	V
High-Side Supply Voltage	VPP_		0		$\begin{gathered} \mathrm{V}_{\mathrm{NN}+}+ \\ 220 \end{gathered}$	V
Low-Side Supply Voltage	V_{NN}		-200		0	V
VPP_ - V ${ }_{\text {NN_ }}$ Supply Voltage			0		+220	V
SUPPLY CURRENT (Single Channel)						
VDD Supply Current	IDD	$\mathrm{V}_{\text {INN }}=\mathrm{V}_{\text {INP }}=0, \mathrm{~V}_{\text {SHDN }}=0$			1	$\mu \mathrm{A}$
		$\begin{aligned} & V_{E N_{-}}=V_{D D}, V_{S H D N}=V_{D D}, V_{I N C_{-}}=0 \text { or } \\ & V_{D D}, V_{I N N_{-}}=V_{I N P_{-}, f} f=5 \mathrm{MHz} \end{aligned}$		100	350	
VCC_ Supply Current	ICC_	$V \overline{\text { SHDN }}=0$, channel 1 and channel 2			1	
		$V_{E N}=V_{D D}, V_{S H D N}=V_{D D}$, channel 1 and channel 2		130	200	$\mu \mathrm{A}$
		$V_{E N_{-}}=V_{D D}, V_{S H D N}=V_{D D}, V_{I N C_{-}}=0$ or $V_{D D}, V_{I N N}=V_{\text {INP_ }}, f=5 M H z, V_{C C}=5 \mathrm{~V}$, $V_{D D}=3 V$, only one channel switching		18		mA
		$V_{E N_{-}}=V_{D D}, V_{S H D N}=V_{D D}, V_{I N C_{-}}=0$ or $V_{D D}, V_{\text {INN_ }}=V_{\text {INP_ }}, f=5 M H z, V_{C C-}=12 \mathrm{~V}$, $V_{D D}=3 V$, only one channel switching		44		

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}\right.$ to $+6 \mathrm{~V}, \mathrm{~V}_{C C_{-}}=+4.75 \mathrm{~V}$ to $+12.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}_{-}}=-12.6 \mathrm{~V}$ to $-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-200 \mathrm{~V}$ to $0 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=0 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}\right), \mathrm{V}_{\mathrm{SS}} \leq$ the lower of $\mathrm{V}_{\text {NN1 }}$ or $\mathrm{V}_{\text {NN2 }}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \overline{\mathrm{C}}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
VEE_Supply Current	lee_	$V{ }_{\text {SHDN }}=0$, channel 1 and channel 2			1	$\mu \mathrm{A}$
		$V_{E N}=V_{D D}, V_{S H D N}=V_{D D}$, channel 1 and channel 2			1	
		$\begin{aligned} & V_{E N_{-}}=V_{D D}, V_{\text {SHDN }}=V_{D D}, V_{\text {INC_ }}=0 \text { or } \\ & V_{D D}, V_{I N N}=V_{I N P}, f=5 M H z, V_{E E_{-}}=-5 \mathrm{~V}, \\ & \text { only } 1 \text { channel switching } \end{aligned}$			200	
		$V_{E N_{-}}=V_{D D}, V_{S H D N}=V_{D D}, V_{I N C_{-}}=0 \text { or }$ $V_{D D}, V_{I N N}=V_{\text {INP }}, f=5 M H z, V_{E E}=-12 \mathrm{~V}$, only 1 channel switching			200	
VPP_Supply Current	IPP_	$V \mathrm{SHDN}=0$, channel 1 and channel 2			1	$\mu \mathrm{A}$
		$V_{E N}=V_{D D}, V_{S H D N}=V_{D D}$, channel 1 and channel 2		90	160	
				13		mA
		$V_{E N}=V_{D D}, V_{S H D N}=V_{D D}, V_{I N C_{-}}=0$ or $V_{D D}$, $V_{\text {PP_ }}=+80 \mathrm{~V}, \mathrm{~V}_{\text {NN_ }}=-80 \mathrm{~V}$, pulse repetition frequency $=10 \mathrm{kHz}, \mathrm{f}=10 \mathrm{MHz}$, four periods, no load, only 1 channel switching		0.65		
VNN_Supply Current	$\mathrm{INN}^{\text {- }}$	$V \mathrm{SHDN}=0$, channel 1 and channel 2			1	$\mu \mathrm{A}$
		$V_{E N}=V_{D D}, V_{S H D N}=V_{D D}$, channel 1 and channel 2		40	80	
		$\begin{aligned} & \hline \mathrm{V}_{\text {EN_ }}=\mathrm{V}_{\text {DD }}, V_{\text {SHDN }}=\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {INC }}=0 \text { or } \\ & \mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {INN }}=\mathrm{V}_{\text {INP_, }}, f=5 \mathrm{MHz}, \mathrm{~V}_{\text {NN_ }}=-5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {PP_ }}=+5 \mathrm{~V} \text {, no load, only } 1 \text { channel } \\ & \hline \end{aligned}$		13		mA
		$V_{E N}=V_{D D}, V_{S H D N}=V_{D D}, V_{I N C}=0$ or $V_{D D}$, $V_{\text {PP_ }}=+80 \mathrm{~V}, \mathrm{~V}_{\text {NN_ }}=-80 \mathrm{~V}$, pulse repetition frequency $=10 \mathrm{kHz}, \mathrm{f}=10 \mathrm{MHz}$, four periods, no load, only 1 channel switching		0.65		
LOGIC INPUTS (EN_, $\overline{\text { SHDN, }}$, INN_{-}, INP_, INC_)						
Low-Level Input Voltage	$\mathrm{V}_{\text {IL }}$				$5 \times \mathrm{V}_{\mathrm{DD}}$	V
High-Level Input Voltage	V_{IH}		$0.75 \times V_{\text {DD }}$			V
Logic-Input Capacitance	CIN			5		pF
Logic-Input Leakage	IIN	$\mathrm{V}_{\text {IN }}=0$ or V_{DD}			± 1	$\mu \mathrm{A}$
OUTPUT (OUT_)						
OUT_ Output Voltage Range	Vout_	No load at OUT_	V_{NN}		VPP_	V
		Unprotected outputs (see the Ordering Information/Selector Guide), 100mA load	$\underset{1.5}{\mathrm{~V}_{\mathrm{NN}}+}$		$\begin{gathered} \mathrm{V}_{\text {PP- }}- \\ 1.5 \end{gathered}$	
		Protected outputs (see the Ordering Information/Selector Guide), 100mA load	$\begin{array}{\|c} \hline \mathrm{V}_{\mathrm{NN},}+ \\ 2.5 \end{array}$		$\begin{gathered} \hline \mathrm{VPP}_{-}- \\ 2.5 \\ \hline \end{gathered}$	
Low-Side Small-Signal Output Impedance (MAX4806)	Rout_LS	IOP_= $-100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{~V} \pm 5 \%$, DC-coupled		5	12	Ω
		lop_ $=-100 \mathrm{~mA}, \mathrm{~V}_{\text {CC_- }}=+5 \mathrm{~V} \pm 5 \%$, DC-coupled		5	12	

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+2.7 \mathrm{~V}\right.$ to $+6 \mathrm{~V}, \mathrm{~V}_{C C_{-}}=+4.75 \mathrm{~V}$ to $+12.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}_{-}}=-12.6 \mathrm{~V}$ to $-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-200 \mathrm{~V}$ to $0 \mathrm{~V}, \mathrm{VPP}_{\mathrm{P}}=0 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{NN}}^{-}+200 \mathrm{~V}\right), \mathrm{V}_{\mathrm{SS}} \leq$ the lower of $\mathrm{V}_{\text {NN1 }}$ or $\mathrm{V}_{\text {NN2 }}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \overline{\mathrm{C}}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Low-Side Small-Signal Output Impedance (MAX4807)	Rout_LS	$\mathrm{lOP}_{-}=-100 \mathrm{~mA}, \mathrm{~V}_{\text {CC_ }}=+12 \mathrm{~V} \pm 5 \%$, DC-coupled			6	13	Ω
		$\mathrm{lOP}_{-}=-100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}^{-}=+5 \mathrm{~V} \pm 5 \%$, DC-coupled			6	13	
High-Side Small-Signal Output Impedance (MAX4806)	Rout_hs	$\mathrm{IOP}_{-}=-100 \mathrm{~mA}, \mathrm{~V}_{\text {cC_ }}=+12 \mathrm{~V} \pm 5 \%$, DC-coupled			6	12	Ω
		$\mathrm{IOP}_{-}=-100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$, DC-coupled			8	15	
High-Side Small-Signal Output Impedance (MAX4807)	Rout_hs	$\mathrm{lOP}=-100 \mathrm{~mA}, \mathrm{~V}_{\text {cC_ }}=+12 \mathrm{~V} \pm 5 \%$, DC-coupled			7	13	Ω
		$\mathrm{IOP}_{-}=-100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$, DC-coupled			9	17	
Low-Side Output Current	IOL	$\mathrm{V}_{\text {CC_- }}=+12 \mathrm{~V} \pm 5 \%$, V $\mathrm{OUT}_{-}-\mathrm{V}_{\mathrm{NN}_{-}}=100 \mathrm{~V}$		2			A
High-Side Output Current	IOH	$\mathrm{V}_{\text {CC_ }}=+12 \mathrm{~V} \pm 5 \%$, V $\mathrm{VOUT}_{-}-\mathrm{V}_{\text {PP_ }}=100 \mathrm{~V}$		2			A
Off-Output Capacitance	Co(OFF)	OP_, ON_, OCP_ and OCN_ connected together; $V_{P P_{-}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}_{-}}=-100 \mathrm{~V}$	MAX4806	110			pF
			MAX4807	70			
Off-Output Leakage Current	ILK	$\begin{aligned} & V_{N N_{-}}=-100 \mathrm{~V}, V_{P P_{-}}=100 \mathrm{~V}, E N_{-}=0, \\ & O U T_{-}=-100 \mathrm{~V} \text { to }+100 \mathrm{~V} \end{aligned}$		-1		+1	$\mu \mathrm{A}$
Low-Side Signal-Clamp Output Impedance	Rcls	$\begin{aligned} & \mathrm{IOCN}=-30 \mathrm{~mA}, \mathrm{DC}-\text { coupled, } \mathrm{V}_{\mathrm{CC}}=+12 \mathrm{~V} \\ & \pm 5 \%, \mathrm{VEE}_{-}=-\mathrm{V}_{C C} \end{aligned}$			20	40	Ω
		$\begin{aligned} & \text { IOCN_ }=-30 \mathrm{~mA}, \mathrm{DC}-\text { coupled, } \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \\ & \pm 5 \%, \mathrm{~V}_{\mathrm{EE}_{-}}=-\mathrm{V}_{\mathrm{CC}}^{-} \end{aligned}$			20	50	
High-Side Signal-Clamp Output Impedance	RCHS	$\begin{aligned} & \text { loCP- = -30mA, DC-coupled, } \mathrm{VCC}_{-}=+12 \mathrm{~V} \\ & \pm 5 \%, \mathrm{~V}_{\text {EE_- }}=-\mathrm{V}_{C C}- \end{aligned}$			20	40	Ω
		$\begin{aligned} & \text { IoCP_= -30mA, DC-coupled, } \mathrm{V}_{\mathrm{CC}_{-}}=+5 \mathrm{~V} \\ & \pm 5 \%, \mathrm{~V}_{\text {EE_ }=-\mathrm{V}_{C C}} \end{aligned}$			33	50	
Low-Side Gate Short Impedance	RLSH	$\begin{aligned} & \mathrm{VCC}_{-}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}_{-}}=-\mathrm{V}_{\mathrm{CC}_{-}}, \mathrm{ICGN}_{-}= \\ & 10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EN}}=0 \end{aligned}$				100	Ω
		$\begin{aligned} & \mathrm{VCC}_{\mathrm{C}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}_{-}}=-\mathrm{V}_{C C_{-}}, \mathrm{ICGN}_{-}= \\ & 10 \mathrm{~mA}, \mathrm{EN}_{-}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$		5	7.5	10	k Ω
High-Side Gate Short Impedance	RHSH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}_{-}}=-\mathrm{V}_{\mathrm{CC}}, \text {, } \mathrm{ICGN}_{-}= \\ & 10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EN}}=0 \end{aligned}$				100	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\text {EE }_{-}}=-\mathrm{V}_{C C_{-}}, \mathrm{I}_{\mathrm{CGN}}= \\ & 10 \mathrm{~mA}, \mathrm{EN}_{-}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$		5	7.5	10	k Ω
THERMAL SHUTDOWN							
Thermal Shutdown	TSHDN	Junction temperature rising			+155		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis					20		${ }^{\circ} \mathrm{C}$
DYNAMIC CHARACTERISTICS ($\mathrm{R}_{\mathrm{L}}=100 \Omega, C_{L}=100 \mathrm{pF}$, unless otherwise noted. See Figures 4-7.)							
Logic Input to Output Rise Propagation Delay	tPLH	$\mathrm{V}_{C C_{-}}=+12 \mathrm{~V}, \mathrm{~V}_{\text {PP_ }}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}^{-}=-5 \mathrm{~V},$ Figure 4			15		ns
Logic Input to Output Fall Propagation Delay	tPHL	$\mathrm{V}_{C C_{-}}=+12 \mathrm{~V}, \mathrm{~V}_{\text {PP_ }}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-5 \mathrm{~V} \text {, }$ Figure 4			15		ns
Logic Input to Output Rise Propagation Delay	tPOH	$\mathrm{V}_{C C_{-}}=+12 \mathrm{~V}, \mathrm{~V}_{P P_{-}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}_{-}}=-5 \mathrm{~V},$ Figure 4			15		ns
Logic Input to Output Fall Propagation Delay	tPOL	$\mathrm{V}_{C C_{-}}=+12 \mathrm{~V}, \mathrm{VPP}_{-}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-5 \mathrm{~V},$ Figure 4			15		ns

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}\right.$ to $+6 \mathrm{~V}, \mathrm{~V}_{C C_{-}}=+4.75 \mathrm{~V}$ to +12.6 V , $\mathrm{V}_{\mathrm{EE}}=-12.6 \mathrm{~V}$ to $-4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-200 \mathrm{~V}$ to $0 \mathrm{~V}, \mathrm{~V}_{\text {PP }}=0 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}\right)$, $\mathrm{V}_{\mathrm{SS}} \leq$ the lower of $\mathrm{V}_{\mathrm{NN} 1}$ or $\mathrm{V}_{\mathrm{NN} 2}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{J}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logic Input to Output-Rise Propagation Delay Clamp	tPLO	$\mathrm{V}_{C C_{-}}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}^{-}, ~=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-5 \mathrm{~V},$ Figure 4		15		ns
Logic Input to Output-Fall Propagation Delay Clamp	tPHO	$\mathrm{V}_{C C_{-}}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}^{-}, ~=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-5 \mathrm{~V},$ Figure 4		15		ns
OUT_ Rise Time (GND to VPP_)	trop	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~V}_{C C_{-}}=+12 \mathrm{~V} \\ & \pm 5 \%, \mathrm{~V}_{\text {EE }_{-}}=-\mathrm{V}_{\mathrm{CC}} \text {, Figure } 4 \end{aligned}$			20	ns
OUT_ Rise Time (VNN_ to GND)	trNo	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~V}_{C C_{-}}=+12 \mathrm{~V} \\ & \pm 5 \%, \mathrm{~V}_{E E_{-}}=-\mathrm{V}_{C C_{-}} \text {, Figure } 4 \end{aligned}$			35	ns
OUT_ Rise Time (VNN_ to VPP_)	trNP	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~V}_{C C_{-}}=+12 \mathrm{~V} \\ & \pm 5 \%, \mathrm{~V}_{\text {EE }_{-}}=-\mathrm{V}_{\mathrm{CC}} \text {, Figure } 4 \end{aligned}$			35	ns
OUT_ Fall Time (GND to VNN_)	tFON	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~V}_{C C_{-}}=+12 \mathrm{~V} \\ & \pm 5 \%, \mathrm{~V}_{\text {EE }}=-\mathrm{V}_{\mathrm{CC}} \text {, Figure } 4 \end{aligned}$			20	ns
OUT_ Fall Time (VPP_to GND)	tFP0	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{~V} \\ & \pm 5 \%, \mathrm{~V}_{\mathrm{EE}_{-}}=-\mathrm{V}_{\mathrm{CC}} \text {, Figure } 4 \end{aligned}$			35	ns
OUT_ Fall Time (VPP_to $\mathrm{V}_{\text {NN_ }}$)	tFPN	$\begin{aligned} & \mathrm{V}_{\text {PP_ }}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~V}_{C C_{-}}=+12 \mathrm{~V} \\ & \pm 5 \%, \mathrm{~V}_{E E_{-}}=-\mathrm{V}_{C C_{-}} \text {, Figure } 4 \end{aligned}$			35	ns
OUT_ Enable Time from EN_ (Figure 5)	ten	$\mathrm{V}_{C C_{-}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}_{-}}=-\mathrm{V}_{C C_{-}}$			100	ns
		$\mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \%$, $\mathrm{VEE}_{-}=-\mathrm{V}_{C C}$			150	
OUT_ Disable Time from EN_ (Figure 5)	tDI	$\mathrm{V}_{C C_{-}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}_{-}}=-\mathrm{V}_{\mathrm{CC}}$			100	ns
		$\mathrm{V}_{\mathrm{CC}_{-}}=+5 \mathrm{~V} \pm 5 \%$, $\mathrm{V}_{\text {EE }}=-\mathrm{V}_{\text {CC }}$		0	150	
Clamp Enable Time from INC_	ten-CL	$\mathrm{V}_{C C_{-}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}_{-}}=-\mathrm{V}_{C C_{-}}$, Figure 6			150	ns
Clamp Disable Time from INC_	tDI-CL	$\mathrm{V}_{C C_{-}}=+12 \mathrm{~V} \pm 5 \%$, $\mathrm{V}_{\mathrm{EE}_{-}}=-\mathrm{V}_{C C_{-}}$, Figure 6		0	150	ns
Short Enable Time from EN_	ten_SH	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+12 \mathrm{~V}, \mathrm{~V}_{\text {NN_ }}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{~V} \\ & \pm 5 \%, \mathrm{~V}_{\mathrm{EE}_{-}}=-\mathrm{V}_{C C_{-}} \text {, Figure } 7 \end{aligned}$			1000	ns
Short Disable Time from EN_	tDI_SH	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+12 \mathrm{~V}, \mathrm{~V}_{\text {NN_ }}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{~V} \\ & \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=-\mathrm{V}_{\mathrm{CC}} \text {, Figure } 7 \end{aligned}$			250	ns
Recovery Time from $\overline{\text { SHDN }}$		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+12 \mathrm{~V}, \mathrm{~V}_{\text {NN_ }}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}_{-}}=+12 \mathrm{~V} \\ & \pm 5 \%, \mathrm{~V}_{\mathrm{EE}_{-}}=-\mathrm{V}_{\mathrm{CC}}^{-} \end{aligned}$		36.8		ns
Crosstalk		$\begin{aligned} & V_{\mathrm{PP}_{-}}=\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}_{-}}=\mathrm{V}_{\mathrm{EE}_{-}}=-5 \mathrm{~V} \\ & \mathrm{f}=5 \mathrm{MHz} \end{aligned}$		69		dB
2nd Harmonic Distortion	2 HD	$\begin{aligned} & \mathrm{V}_{\text {PP }_{-}}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V} \\ & \text { fout }=5 \mathrm{MHz}, \mathrm{~V}_{C C_{-}}=+12 \mathrm{~V} \end{aligned}$		40		dB
RMS Output Jitter	t	$\mathrm{V}_{\text {CC_ }}=+12 \mathrm{~V}$		9		ps

Note 3: Specifications are guaranteed for the stated global conditions, unless otherwise noted and are 100\% production tested at $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{T}_{A}=+70^{\circ} \mathrm{C}$. Specifications at $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ are guaranteed by design.

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

$\left(V_{D D}=+3.3 \mathrm{~V}, \mathrm{~V}_{C C}=+12 \mathrm{~V}, \mathrm{~V}_{E E}=-12 \mathrm{~V}, \mathrm{~V}_{S S}=-100 \mathrm{~V}, \mathrm{~V}_{P P}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{fOUT}=5 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

ICC_vs. TEMPERATURE

IPP_vs. TEMPERATURE

Icc_vs. OUTPUT FREQUENCY

IPP_vs. OUTPUT FREQUENCY

IPP_vs. TEMPERATURE

Icc vs. TEMPERATURE

IPP_vs. OUTPUT FREQUENCY

INN_vs. OUTPUT FREQUENCY

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{~V}, \mathrm{~V}_{E E}=-12 \mathrm{~V}, \mathrm{~V}_{S S}=-100 \mathrm{~V}, \mathrm{~V}_{\text {PP_ }}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}\right.$, fout $=5 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

OUT_RISE TIME (GND TO VPP_) vs. VCC_/ ${ }_{\text {EE }}$ SUPPLY VOLTAGE

VCC_ $N_{\text {EE_ }}$ SUPPLY VOLTAGE (V)

INP-TO-OUT RISE PROPAGATION DELAY vs. TEMPERATURE

InN_vs. TEMPERATURE

OUT_FALL TIME (GND TO VNN_) vs. VCc_/Vee_ SUPPLY VOLTAGE

$V_{C C} N_{\text {EE }}$ SUPPLY VOLTAGE (V)

INP-TO-OUT FALL PROPAGATION DELAY vs. VCC_, VEE_SUPPLY VOLTAGE

$V_{C C}$ _ $N_{\text {EE_ }}$ SUPPLY VOLTAGE (V)

INP-TO-OUT RISE PROPAGATION DELAY vs. VCc_/ Vee_ $^{\text {SUPPLY VOLTAGE }}$

VCc_NEE_SUPPLY VOLTAGE (V)

INP-TO-OUT FALL PROPAGATION DELAY vs. TEMPERATURE

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

Pin Description

PIN	NAME	FUNCTION
1	CGP1	Channel 1 High-Side Gate Input. Connect a 1 nF to 10 nF capacitor between CDP1 and CGP1 as close as possible to the device.
2, 3	VPP1	Channel 1 High-Side Positive Supply Voltage Input. Bypass VPP1 to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device. (See Power Supplies and Bypassing in the Applications Information section.) Depending on the application, additional bypassing may be required.
$\begin{gathered} 4,10,33, \\ 39 \end{gathered}$	N.C.	No Connection. Not connected internally.
5	OP1	Channel 1 High-Side Drain Output
6	OCP1	Channel 1 High-Side Clamp Output
$\begin{aligned} & 7,15,28, \\ & 36,44,55 \end{aligned}$	GND	Ground
8	OCN1	Channel 1 Low-Side Clamp Output
9	ON1	Channel 1 Low-Side Drain Output
11, 12	$\mathrm{V}_{\text {NN1 }}$	Channel 1 High-Side Negative Supply Voltage Input. Bypass $\mathrm{V}_{\mathrm{NN} 1}$ to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device. (See Power Supplies and Bypassing in the Applications Information section.) Depending on the application, additional bypassing may be required.
13	CGN1	Channel 1 Low-Side Gate Input. Connect a 1nF to 10nF capacitor between CDN1 and CGN1 as close as possible to the device.
14	CDN1	Channel 1 Low-Side Driver Output. Connect a 1nF to 10nF capacitor between CDN1 and CGN1 as close as possible to the device.
16, 54	$\mathrm{V}_{\text {CC1 }}$	Channel 1 Gate-Drive Supply Voltage Input. Bypass $\mathrm{V}_{\mathrm{CC} 1}$ to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device. (See Power Supplies and Bypassing in the Applications Information section.) Depending on the output, additional bypassing may be required.
17	INN1	Channel 1 Low-Side Logic Input (See Table 1)
18	INC1	Channel 1 Clamp Logic Input. Clamps OCP1 and OCN1 are turned on when INC1 is high and when INP1 and INN1 are low (see Table 1).
19	INP1	Channel 1 High-Side Logic Input (See Table 1)
20	EN1	Channel 1 Enable Logic Input. Drive EN1 high to enable OP1 and ON1. Pull EN1 low to turn on the gatesource short circuit (see Table 1).
21	$\overline{\text { SHDN }}$	Shutdown Logic Input (See Table 1)
22	AGND	Analog Ground. Must be connected to common GND.
23	EN2	Channel 2 Enable Logic Input. Drive EN2 high to enable OP2 and ON2. Pull EN2 low to turn on the gatesource short circuit (see Table 1).
24	INP2	Channel 2 High-Side Logic Input (See Table 1)
25	INC2	Channel 2 Clamp Logic Input. Clamps OCP2 and OCN2 are turned on when INC2 is high and when INP2 and INN2 are low (see Table 1).
26	INN2	Channel 2 Low-Side Logic Input (See Table 1)
27, 45	$\mathrm{V}_{\mathrm{CC} 2}$	Channel 2 Gate-Drive Supply Voltage Input. Bypass $\mathrm{V}_{\mathrm{CC}} 2$ to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device. (See Power Supplies and Bypassing in the Applications Information section.) Depending on the application, additional bypassing may be required.
29	CDN2	Channel 2 Low-Side Driver Output. Connect a 1nF to 10nF capacitor between CDN2 and CGN2 as close as possible to the device.
30	CGN2	Channel 2 Low-Side Gate Input. Connect a 1nF to 10nF capacitor between CDN2 and CGN2 as close as possible to the device.

8

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

Pin Description (continued)

PIN	NAME	FUNCTION
31, 32	$\mathrm{V}_{\text {NN2 }}$	Channel 2 High-Side Negative Supply Voltage Input. Bypass $\mathrm{V}_{\mathrm{NN} 2}$ to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device. (See Power Supplies and Bypassing in the Applications Information section.) Depending on the application, additional bypassing may be required.
34	ON2	Channel 2 Low-Side Drain Output
35	OCN2	Channel 2 Low-Side Clamp Output
37	OCP2	Channel 2 High-Side Clamp Output
38	OP2	Channel 2 High-Side Drain Output
40, 41	VPP2	Channel 2 High-Side Positive Supply Voltage Input. Bypass VPP2 to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device. (See Power Supplies and Bypassing in the Applications Information section.) Depending on the application, additional bypassing may be required.
42	CGP2	Channel 2 High-Side Gate Input. Connect a 1nF to 10nF capacitor between CDP2 and CGP2 as close as possible to the device.
43	CDP2	Channel 2 High-Side Driver Output. Connect a 1 nF to 10 nF capacitor between CDP2 and CGP2 as close as possible to the device.
46	CGC2	Channel 2 High-Side Clamp Gate Input. Connect a 1nF to 10nF capacitor between CDC2 and CGC2 as close as possible to the device.
47	CDC2	Channel 2 High-Side Clamp Driver Output. Connect a 1nF to 10nF capacitor between CDC2 and CGC2 as close as possible to the device.
48	VEE2	Channel 2 Negative Supply Input. Gate-drive supply voltage for the OCP2 clamp. Bypass $\mathrm{V}_{\text {EE2 }}$ to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device. (See Power Supplies and Bypassing in the Applications Information section.) Depending on the application, additional bypassing may be required.
49	VDD	Logic Supply Voltage Input. Bypass VDD to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device. (See Power Supplies and Bypassing in the Applications Information section.) Depending on the application, additional bypassing may be required.
50	VSS	Substrate Voltage. Connect $\mathrm{V}_{\text {SS }}$ to a voltage equal to or more negative than the more negative of $\mathrm{V}_{\mathrm{NN} 1}$ or VNN2.
51	VEE1	Channel 1 Negative Supply Input. Gate-drive supply voltage for the OCP1 clamp. Bypass VEE1 to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device. (See Power Supplies and Bypassing in the Applications Information section.) Depending on the application, additional bypassing may be required.
52	CDC1	Channel 1 High-Side Clamp Driver Output. Connect a 1nF to 10nF capacitor between CDC1 and CGC1 as close as possible to the device.
53	CGC1	Channel 1 High-Side Clamp Gate Input. Connect a 1 nF to 10 nF capacitor between CDC1 and CGC1 as close as possible to the device.
56	CDP1	Channel 1 High-Side Driver Output. Connect a 1nF to 10nF capacitor between CDP1 and CGP1 as close as possible to the device.
-	EP	Exposed Pad. EP must be connected to V ${ }_{\text {SS }}$. Do not use EP as the only $\mathrm{V}_{\text {SS }}$ connection for the device.

Detailed Description

The MAX4806/MAX4807/MAX4808 are dual high-voltage, high-speed pulsers that can be independently configured for either unipolar or bipolar pulse outputs. These devices have independent logic inputs for full pulse control and independent active clamps. The clamp input, INC_, can be set high to activate the clamp automatical-
ly when the device is not pulsing to the positive or negative high-voltage supplies. (See Figures 1, 2, and 3.)

Logic Inputs (INP_, INN_, INC_, EN_, $\overline{\text { SHDN }}$

The MAX4806/MAX4807/MAX4808 have a total of nine logic input signals. $\overline{\text { SHDN }}$ controls power-up and -down of the device. There are two sets of INP_, INN_, INC_ and EN_ signals: one for each channel. INP_ controls the

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

Table 1. Truth Table

INPUTS					OUTPUTS			STATE
$\overline{\text { SHDN }}$	EN_	INP_	INN_	INC_	OP_	ON_	$\begin{aligned} & \text { OCP_ }_{2}, \\ & \text { OCN }_{-}, \end{aligned}$	
0	X	X	X	0	High Impedance	High Impedance	High Impedance	Powered down, INP_/INN_ disabled, gate-source short disabled
0	X	X	X	1	High Impedance	High Impedance	GND	Powered down, INP_/INN_ disabled, gate-source short disabled
1	0	X	X	0	High Impedance	High Impedance	High Impedance	Powered up, INP_/INN_ disabled, gate-source short enabled
1	0	X	X	1	High Impedance	High Impedance	GND	Powered up, INP_/INN_ disabled, gate-source short enabled
1	1	0	0	0	High Impedance	High Impedance	High Impedance	Powered up, all inputs enabled, gate-source short disabled
1	1	0	0	1	High Impedance	High Impedance	GND	Powered up, all inputs enabled, gate-source short disabled
1	1	0	1	X	High Impedance	V_{NN}	High Impedance	Powered up, all inputs enabled, gate-source short disabled
1	1	1	0	X	VPP_	High Impedance	High Impedance	Powered up, all inputs enabled, gate-source short disabled
1	1	1	1	X	VPP_	V_{NN}	High Impedance	Not allowed (3ns maximum overlap)

$X=$ Don't care.
$0=$ Logic-low.
$1=$ Logic-high .
on and off states of the high-side FET, INN_ controls the on and off states of the low-side FET, INC_ controls the active clamp, and EN_ controls the gate-to-source short. These signals give complete control of the output stage of each driver (see Table 1 for all logic combinations).
The MAX4806/MAX4807/MAX4808 logic inputs are CMOS logic compatible, and the logic level is referenced to VDD for maximum flexibility. The low 5pF (typ) input capacitance of the logic inputs reduces loading and increases switching speed.

High-Voltage Output Protection (MAX4807 Only)

The high-voltage outputs of the MAX4807 feature an integrated overvoltage protection circuit that allows the user to implement multilevel pulsing by connecting the outputs of multiple pulser channels in parallel. Internal diodes in series with the ON_{-}and OP_{-}outputs prevent the body diode of the high-side and low-side FETs from switching on when a voltage greater than VNN_ or VPP_ is present on the output (see Figure 9).

Active Clamps

The MAX4806/MAX4807/MAX4808 feature an active clamp circuit to improve pulse quality and reduce 2 nd harmonic output. The clamp circuit consists of an nchannel (DC-coupled) and a p-channel (AC and DC delay coupled) high-voltage FETs that are switched on or off by the logic clamp input (INC_). The MAX4806 and the MAX4807 feature protected clamp devices allowing the clamp circuit to be used in bipolar pulsing circuits (see Figures 1 and 2). A diode in series with the OCN_ output prevents the body diode of the low-side FET from turning on when a voltage lower than GND is present. Another diode in series with the OCP_ output prevents the body diode of the high-side FET from turning on when a voltage higher than ground is present. The MAX4808 does not have diode protection on the clamp outputs. Thus, the device is suitable for use in circuits where only unipolar pulsing is required.
The user can connect the active clamp input (INC_) to a logic-high voltage and drive only the INP_ and INN_ inputs to minimize the number of signals used to drive the

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

device. In this case, whenever both the $I N P_{-}$and $I N N_{-}$ inputs are low and the INC_ input is high, the active clamp circuit pulls the output to GND through the OCP_ and OCN_ outputs (see Table 1 for more information).

Power-Supply Ramping and Gate-Source Short Circuit

 The MAX4806/MAX4807/MAX4808 include a gatesource short circuit that is controlled by the enable input (EN_). When SHDN is high and EN_ is low, a 60Ω switch shorts together the gate and source of the high-side output FET. At the same time, a similar switch shorts the gate and source of the low-side output FET (Table 1). The gate-source short circuit prevents accidental turnon of the output FETs due to the ramping voltage on VPP_ and VNN_, and allows for faster ramping rates and smaller delay times between pulsing modes.
Shutdown Mode

$\overline{\mathrm{SHDN}}$ is common to both channel 1 and channel 2 and powers up or down the device. Drive $\overline{\text { SHDN }}$ low to power down all internal circuits (except the clamp circuits). When SHDN is low, the device is in the lowest power state $(1 \mu \mathrm{~A})$ and the gate-source short circuit is disabled. The device takes 36.8ns (typ) to become active when $\overline{\text { SHDN }}$ is disabled.

Thermal Protection

A thermal-shutdown circuit with a typical threshold of $+155^{\circ} \mathrm{C}$ prevents damage due to excessive power dissipation. When the junction temperature exceeds $T_{J}=$ $+150^{\circ} \mathrm{C}$, all outputs are disabled. Normal operation typically resumes after the IC's junction temperature drops below $+130^{\circ} \mathrm{C}$.

Applications Information

AC-Coupling Capacitor Selection

The value of all AC-coupling capacitors (between CDP_ and CGP_, and between CDN_ and CGN_) should bē between $\overline{1} n \mathrm{nF}$ to 10 nF . The voltage rating of the capacitor should be greater than VPP_ and VNN_. The capacitors should be placed as close as possible to the device.
Because INP_ and part of INC_ are AC-coupled to the output devices, they cannot be driven high indefinitely when the device is active.

Power Dissipation

The power dissipation of the MAX4806/MAX4807/ MAX4808 consists of three major components caused by the current consumption from $\mathrm{VCC}_{-}, \mathrm{VPP}_{-}$, and $\mathrm{VNN}_{\mathrm{N}}$. The sum of these components (PVCC_, $\overline{P V P P P}_{-}$, and PVNN_) must be kept below the maximum power-dissi-
pation limit. See the Typical Operating Characteristics section for more information on typical supply currents versus switching frequencies.
The device consumes most of the supply current from VCC_ supply to charge and discharge internal nodes such as the gate capacitance of the high-side FET (CP) and the low-side FET (CN). Neglecting the small quiescent supply current and a small amount of current used to charge and discharge the capacitances at the internal gate clamp FETs, the power consumption can be estimated as follows:

$$
\begin{gathered}
\text { PVCC_ }=\left[\left(\mathrm{C}_{\mathrm{N}} \times \mathrm{V}_{\mathrm{CC}_{-}}{ }^{2} \times \mathrm{f}_{\mathrm{N}}\right)+\left(\mathrm{C}_{\mathrm{P}} \times \mathrm{V}_{\mathrm{CC}_{-}}{ }^{2} \times \mathrm{f}_{\mathrm{IN}}\right)\right] \times(\mathrm{BRF} \times \mathrm{BTD}) \\
\mathrm{f}_{\mathrm{IN}}=\mathrm{f}_{\mathrm{INN}}^{-} \text {}=\mathrm{f}_{\mathrm{INP}}^{-}
\end{gathered}
$$

Where f / NN _ and finP_ are the switching frequency of the inputs INN N_{-}and INP_ respectively, and where BRF is the Burst Repetition Frequency and BTD is the Burst Time Duration. The typical value gate capacitances of the power FET are $\mathrm{CN}=0.3 \mu \mathrm{~F}$ and $\mathrm{CP}=0.6 \mu \mathrm{~F}$.

For an output load that has a resistance of R_{L} and capacitance of CL, the MAX4806/MAX4807/MAX4808 power dissipation can be estimated as follows (assume square-wave output and neglect the resistance of the switches):

$$
P_{V P P_{-}}=\left\{\left[\left(C_{O}+C_{L}\right) \times f_{\mathbb{N}} \times\left(V_{P P}-V_{N N_{-}}\right)^{2}\right]+\left[\frac{V_{P P_{-}}{ }^{2}}{R_{L}} \times \frac{1}{2}\right] \times(B R F \times B T D)\right\}
$$

Where Co is the output capacitance of the device.

Power Supplies and Bypassing

The MAX4806/MAX4807/MAX4808 operate from independent supply voltage sets (only VDD and VSS are common to both channels). The logic input circuit operates from $\mathrm{a}+2.7 \mathrm{~V}$ to +6 V single supply (VDD). The level-shift driver dual supplies, VCC_/VEE_ operate from $\pm 4.75 \mathrm{~V}$ to $\pm 12.6 \mathrm{~V}$.
The VPP_/VNN_ high-side and low-side supplies are driven from a single positive supply up to +220 V , from a single negative supply up to -200 V , or from $\pm 110 \mathrm{~V}$ dual supplies. Either VPP_ or VNN_ can be set at OV. Bypass each supply input to ground with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device.
Depending on the application, additional bypassing may be needed to maintain the input of both $V_{N N}$ _ and VPP_stable during output transitions. For example, with COUT $=100 \mathrm{pF}$ and ROUT $=100 \Omega$ load, the use of an

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

Figure 1. MAX4806 Simplified Functional Diagram for One Channel
additional $10 \mu \mathrm{~F}$ (typ) electrolytic capacitor is recommended. VSS is the substrate voltage. Connect VSS to a voltage equal to or more negative than the lower of $V_{\text {NN1 }}$ or VNN2.

Exposed Pad and Layout Concerns
The MAX4806/MAX4807/MAX4808 provide an exposed pad (EP) underneath the TQFN package for improved thermal performance. EP is internally connected to VSs. Connect EP to VSS externally. To aid heat dissipation,
connect EP to a similarly sized pad on the component side of the PCB. This pad should be connected through to the solder-side copper by several plated holes to a large heat-spreading copper area to conduct heat away from the device.
The MAX4806/MAX4807/MAX4808 high-speed pulsers require low-inductance bypass capacitors to their supply inputs. High-speed PCB trace design practices are recommended. Pay particular attention to minimize trace

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

Figure 2. MAX4807 Simplified Functional Diagram for One Channel
lengths and use sufficient trace width to reduce inductance. Use of surface-mount components is recommended.

Supply Sequencing
VSS must be lower than or equal to the more negative voltage of VNN1 or VNN2 at all times, and must be turned on before other supply voltages. No other power-supply sequencing is required for the MAX4806/ MAX4807/MAX4808.

Typical Application Circuits
Figures 8, 9, and 10 show typical applications for the MAX4806/MAX4807/MAX4808. Figure 8 shows the MAX4806 used in a bipolar pulsing connection. Figure 9 shows the MAX4807 in a five-level pulsing application, and Figure 10 shows the MAX4808 used in a unipolar application.

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

Figure 3. MAX4808 Simplified Functional Diagram for One Channel

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

Figure 4. Detailed Timing ($R_{L}=100 \Omega, C_{L}=100 \mathrm{pF}$)

Figure 5. Enable Timing $\left(R_{L}=100 \Omega, C_{L}=100 \mathrm{pF}\right)$

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

Figure 6. Active Clamp Timing

Figure 7. Short-Circuit Timing

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

808tXVW/L08tXVW/908tXVW

Figure 8. MAX4806: Dual Bipolar Pulsing, $\pm 100 \mathrm{~V}$, GND

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

MAX4806/MAX4807/MAX4808

Figure 9. MAX4807: Five-Level Pulsing, $\pm 100 \mathrm{~V}, \pm 50 \mathrm{~V}, \mathrm{GND}$

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

808tXVW/L08tXVW/908tXVW

Figure 10. MAX4808: Dual Unipolar Pulsing, + 100V, GND

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
56 TQFN	T5677-1	$\underline{\mathbf{2 1 - 0 1 4 4}}$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Timers \& Support Products category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
MIC1557YD5-TR NLV14541BDG PT8A2515TAEX PT8A2514APE S-35710M01I-E8T3U S-35720C01A-K8T2U SY87700ALZG LM555CM SA555S-13 SE556J S-1410H30-K8T2U4 S-35710C01I-K8T2U S-35720C01I-K8T2U S-35720C02I-K8T2U S-35730C01IK8T2U S-35740C01I-K8T2U S-1410G29-K8T2U4 S-1410A28-K8T2U4 S-1410I45-K8T2U4 ALD555PAL ALD7555PAL AD807A155BRZ AD808-622BRZ ADN2807ACPZ ADN2814ACPZ ADN2819ACPZ-CML SE555QS-13 ZSCT1555N8TA XD556 NJM567D NE555L-D08-T NE555N NE555N XD555 XD7555 XD551 LMC555N LM555N TLC555N ICM7555CD ICM7242IPAZ ICM7555IPAZ $\underline{\text { ICM7242IPA }+ \text { ICM7555IPA+ ICM7556IPD }+~ \text { ALD2502SBL MC14541BDG ICM7556ISD+ MC14541BDR2G ICM7556ISD+T }}$

