Up to 8.0Gbps Dual Passive Switches

Abstract

General Description The MAX4888B/MAX4888C dual double-pole/doublethrow (2 x DPDT), high-speed passive switches are ideal for switching two half-lanes of PCI Express ${ }^{\circledR}$ (PCle) data between two possible destinations. These devices feature a dual digital control input to switch signal paths. The MAX4888C is intended for use in systems where both the input and output are capacitively coupled (e.g., SAS, SATA, XAUI, and PCle) and provides a 10 AA (typ) source current and a 60k Ω (typ) internal biasing resistor to GND at the AOUT_ and BOUT_ pins. The devices are fully specified to operate from a single +3.3 V (typ) power supply. Both devices are available in an industry-standard $3.5 \mathrm{~mm} \times 5.5 \mathrm{~mm}$, 28 -pin TQFN package. They operate over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.

Applications
Desktop PCs
Notebook PCs
Servers
Typical Operating Circuit

NOTE: CAPACITIVE COUPLING WAS OMITTED TO SIMPLIFY ILLUSTRATION.

Up to 8.0Gbps Dual Passive Switches

ABSOLUTE MAXIMUM RATINGS
(All voltages referenced to GND, unless otherwise noted.)
Vcc.... -0.3 V to +4 V
SEL, SELB, AIN+, AIN-, BIN+, BIN-, AOUTA+,
AOUTA-, AOUTB+, AOUTB-, BOUTA+,
BOUTA-, BOUTB+, BOUTB- (Note 1).. -0.3V to (VcC +0.3 V)
Continuous Current (AIN_ to AOUTA」AOUTB_,
BIN_ to BOUTA_(BOUTB_)... $\pm 15 \mathrm{~mA}$
Peak Current (AIN_ to AOUTA_/AOUTB_,
BIN_ to BOUTA_/BOUTB_)
(pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle) $\pm 70 \mathrm{~mA}$

ontinuous Current (SEL, SELB) $\pm 10 \mathrm{~mA}$	
Peak Current (SEL, SELB) (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)	$\pm 10 \mathrm{~mA}$
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
TQFN (derate $28.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	2286 mW
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature Range	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)	$+260^{\circ} \mathrm{C}$

Note 1: Signals on SEL, SELB, AIN_, BIN_, AOUTA_, AOUTB_, BOUTA_, and BOUTB_ exceeding VCC or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

PACKAGE THERMAL CHARACTERISTICS (Note 2)

TQFN
Junction-to-Ambient Thermal Resistance ($\theta \mathrm{JA}$) $35^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance ($\theta \mathrm{JC}$) $2^{\circ} \mathrm{C} / \mathrm{W}$

Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC PERFORMANCE						
Analog-Signal Range	VInPUT	AIN_, BIN_, AOUTA_, BOUTA_, AOUTB_, BOUTB_	-0.3		$\begin{gathered} \hline \text { VCC - } \\ 1.8 \end{gathered}$	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, \mathrm{I}_{\text {AIN_ }}=\mathrm{IBIN}=15 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {_OUTA_ }}=\mathrm{V}_{\text {_OUTB_ }}=0 \mathrm{~V}, 1.2 \mathrm{~V} \end{aligned}$		6.4	8.4	Ω
On-Resistance Match Between Channels	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{\text {CC }}=+3.0 \mathrm{~V}, \mathrm{I}_{\text {AIN_ }}=\mathrm{IBIN}_{-}=15 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {_OUTA_ }}=\mathrm{V}_{\text {_OUTB_ }}=0 \mathrm{~V}(\text { Note 4 }) \end{aligned}$		0.2	1.5	Ω
On-Resistance Flatness	RFLAT(ON)	$\begin{aligned} & \text { VCC }=+3.0 \mathrm{~V}, \text { IAIN_ }^{2}=\mathrm{IB} I \mathrm{~N}_{-}=15 \mathrm{~mA}, \\ & \text { V_OUTA_ }^{2} \text { V_OUTB_ }=0 \mathrm{~V}, 1.2 \mathrm{~V}(\text { Note } 5) \end{aligned}$		0.3	1	Ω
OUTA or _OUTB_ Off-Leakage Current	I_OUTA_(OFF), I_OUTB_(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+3.6 \mathrm{~V}, \mathrm{~V}_{\text {AIN_ }}=\mathrm{V}_{\mathrm{BIN}}=0 \mathrm{~V}, 1.2 \mathrm{~V} \text {; } \\ & \mathrm{V}_{2} \mathrm{OUTA} \text { or } \mathrm{V}_{-} \text {OUTB_- }=1.2 \mathrm{~V}, 0 \mathrm{~V} \\ & \text { (MAX4888B) } \end{aligned}$	-1		+1	$\mu \mathrm{A}$
AIN_, BIN_ On-Leakage Current	IAIN_(ON), IBIN_(ON)	$\mathrm{V}_{\mathrm{CC}}=+3.6 \mathrm{~V}, \mathrm{~V}_{\text {AIN_ }}=\mathrm{V}_{\text {BIN }}=0 \mathrm{~V}, 1.2 \mathrm{~V}$; $V_{\text {_OUTA_ }}$ or $\mathrm{V}_{\text {_OUTB_ }}=\mathrm{V}_{\text {AIN_ }}=\mathrm{V}_{\text {BIN_ }}$ or unconnected (MAX4888B)	-1		+1	$\mu \mathrm{A}$
Output Short-Circuit Current		All other ports are unconnected (MAX4888C)	5		15	$\mu \mathrm{A}$
Output Open-Circuit Voltage		All other ports are unconnected (MAX4888C)	0.2	0.6	0.9	V

Up to 8.0Gbps Dual Passive Switches

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
AC PERFORMANCE						
Switch Turn-On Time	tON_SEL	$\mathrm{ZS}=\mathrm{ZL}=50 \Omega$		65		ns
Switch Turn-Off Time	tOFF_SEL	$Z S=Z L=50 \Omega$, Figure 1, measured at 500 MHz		7		ns
Propagation Delay	tPD	$Z S=Z L=50 \Omega$, Figure 2, measured at 500 MHz		43		ps
Output Skew Between Pairs	tSK1	$Z_{S}=Z_{L}=50 \Omega$, Figure 2, measured at 500 MHz		8		ps
Output Skew Between Same Pair	tSK2	$Z_{S}=Z_{L}=50 \Omega$, Figure2		10		ps
Differential Return Loss (Note 6)	SDD11	$\mathrm{OHz}<\mathrm{f} \leq 2.8 \mathrm{GHz}$	-14			dB
		$2.8 \mathrm{GHz}<\mathrm{f} \leq 5.0 \mathrm{GHz}$	-8			
		$5.0 \mathrm{GHz}<\mathrm{f} \leq 8.0 \mathrm{GHz}$	-5			
		$\mathrm{f}>8.0 \mathrm{GHz}$	-1			
Differential Insertion Loss	SDD21	Table 1				dB
Bandwidth	SDD12/SDD21			8		GHz
Differential Crosstalk (Note 6)	SDDCTK	$0 \mathrm{~Hz}<\mathrm{f} \leq 2.5 \mathrm{GHz}$		-30		dB
		$2.5 \mathrm{GHz}<\mathrm{f} \leq 5.0 \mathrm{GHz}$		-25		
		$5.0 \mathrm{GHz}<\mathrm{f} \leq 8.0 \mathrm{GHz}$		-35		
		$\mathrm{f}>8.0 \mathrm{GHz}$		-35		
Differential Off-Isolation (Note 6)	SDD21_OFF	$0 \mathrm{~Hz}<\mathrm{f} \leq 2.5 \mathrm{GHz}$		-15		dB
		$2.5 \mathrm{GHz}<\mathrm{f} \leq 5.0 \mathrm{GHz}$		-12		
		$5.0 \mathrm{GHz}<\mathrm{f} \leq 8.0 \mathrm{GHz}$		-12		
		$\mathrm{f}>8.0 \mathrm{GHz}$		-12		
CONTROL INPUT						
Input Logic-High	V_{IH}		1.4			V
Input Logic-Low	VIL				0.6	V
Input Logic Hysteresis	VHYST			130		mV
POWER SUPPLY						
Power-Supply Range	Vcc		3.0		3.6	V
VCC Supply Current	ICC				1	mA

Note 3: All units are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and characterization and are not production tested.
Note 4: $\Delta \operatorname{RON}=\operatorname{RON}(M A X)-\operatorname{RON}(M I N)$.
Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog-signal range.
Note 6: Guaranteed by design; not production tested.

Up to 8.0Gbps Dual Passive Switches

Figure 1. Switching Time
Table 1. Insertion Loss Mask

FREQUENCY RANGE (GHz)	MAXIMUM INSERTION LOSS (dB)
0 to 2.5	$1 / 3 \times \mathrm{fGHZ}+17 / 30$
2.5 to 5	$2 / 5 \times f \mathrm{fHZ}-2 / 5$
5 to 8	$18 / 5 \times \mathrm{fGHZ}-4 / 15$
Greater than 8	$2 \times \mathrm{fGHZ}-12$

Up to 8.0Gbps Dual Passive Switches

Figure 2. Propagation Delay and Output Skew

Up to 8.0Gbps Dual Passive Switches

$\overline{\left(V_{C C}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text {, unless otherwise noted.) Typical Operating Characteristics }\right.}$

DIFFERENTIAL INSERTION LOSS
vs. FREQUENCY

TURN-ON/OFF TIME
vs. SUPPLY VOLTAGE

DIFFERENTIAL OFF-ISOLATION
vs. FREQUENCY

DIFFERENTIAL RETURN LOSS
vs. FREQUENCY

DIFFERENTIAL CROSSTALK
vs. FREQUENCY

Up to 8.0Gbps Dual Passive Switches

Pin Configuration

	TOP VIEW

Pin Description

PIN	NAME	FUNCTION
$\begin{gathered} 1,10,11 \\ 13,16 \\ 20,23 \\ 26,28 \end{gathered}$	GND	Ground
2	AIN+	Analog Switch 1, Common Positive Terminal
3	AIN-	Analog Switch 1, Common Negative Terminal
4	AOUTB+	Analog Switch 1, Normally Open Positive Terminal
5	AOUTB-	Analog Switch 1, Normally Open Negative Terminal
6	$\mathrm{BIN+}$	Analog Switch 2, Common Positive Terminal
7	BIN-	Analog Switch 2, Common Negative Terminal
8	BOUTB+	Analog Switch 2, Normally Open Positive Terminal
9	BOUTB-	Analog Switch 2, Normally Open Negative Terminal
$\begin{gathered} 12,14, \\ 19,25, \\ 27 \end{gathered}$	VCC	Positive Supply-Voltage Input. Connect VCc to a 3.0 V to 3.6 V supply voltage. Bypass Vcc to GND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor placed as close as possible to the device. See the Board Layout section.
15	SELB	Control Signal Input. SELB has a $70 \mathrm{k} \Omega$ (typ) pullup resistor to Vcc. If SELB is not in use, leave unconnected.
17	BOUTA-	Analog Switch 2, Normally Closed Negative Terminal
18	BOUTA+	Analog Switch 2, Normally Closed Positive Terminal
21	AOUTA-	Analog Switch 1, Normally Closed Negative Terminal
22	AOUTA+	Analog Switch 1, Normally Closed Positive Terminal
24	SEL	Control Signal Input. SEL has a 70k (typ) pulldown resistor to GND.
-	EP	Exposed Pad. Connect EP to GND.

Up to 8.0Gbps Dual Passive Switches

Functional Diagram/Truth Table

Up to 8.0Gbps Dual Passive Switches

Detailed Description

The MAX4888B high-speed passive switch routes highspeed differential signals such as PCle, SAS, SATA, and XAUI from one source to two possible destinations or vice versa. The MAX4888B is ideal for routing PCle signals to change the system configuration. The MAX4888C features a $10 \mu \mathrm{~A}$ (typ) source current and a $60 \mathrm{k} \Omega$ (typ) internal biasing resistor to GND at the AOUTA_, BOUTA_, AOUTB_, and BOUTB_ terminals. The MAX4888C is ideal for circuits that are capacitively coupled at both the output and input. These devices are protocol independent and can be used to switch two different protocol signals over the same physical lane. They feature dual digital control inputs (SEL, SELB) to switch signal paths. SEL has a 70k Ω (typ) pulldown resistor to GND and SELB has a 70k Ω (typ) pullup resistor to Vcc.
These devices are fully specified to operate from a single 3.0 V to 3.6 V power supply.

Digital Control Input (SEL, SELB) The devices provide dual digital control inputs (SEL, SELB) to select the signal path between the AIN_, BIN_ and AOUTA_, BOUTA_ or AOUTB_, BOUTB_ channels. In most cases SEL is chosen and SELB is unconnected. The truth table for the devices is depicted in the Functional Diagram/Truth Table. SEL has a 70k Ω (typ) pulldown resistor to GND and SELB has a 70k Ω (typ) pullup resistor to Vcc.

Analog-Signal Levels
The devices accept signals from -0.3V to (Vcc-1.8V). Signals on the AIN+ and BIN+ channels are routed to either the AOUTA+, BOUTA+ or AOUTB+, BOUTB+ channels. Signals on the AIN- and BIN- channels are routed to either the AOUTA-, BOUTA- or AOUTB-, BOUTBchannels. The devices are bidirectional switches, allowing $A I N_{-}, B_{1}$ _ and AOUTA_, BOUTA_, AOUTB_, and BOUTB_ to be used as either inputs or outputs.

Applications Information

High-Speed Switching
The devices' primary applications are aimed at sharing resources. For example, a single lane of PCle or SAS can be shared between a single host and two devices. This could be used for redundancy or to share resources such as a physical lane or route a lane between one host and two devices or two hosts and one device.

Board Layout
High-speed switches require proper layout and design procedures for optimum performance. Keep controlled impedance PCB traces as short as possible or follow impedance layouts per the PCle specification. Ensure that power-supply bypass capacitors are placed as close as possible to the device. Multiple bypass capacitors are recommended. Connect all grounds and the exposed pad to a large ground plane.

Chip Information

PROCESS: CMOS

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
28 TQFN-EP	T283555+1	$\underline{21-0184}$	$\underline{90-0123}$

Up to 8.OGbps Dual Passive Switches

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$12 / 10$	Initial release	-

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118

