2.5/5.0/8.0Gbps PCIe Passive Switches

Abstract

General Description The MAX4889B/MAX4889C high-speed passive switches route PCI Express ${ }^{\circledR}$ (PCle) data between two possible destinations in desktop or notebook PCs. The MAX4889B/MAX4889C are quad double-pole/doublethrow ($4 \times$ DPDT) switches ideal for switching four half lanes of PCle data between two destinations. The MAX4889B/MAX4889C feature a single digital control input (SEL) to switch signal paths. The MAX4889C is intended for use in systems (e.g., SAS) where both the input and output are capacitively coupled, and provides a $10 \mu \mathrm{~A}$ (typ) source current and a $60 \mathrm{k} \Omega$ (typ) internal biasing resistor to GND at the _OUT_ terminals. The MAX4889B/MAX4889C are fully specified to operate from a single +3.3 V (typ) power supply. Both devices are available in an industry-standard $3.5 \mathrm{~mm} \times$ $9.0 \mathrm{~mm}, 42-$ pin TQFN package. These devices operate over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.

\qquad
Desktop PCs
Notebook PCs
Servers
Video Graphics Cards-SLI®
(Scaled Link Interface) and CrossFire ${ }^{\text {TM }}$

PCI Express is a registered service mark of PCI-SIG Corporation.
SLI is a registered trademark of NVIDIA Corporation.
CrossFire is a trademark of ATI Technologies, Inc.

- Single +3.3V Power-Supply Voltage
- Support PCle Gen I, Gen II, and Gen III Data Rates
- Supports SAS I, SAS II, and SAS 6.0Gbps (MAX4889C)
- Superior Return Loss

Better than -10 dB (typ) at 5.0 GHz

- Small 3.5mm x 9.0mm, 42-Pin TQFN Package
- Industry-Standard Pinouts

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4889BETO +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	42 TQFN-EP*
MAX4889CETO +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	42 TQFN-EP

+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.

Typical Operating Circuit appears at end of data sheet.
Pin Configuration

2.5/5.0/8.0Gbps PCle Passive Switches

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND, unless otherwise noted.)

SEL, _IN_, _OUTA_, _OUTB_ (Note 1).	-0.3V to ($\left.\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Continuous Current (AIN_ to AOUTA」/AOUTB_, BIN_ to	
BOUTA_/BOUTB_, CIN_ to COUTA_/COUTB_, DIN_ to	
DOUTA_/DOUTB_) ... $\pm 70 \mathrm{~mA}$	
Peak Current (AIN_ to AOUTA_/AOUTB_, BIN_ to	
BOUTA_/BOUTB_, CIN_ to COUTA_COUTB_, DIN_ to	
DOUTA_/DOUTB_)	
(pulsed at 1ms, 10\% duty cycle).......................... $\pm 70 \mathrm{~mA}$	
Continuous Current (SEL)... $\pm 10 \mathrm{~mA}$	
Peak Current (SEL)	
(pulsed at 1ms, 10\% duty cycle)	

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ for multilayer board: 42-Pin TQFN (derate $35.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 2857 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature ... $+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Junction-to-Ambient Thermal Resistance ($\theta_{\text {JA }}$) (Note 2)
Package Junction-to-Case Thermal Resistance (θ Jc) (Note 2)
$28.0^{\circ} \mathrm{C} / \mathrm{W}$

Lead Temperature (soldering, 10s) $2.0^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature (soldering, 10s) ... $260^{\circ} \mathrm{C}$
Soldering Temperature (reflow) $+260^{\circ} \mathrm{C}$

Note 1: Signals on SEL, _IN_, _OUTA_, _OUTB_ exceeding VCC or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC PERFORMANCE						
Analog Signal Range			-0.3		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.8 \end{gathered}$	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, \mathrm{I}_{2} \text { IN_ }=15 \mathrm{~mA}, \mathrm{~V}_{-} \text {OUTA_, } \\ & \mathrm{V}_{\text {_OUTB_ }}=0 \mathrm{~V}, 1.2 \mathrm{~V} \end{aligned}$		6.4	8.4	Ω
On-Resistance Match Between Pairs of Same Channel	$\triangle \mathrm{RON}$	$\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, \mathrm{I}_{-} \mathrm{N}_{-}=15 \mathrm{~mA}, \mathrm{~V}_{\text {_OUTA_ }}$ V_OUTB_ = OV (Notes 4, 5)		0.1	0.5	Ω
On-Resistance Match Between Channels	$\triangle \mathrm{RON}$	VCC $=+3.0 \mathrm{~V}, \mathrm{I}_{-} \mathrm{N}_{-}=15 \mathrm{~mA}$, V_OUTA, V_OUTB_ = OV (Notes 4, 5)		0.2		Ω
On-Resistance Flatness	RFLAT (ON)	$\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, I_{\text {IIN_ }}=15 \mathrm{~mA}, \mathrm{~V}_{-} \text {OUTA_, }$ V_outb_ = OV, 1.2V (Notes 5, 6)		0.3		Ω
OUTA or _OUTB_ Off-Leakage Current	I_OUTA_ (OFF), I_OUTB_ (OFF)	VCC $=+3.6 \mathrm{~V}, \mathrm{~V}_{-} I \mathrm{~N}_{-}=0 \mathrm{~V}, 1.2 \mathrm{~V}, \mathrm{~V}$ _OUTA_ or V_OUTB_ = 1.2V, OV (MAX4889B)	-1		+1	$\mu \mathrm{A}$
IN On-Leakage Current	I_IN_ (ON)	$\mathrm{V}_{\mathrm{CC}}=+3.6 \mathrm{~V}, \mathrm{~V}_{-} I \mathrm{~N}_{-}=0 \mathrm{~V}, 1.2 \mathrm{~V}, \mathrm{~V}_{-}$OUTA_ or V_OUTB_ = V_IN_ or unconnected (MAX4889B)	-1		+1	$\mu \mathrm{A}$
Output Short-Circuit Current		All other ports are unconnected (MAX4889C)	5		15	$\mu \mathrm{A}$
Output Open-Circuit Voltage		All other ports are unconnected (MAX4889C)	0.2	0.6	0.9	V

2．5／5．0／8．0Gbps PCIe Passive Switches

ELECTRICAL CHARACTERISTICS（continued）

$\left(\mathrm{V}_{C C}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$ ，unless otherwise noted．Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．）（Note 3）

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
AC PERFORMANCE						
SEL－to－Switch Turn－On Time	ton＿SEL	$Z_{S}=Z_{L}=50 \Omega$		80		ns
SEL－to－Switch Turn－Off Time	toff＿SEL	$Z_{S}=Z_{L}=50 \Omega$ ，Figure 1		15		ns
Propagation Delay	tpD	$Z_{S}=Z_{L}=50 \Omega$ ，Figure 2		50		ps
Output Skew Between Pairs	tSKEW1	$Z_{S}=Z_{L}=50 \Omega$ ，Figure 2		50		ps
Output Skew Between Same Pair	tSKEW2	$Z_{S}=Z_{L}=50 \Omega$ ，Figure 2		10		ps
Differential Return Loss（Note 5）	SDD11	$\mathrm{OHz}<\mathrm{f} \leq 2.8 \mathrm{GHz}$	－14			dB
		$2.8 \mathrm{GHz}<\mathrm{f} \leq 5.0 \mathrm{GHz}$	－8			
		$\mathrm{f}>5.0 \mathrm{GHz}$	－3			
Differential Insertion Loss（Note 5）	SDD21	See Table 1				dB
Differential Crosstalk（Note 5）	SDDCTK	$0 \mathrm{~Hz}<\mathrm{f} \leq 2.5 \mathrm{GHz}$		－40		dB
		$2.5 \mathrm{GHz}<\mathrm{f} \leq 5.0 \mathrm{GHz}$		－30		
		$\mathrm{f}>5.0 \mathrm{GHz}$		－25		
Differential Off－Isolation（Note 5）	SDD21＿OFF	$0 \mathrm{~Hz}<\mathrm{f} \leq 2.5 \mathrm{GHz}$		－15		dB
		$2.5 \mathrm{GHz}<\mathrm{f} \leq 5.0 \mathrm{GHz}$		－12		
		$\mathrm{f}>5.0 \mathrm{GHz}$		－12		
CONTROL INPUT（SEL）						
Input Logic High	V_{IH}		1.4			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$				0.6	V
Input Logic Hysteresis	$\mathrm{V}_{\mathrm{HYST}}$			130		mV
POWER SUPPLY						
Power－Supply Range	VCC		3.0		3.6	V
VCC Supply Current	IcC	$\mathrm{V}_{\text {SEL }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {CC }}$			1	mA

Note 3：All units are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ ．Limits over the operating temperature range are guaranteed by design and characterization and are not production tested．
Note 4：\triangle RON $=$ RON（MAX）- RON（MIN）．
Note 5：Guaranteed by design，not production tested．
Note 6：Flatness is defined as the difference between the maximum and minimum value of on－resistance as measured over the specified analog signal range．

Table 1．Insertion Loss Mask

FREQUENCY RANGE （GHz）	MAXIMUM INSERTION LOSS（dB）
$0-2.5$	$\frac{14}{25} \times \mathrm{fGHz}^{2}+0.6$
$2.5-5$	$\frac{6}{5} \times \mathrm{fGHz}^{-1.0}$
5 or greater	$\frac{8}{5} \times \mathrm{fGHz}-3.0$

2.5/5.0/8.0Gbps PCIe Passive Switches

Figure 1. Switching Time

2.5/5.0/8.0Gbps PCle Passive Switches

Figure 2. Propagation Delay and Output Skew

2.5/5.0/8.0Gbps PCIe Passive Switches

DIFFERENTIAL RETURN LOSS
vs. FREQUENCY

2.5/5.0/8.0Gbps PCIe Passive Switches

Functional Diagram/Truth Table

0688tXVW/g688tXVW

2.5/5.0/8.0Gbps PCle Passive Switches

Pin Description

PIN		FUNCTION
MAX4889B/ MAX4889C	NAME	
1	AIN+	Analog Switch 1. Common Positive Terminal.
2	AIN-	Analog Switch 1. Common Negative Terminal.
3	AOUTB+	Analog Switch 1. Normally Open Positive Terminal.
4	AOUTB-	Analog Switch 1. Normally Open Negative Terminal.
5	$\mathrm{BIN}+$	Analog Switch 2. Common Positive Terminal.
6	BIN-	Analog Switch 2. Common Negative Terminal.
7	BOUTB+	Analog Switch 2. Normally Open Positive Terminal.
8	BOUTB-	Analog Switch 2. Normally Open Negative Terminal.
$\begin{gathered} 9,19,21,26,31, \\ 34,39,41 \end{gathered}$	Vcc	Positive Supply Voltage Input. Connect V_{Cc} to a 3.0 V to 3.6 V supply voltage. Bypass V_{Cc} to GND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor placed as close as possible to the device. See the Board Layout section.
10	$\mathrm{ClN+}$	Analog Switch 3. Common Positive Terminal.
11	CIN-	Analog Switch 3. Common Negative Terminal.
12	COUTB+	Analog Switch 3. Normally Open Positive Terminal.
13	COUTB-	Analog Switch 3. Normally Open Negative Terminal.
14	DIN+	Analog Switch 4. Common Positive Terminal.
15	DIN-	Analog Switch 4. Common Negative Terminal.
16	DOUTB+	Analog Switch 4. Normally Open Positive Terminal.
17	DOUTB-	Analog Switch 4. Normally Open Negative Terminal.
$\begin{gathered} 18,20,22,25,29, \\ 35,38,40,42 \end{gathered}$	GND	Ground
23	DOUTA-	Analog Switch 4. Normally Closed Negative Terminal.
24	DOUTA+	Analog Switch 4. Normally Closed Positive Terminal.
27	COUTA-	Analog Switch 3. Normally Closed Negative Terminal.
28	COUTA+	Analog Switch 3. Normally Closed Positive Terminal.
30	SEL	Control Signal Input. SEL has a 70k (typ) pulldown resistor to GND.
32	BOUTA -	Analog Switch 2. Normally Closed Negative Terminal.
33	BOUTA+	Analog Switch 2. Normally Closed Positive Terminal.
36	AOUTA-	Analog Switch 1. Normally Closed Negative Terminal.
37	AOUTA+	Analog Switch 1. Normally Closed Positive Terminal.
-	EP	Exposed Pad. Connect EP to GND.

2.5/5.0/8.0Gbps PCIe Passive Switches

Detailed Description

The MAX4889B high-speed passive switch routes PCI Express (PCle) data or other high-speed signals with amplitude of $\leq 1.2 \mathrm{VP}$-P differential, and common-mode voltage close to OV between two possible destinations. The MAX4889B is ideal for routing PCle signals to change system configuration. For example, in a graphics application, four MAX4889B devices create two sets of eight lanes from a single 16-lane bus. The MAX4889C feature a $10 \mu \mathrm{~A}$ (typ) source current and a $60 \mathrm{k} \Omega$ (typ) internal biasing resistor to GND at the _OUT_ terminals. The MAX4889C is ideal for dual capacitively coupled applications such as SAS and SATA. The MAX4889B/ MAX4889C feature a single digital control input (SEL) to switch signal paths. SEL has a $70 \mathrm{k} \Omega$ (typ) pulldown resistor to GND.
The MAX4889B/MAX4889C are fully specified to operate from a single 3.0 V to 3.6 V power supply.

Digital Control Input (SEL)
The MAX4889B/MAX4889C provide a single digital control input (SEL) to select the signal path between the _IN_ and _OUT_ channels. The truth tables for the MAX4889B/MAX4889C are illustrated in the Functional Diagram/Truth Table. SEL has a 70k Ω (typ) pulldown resistor to GND.

Analog Signal Levels

The MAX4889B/MAX4889C accept standard PCle signals to a maximum of (VCC -1.8 V). Signals on the _IN+ channels are routed to either the _OUTA+ or _OUTB+ channels. Signals on the _IN- channels are routed to either the _OUTA- or _OUTB- channels. The MAX4889B/MAX4889C are bidirectional switches, allowing _IN_ and _OUT_ to be used as either inputs or outputs.

Applications Information

PCIe Switching
The MAX4889B/MAX4889C primary applications are aimed at reallocating PCIe lanes (see the Typical Operating Circuit: Video Graphics Cards). For example, in graphics applications, several manufacturers have found that it is possible to improve performance by a factor of nearly two by splitting a single 16-lane PCle bus into two 8-lane buses. Two of the more prominent examples are SLI (Scaled Link Interface) and CrossFire. Four MAX4889Bs permit a computer motherboard to operate properly with a single 16-lane graphics card, which can later be upgraded to dual cards.

Board Layout
High-speed switches require proper layout and design procedures for optimum performance. Keep controlledimpedance PCB traces as short as possible or follow impedance layouts per the PCle specification. Ensure that power-supply bypass capacitors are placed as close as possible to the device. Multiple bypass capacitors are recommended. Connect all grounds and the exposed pad to large ground planes.

2.5/5.0/8.0Gbps PCIe Passive Switches

2.5/5.0/8.0Gbps PCIe Passive Switches

Chip Information
PROCESS: CMOS

Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
42 TQFN	$\mathrm{T} 423590 \mathrm{M}+1$	$\underline{\underline{21-0181}}$	$\underline{\mathbf{9 0 - 0 0 7 9}}$

2.5/5.0/8.0Gbps PCle Passive Switches

| REVISION
 NUMBER | REVISION
 DATE | DESCRIPTION | PAGES
 CHANGED |
| :---: | :---: | :--- | :---: | :---: |
| 2 | $8 / 10$ | Added 8.0Gbps PCle passive switch to the title; added Gen III to the data rates in the
 Features section; changed the return loss in the Features section to $-10 \mathrm{~dB}(\mathrm{typ})$ at
 5.0 GHz | All |

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118

