General Description

The MAX4936A/MAX4937A are octal, high-voltage, transmit/receive (T/R) switches. The T/R switches are based on a diode bridge topology, and the amount of current in the diode bridges can be programmed by three digital inputs (S0, S1, and S2). Two control inputs (EN1 and EN2) allow enabling/disabling channels 1-4 and channels 5-8, respectively. The MAX4936A includes the T/R switch and grass-clipping diodes, performing both transmit and receive operations. The MAX4937A includes just the T/R switch and performs the receive operation only.

These devices feature low on-impedance in the entire ultrasound frequency range with extremely low power dissipation of 15 mW (typ) per channel.
The receive path for both devices is low impedance during low-voltage receive and high impedance during high-voltage transmit, providing protection to the receive circuitry. The low-voltage receive path is high bandwidth, low noise, low distortion, and low jitter.
The MAX4936A SWC_ pins can be driven with highvoltage signals using the anti-parallel diodes as grass clippers while connecting the SWB_ pins to the low-noise amplifier (LNA). Connecting SWC_ to GND allows the internal anti-parallel diodes to be used as clamps. Grassclipping diodes can then be connected to SWB_ and the LNA to SWA_; see the Applications Information section.
Both devices are available in a small, 42-pin, $3.5 \mathrm{~mm} x$ 9 mm TQFN package, and are specified over the commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Applications

- Medical/Industrial Imaging
- Ultrasound
- High-Voltage Transmit and Low-Voltage Isolation

Ordering Information/Selector Guide appears at end of data sheet.

Benefits and Features

- Save Space-Optimized for High-Channel-Count Systems
- High Density (Eight Transmit/Receive Switches per Package)
- Two Banks of Four Channels with Independent Enable Control (EN1, EN2)
- Low-Capacitance Anti-Parallel Diodes to Be Used as Grass-Clipping or Clamping Diodes (MAX4936A Only)
- Small, 42-Pin, $3.5 \mathrm{~mm} \times 9 \mathrm{~mm}$, TQFN Package
- Save Power
- Low 6Ω (typ) On-Impedance with 1.5 mA Bias Current Only
- Adjustable Bias Resistors Allow Operation with Different Voltage Supplies
- High Performance-Designed to Enhance Image Quality
- Low Noise at Low Power Consumption ($<0.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ (typ) with 1.5 mA Bias Current)
- Wide -3dB Bandwidth 100MHz (typ)
- Low-Voltage Receive Path with High-Voltage Protection

Functional Diagram

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 1)

TQFN

Junction-to-Ambient Thermal Resistance (θ_{JA}) $29^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance (θ_{JC})................. $2^{\circ} \mathrm{C} / \mathrm{W}$
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=+1.62 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+2.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$ to $-5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
STATIC CHARACTERISTICS							
SWA_, SWB_, SWC_ Input Voltage Range	VIRSW_	(SWC_ input voltage range for MAX4936A only)	-115		+115	V	
Voltage Difference Across Any or All \|SWA_, SWB_, SWC_		$\Delta \mathrm{V}_{\text {DIFF }}$	(SWC_ voltage difference for MAX4936A only)			220	V
SWA_ Output Voltage Range	VSWA	$V_{S W C_{-}} \geq\| \pm 2 \mathrm{~V}\|, \text { ISWC }= \pm 100 \mathrm{~mA}$ (MAX4936A only)	VSWc -1	VSWC ± 0.85	$\begin{gathered} \text { VSWC }_{\text {SW }} \\ +1 \end{gathered}$	V	
SWA_ Output Clamp Voltage	V CLMPSWA	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V},\left\|\mathrm{~V}_{\mathrm{SWB}}\right\| \geq \pm 2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{SWC}}=0 \mathrm{~V}, R_{\mathrm{L}}=200 \Omega, \\ \mathrm{C}_{\mathrm{L}}=30 \mathrm{pFF}, \mathrm{I}_{\mathrm{CH}}=1.5 \mathrm{~mA} \\ \text { (MAX4936A only) (Note 3) } \end{array}$	-1	± 0.75	+1	V	
SWC_ to SWA_Continuous Current	I_{CN}	$V_{\text {SWA_ }}=0 \mathrm{~V}$, (MAX4936A only)	-200		+200	mA	
SWC_ to SWA _ Voltage Drop	V_{CN}	$\mathrm{V}_{\text {SWA }}=0 \mathrm{~V}, \mathrm{I}= \pm 2 \mathrm{~A}$ (MAX4936A only)		± 2		V	

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+1.62 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+2.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$ to $-5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Diode Bridge Voltage Offset	$\mathrm{V}_{\text {OFF }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \\ & \mathrm{SWA}=\text { unconnected, } \\ & \mathrm{SWB}_{-}=\text {unconnected, } \mathrm{I}_{\mathrm{CH}}=1.5 \mathrm{~mA} \\ & (\text { Note 3) } \end{aligned}$	-100		+100	mV
SWC_ Off-Leakage Current	ILSWC_		-3		+3	$\mu \mathrm{A}$
SWA_Off-Leakage Current	ILSWA_		-3		+3	$\mu \mathrm{A}$
		SWC_ = unconnected (MAX4936A only)	-1		+1	
SWB_ Off-Leakage Current	LLSWB		-1		+1	$\mu \mathrm{A}$
DYNAMIC CHARACTERISTICS						
Diode Bridge Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=200 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{SWA}}= \pm 0.4 \mathrm{~V}, \text { Figure } 1 \end{aligned}$			200	ns
Diode Bridge Turn-Off Time	toff	$\begin{aligned} & V_{C C}=+5 \mathrm{~V}, V_{E E}=-5 \mathrm{~V}, R_{\mathrm{L}}=200 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{SWA}}= \pm 0.4 \mathrm{~V}, \text { Figure } 1 \end{aligned}$			5	$\mu \mathrm{s}$
Reverse Recovery Time	t_{RR}	$\mathrm{I}_{\mathrm{FWD}}=\mathrm{I}_{\mathrm{RVR}}=1.5 \mathrm{~mA}$		450		ns
Bias Current Settling Time after Programming Change [S0, S1, S2]	${ }^{\text {t SET }}$				3	$\mu \mathrm{s}$
Small-Signal SWA_ to SWB_ On-Impedance	RISWA-	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SWB}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{CH}}=1.44 \mathrm{~mA}, \mathrm{f}=5 \mathrm{MHz}(\text { Note } 3) \end{aligned}$		6		Ω
-3dB Bandwidth	BW	SWA_ to SWB_, switch on, $\begin{aligned} & \left\|\mathrm{V}_{\mathrm{SWA}}\right\| \leq \pm 0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=5 \overline{0} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{I}_{\mathrm{CH}}=1.5 \mathrm{~mA} \\ & \text { (Note 3) } \end{aligned}$		100		MHz
Off-Isolation	VISO	$\begin{aligned} & \text { SWC_ to SWA_, }\left\|V_{S W C}-V_{S W A}\right\| \leq \\ & \pm 0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=-5 \mathrm{~V}, R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},(\mathrm{MAX} 4936 \mathrm{~A} \text { only) } \end{aligned}$		-45		dB
		SWA_ to SWB_, switch off, $\begin{aligned} & V_{C C}=+5 \mathrm{~V}, V_{E E}=-5 \mathrm{~V}, R_{L}=50 \Omega, \\ & C_{L}=30 \mathrm{pF}, f=1 \mathrm{MHz} \end{aligned}$		-65		

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+1.62 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+2.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$ to $-5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Crosstalk	V_{CT}	Between any two SWC_ to SWA channels, $\left\|\mathrm{V}_{\text {SWC }}\right\| \geq \pm 2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V}$,$V_{E E}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$$f=5 \mathrm{MHz},(\mathrm{MAX} 4936 \mathrm{~A} \text { only })$			-65		dB
		Between any two SWA_ to SWB_ channels, switch on, $\left\|\bar{V}_{S W A}\right\| \geq \pm 0.4 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{I}_{\mathrm{CH}}=1.5 \mathrm{~mA}, \mathrm{f}=5 \mathrm{MHz}$ (Note 3)			-80		
2nd Harmonic Distortion	HD2	$\begin{aligned} & S W C \text { to } S W A,\left\|V_{S W A}\right\| \geq \pm 2 \mathrm{~V}, \\ & V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \overline{R_{L}}=50 \Omega, \\ & C_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{f}=5 \mathrm{MHz},(\mathrm{MAX} 4936 \mathrm{~A}) \end{aligned}$			-70		dBc
		SWA_ to SWB_, switch on, $\left\|V_{\text {SWA }}\right\|<$ $\pm 0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, R_{\mathrm{L}}=50 \Omega$, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{I} \mathrm{CH}=1.5 \mathrm{~mA}, \mathrm{f}=5 \mathrm{MHz}$ (Note 3)		-81			
Two-Tone Intermodulation Distortion	IMD3	SWA_ to SWB_, switch on, $\left\|V_{\text {SWA }}\right\|<$ $\pm 0.4 \overline{\mathrm{~V}}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{I}_{\mathrm{CH}}=1.5 \mathrm{~mA}, \mathrm{f} 1=5 \mathrm{MHz}$, $\mathrm{f} 2=5.01 \mathrm{MHz}($ Notes 3 and 4$)$		-57			dBc
SWC_Off-Capacitance	CSWC_(OFF)	$\left\|V_{\text {SWC }}-V_{\text {SWA }}\right\|$ (MAX49̄36A onlȳ)	$50 \mathrm{mV}$		14		pF
SWA_ Off-Capacitance	CSWA_(OFF)	$\mathrm{V}_{\text {SWC }}=0 \mathrm{OV}$ (MAX4936A only)			18		pF
		(MAX4937A only)			11		
SWB_On-Capacitance	CSWB_(ON)	$\left\|\mathrm{V}_{\text {SWB }}\right\|< \pm 0.4 \mathrm{~V}$	(MAX4936A only)	20			pF
			(MAX4937A only)	13			
SWB_Off-Capacitance	$\mathrm{C}_{\text {SWB_(OFF) }}$	$\left\|\mathrm{V}_{\text {SWB }}\right\|< \pm 0.4 \mathrm{~V}$			4.5		pF
DIGITAL I/Os (S2, S1, S0, EN1, EN2)							
Input High Voltage	V_{IH}	$\mathrm{V}_{\mathrm{DD}}=+2.25 \mathrm{~V}$ to +5.5 V		$V_{D D}-0.5$			V
		$\mathrm{V}_{\mathrm{DD}}=+1.62 \mathrm{~V}$ to +1.98 V		1.4			
Input Low Voltage	VIL	$\mathrm{V}_{\mathrm{DD}}=+2.25 \mathrm{~V}$ to +5.5 V				0.6	V
		$\mathrm{V}_{\mathrm{DD}}=+1.62 \mathrm{~V}$ to +1.98 V				0.4	
Input Hysteresis	VIL	$\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}$		50			mV
		$V_{D D}=+1.8 \mathrm{~V}$		90			
Input Leakage Current	IIL	S_, EN_ = GND or V_{DD}		-1		+1	$\mu \mathrm{A}$
Input Capacitance	$\mathrm{C}_{\text {IN }}$				5		pF

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+1.62 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+2.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$ to $-5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY ($\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$)						
Positive Logic Supply Voltage	$V_{\text {DD }}$		+1.62		+5.5	V
Positive Analog Supply Voltage	V_{CC}		+2.5		+5.5	V
Negative Analog Supply Voltage	V_{EE}		-5.5		-2.5	V
Positive Logic Supply Current	IDD	S_, EN_ = GND or $\mathrm{V}_{\text {DD }}$			+1	$\mu \mathrm{A}$
Positive Analog Supply Current	ICC	Per channel, switch on, $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{CH}}=1.5 \mathrm{~mA}$ (Note 3)	+1.15	+1.5	+2	mA
Positive Analog Shutdown Supply Current	ICC_SHDN	EN_ = GND			+1	$\mu \mathrm{A}$
Negative Analog Supply Current	IEE	Per channel, switch on, $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{CH}}=1.5 \mathrm{~mA}$ (Note 3)	-2	-1.5	-1.15	mA
Negative Analog Shutdown Supply Current	$\mathrm{IEE}_{\text {_ }}$ SHDN	EN_ = GND	-1			$\mu \mathrm{A}$
On Power-Supply Rejection Ratio	PSRRON	V_{CC} or $\mathrm{V}_{\text {EE }}$ to $\mathrm{SWB}_{\mathrm{C}}$, switch on, $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{I}_{\mathrm{CH}}=1.5 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz}$ (Note 3)		-36		dB
Off Power-Supply Rejection Ratio	PSRR ${ }_{\text {OFF }}$	V_{CC} or V_{EE} to SWB_, switch off, $V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, R_{\mathrm{L}}=50 \Omega$, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$		-65		dB

Note 2: All specifications are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$, unless otherwise noted. Specifications at $0^{\circ} \mathrm{C}$ are guaranteed by design.
Note 3: I_{CH} equals the bias current through one channel.
Note 4: See the Ultrasound-Specific IMD3 Specification in the Applications Information section.

Timing Diagram

Figure 1. Turn-On/Turn-Off Time
Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{CH}}=1.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{SWA}}=50 \Omega, \mathrm{R}_{\mathrm{SWB}}=50 \Omega, \mathrm{f}=5 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{CH}}=1.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{SWA}}=50 \Omega, \mathrm{R}_{\mathrm{SWB}}=50 \Omega, \mathrm{f}=5 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

SWC_/SWA_vs. TIME

Pin Configurations

Pin Description

PIN		NAME	
MAX4936A	MAX4937A		
1	1	SWA1	T/R Switch 1 Terminal A. When the switch is on, low-voltage signals are passed through from SWA1 to SWB1 and vice-versa, while high-voltage signals are blocked. When the switch is off, both low-voltage and high-voltage signals are blocked.
2	-	SWC1	T/R Switch 1 Terminal C. Two diodes in anti-parallel configuration are connected between SWA1 and SWC1. Connect SWC1 to GND to clamp SWA1 and absorb leakage flowing through the diode bridge. Connect SWC1 to the transmitter output to use the diodes as grass clippers.
3	3	SWA2	T/R Switch 2 Terminal A. When the switch is on, low-voltage signals are passed through from SWA2 to SWB2 and vice-versa, while high-voltage signals are blocked. When the switch is off, both low-voltage and high-voltage signals are blocked.

Pin Description (continued)

PIN		NAME				
MAX4936A	MAX4937A			$	$	SWC2
:---						
4						
5						

Pin Description (continued)

PIN		NAME	FUNCTION
MAX4936A	MAX4937A		
14	-	SWC7	T/R Switch 7 Terminal C. Two diodes in anti-parallel configuration are connected between SWA7 and SWC7. Connect SWC7 to GND to clamp SWA7 and absorb leakage flowing through the diode bridge. Connect SWC7 to the transmitter output to use diodes as grass clippers.
15	15	SWA8	T/R Switch 8 Input A. When the switch is on, low-voltage signals are passed through from SWA8 to SWB8 and vice-versa, while high-voltage signals are blocked. When the switch is off, both low-voltage and high-voltage signals are blocked.
16	-	SWC8	T/R Switch 8 Terminal C. Two diodes in anti-parallel configuration are connected between SWA8 and SWC8. Connect SWC8 to GND to clamp SWA8 and absorb leakage flowing through the diode bridge. Connect SWC8 to the transmitter output to use diodes as grass clippers.
17, 39	17, 39	GND	Ground
18	18	EN1	Enable Input 1. Set EN1 high to enable channels 1-4.
19	19	EN2	Enable Input 2. Set EN2 high to enable channels 5-8.
20	20	S2	Bias Select Input 2. Assert S2, S1, and S0 to set the bias current of the switch. See Table 1.
21	21	S1	Bias Select Input 1. Assert S2, S1, and S0 to set the bias current of the switch. See Table 1.
22	22	S0	Bias Select Input 0. Assert S2, S1, and S0 to set the bias current of the switch. See Table 1.
23	23	$V_{D D}$	Positive Logic Supply. Bypass V_{DD} to $G N D$ with a $1 \mu \mathrm{~F}$ or greater ceramic capacitor as close as possible to the device.
24	24	SWB8	T/R Switch 8 Terminal B. When the switch is on, low-voltage signals are passed through from SWA8 to SWB8 and vice-versa, while high-voltage signals are blocked. When the switch is off, both low-voltage and high-voltage signals are blocked.
$\begin{aligned} & 25,27,29,31, \\ & 33,35,37,42 \end{aligned}$	$\begin{gathered} 2,4,6,8 \\ 10,12,14,16,25, \\ 27,29,31,33, \\ 35,37,42 \end{gathered}$	N.C.	No Connect. Not internally connected. Leave N.C. unconnected or connect N.C. to GND.
26	26	SWB7	T/R Switch 7 Terminal B. When the switch is on, low-voltage signals are passed through from SWA7 to SWB7 and vice-versa, while high-voltage signals are blocked. When the switch is off, both low-voltage and high-voltage signals are blocked.
28	28	SWB6	T/R Switch 6 Terminal B. When the switch is on, low-voltage signals are passed through from SWA6 to SWB6 and vice-versa, while high-voltage signals are blocked. When the switch is off, both low-voltage and high-voltage signals are blocked.

Pin Description (continued)

PIN		NAME	FUNCTION
MAX4936A	MAX4937A		
30	30	SWB5	T/R Switch 5 Terminal B. When the switch is on, low-voltage signals are passed through from SWA55 to SWB5 and vice-versa, while high-voltage signals are blocked. When the switch is off, both low-voltage and high-voltage signals are blocked.
32	32	SWB4	T/R Switch 4 Terminal B. When the switch is on, low-voltage signals are passed through from SWA4 to SWB4 and vice-versa, while high-voltage signals are blocked. When the switch is off, both low-voltage and high-voltage signals are blocked.
34	34	SWB3	T/R Switch 3 Terminal B. When the switch is on, low-voltage signals are passed through from SWA3 to SWB3 and vice-versa, while high-voltage signals are blocked. When the switch is off, both low-voltage and high-voltage signals are blocked.
36	36	SWB2	T/R Switch 2 Terminal B. When the switch is on, low-voltage signals are passed through from SWA2 to SWB2 and vice-versa, while high-voltage signals are blocked. When the switch is off, both low-voltage and high-voltage signals are blocked.
38	38	SWB1	T/R Switch 1 Terminal B. When the switch is on, low-voltage signals are passed through from SWA1 to SWB1 and vice-versa, while high-voltage signals are blocked. When the switch is off, both low-voltage and high-voltage signals are blocked.
40	40	V_{EE}	Negative Analog Supply. Bypass $\mathrm{V}_{\text {EE }}$ to $G N D$ with a $1 \mu \mathrm{~F}$ or greater ceramic capacitor as close as possible to the device.
41	41	V_{CC}	Positive Analog Supply. Bypass V_{CC} to GND with a $1 \mu \mathrm{~F}$ or greater ceramic capacitor as close as possible to the device.
-	-	EP	Exposed Pad. Internally connected to GND. Connect to a large ground plane to maximize thermal performance. Do not use EP as the only GND connection.

Detailed Description

The MAX4936A/MAX4937A are octal, high-voltage, transmit/receive (T/R) switches. The T/R switches are based on a diode bridge topology, and the amount of current in the diode bridges can be programmed by three digital inputs (S0, S1, and S2). Two control inputs (EN1 and EN2) allow enabling/disabling channels 1-4 and channels 5-8, respectively. The MAX4936A includes the T/R switch and grass-clipping diodes, performing both transmit and receive operations. The MAX4937A includes just the T/R switch and performs the receive operation only.
These devices feature a low on-impedance in the entire ultrasound frequency range with extremely low power dissipation 15 mW (typ) per channel.
The receive path for both devices is low impedance during low-voltage receive and high impedance during high-voltage transmit, providing protection to the receive circuitry. The low-voltage receive path is high bandwidth, low noise, low distortion, and low jitter. The MAX4936A SWC_ pins can be driven with high-voltage signals using the anti-parallel diodes as grass clippers while connecting the SWB_ pins to the low-noise amplifier (LNA); see Figure 3. Connecting SWC_ to GND allows the internal
anti-parallel diodes to be used as clamps. Grass-clipping diodes can then be connected to SWB_ and the LNA to SWA_; see Figure 4.

Transmit/Receive Switch

The T/R switch is based on a diode bridge topology. The amount of bias current into each diode bridge is adjustable be setting the S0-S2 switches (see Figure 2 and Table 1).

Enable Inputs (EN1, EN2)

Two control inputs (EN1 and EN2) allow enabling/ disabling channels 1-4 and channels 5-8, respectively. Drive EN1 high to enable channels 1-4; drive EN1 low to disable channels 1-4. Drive EN2 high to enable channels 5-8; drive EN2 low to disable channels 5-8. See Table 2.

Figure 2. Diode Bias Current Control

Table 1. Diode Bias Current

DIODE BRIDGE CURRENT CONTROL BITS				RESISTORS ($\mathbf{\Omega})$			RESISTOR COMBINATION	TYPICAL DIODE BRIDGE CURRENT (mA) vs. S[2:0] CONTROL BITS (*)	
$\mathbf{S 2}$	$\mathbf{S 1}$	$\mathbf{S 0}$	$\mathbf{R 2}$	$\mathbf{R 1}$	$\mathbf{R 0}$	$\mathbf{(\Omega)}$	$\mathbf{V}_{\mathbf{C C}}=\mathbf{+ 3 . 3 V}$	$\mathbf{V}_{\mathbf{C C}}=\mathbf{+ 5 V}$	
0	0	0	2,200	4.400	8,800	-	0	0	
0	0	1	2,200	4.400	8,800	8,800	0.31	0.52	
0	1	0	2,200	4.400	8,800	4,400	0.61	1.02	
0	1	1	2,200	4.400	8,800	2,933	0.91	1.53	
1	0	0	2,200	4.400	8,800	2,200	1.20	2.03	
1	0	1	2,200	4.400	8,800	1,760	1.50	2.54	
1	1	0	2,200	4.400	8,800	1,467	1.80	3.04	
1	1	1	2,200	4.400	8,800	1,257	2.09	3.53	

${ }^{*} V_{E E}=-V_{C C}$

Table 2. Enable Truth Table

EN1	EN2	CHANNELS 1-4	CHANNELS 5-8
0	0	Disabled (Off)	Disabled (Off)
0	1	Disabled (Off)	Enabled (On)
1	0	Enabled (On)	Disabled (Off)
1	1	Enabled (On)	Enabled (On)

Applications Information

For medical ultrasound applications, see Figures 3-6.

Ultrasound-Specific IMD3 Specification

Unlike typical communications applications, the two input tones are not equal in magnitude for the ultrasound-specific IMD3 two-tone specification. In this measurement, F1 represents reflections from tissue and F2 represents reflections from blood. The latter reflections are typically 25 dB lower in magnitude, and hence the measurement is defined with one input tone 25 dB lower than the other. The IMD3 product of interest (F1 - (F2 - F1)) presents itself as an undesired Doppler error signal in ultrasound applications. See Figure 7.

Logic Levels

The digital inputs S0, S1, S2, EN1, and EN2 are tolerant of up to +5.5 V , independent of the V_{DD} supply voltage, allowing compatibility with higher voltage controllers.

Supply Sequencing and Bypassing

The devices do not require special sequencing of the $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CC}}$, and V_{EE} supply voltages; however, analog
switch inputs must be unconnected, or satisfy $\mathrm{V}_{\mathrm{EE}} \leq$ $\left(V_{\text {SWA }}, V_{\text {SWB }}, V_{\text {SWC }}\right) \leq V_{\text {CC }}$ during power-up and power- \bar{d} own. Bypass $V_{D \bar{D}}, V_{C C}$, and $V_{E E}$ to $G N D$ with a 1FF ceramic capacitor as close as possible to the device.

PCB Layout

The pin configuration is optimized to facilitate a very compact physical layout of the device and its associated discrete components. A typical application for this device might incorporate several devices in close proximity to handle multiple channels of signal processing.
The exposed pad (EP) of the TQFN-EP package provides a low thermal resistance path to the die. It is important that the PCB on which the device is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP must be soldered to a ground plane on the PCB, either directly or through an array of plated through holes.

Single-Supply Operation

For single-supply operation, connect V_{EE} to GND and apply +2.5 V to +5.5 V to V_{Cc}.

Figure 3. Ultrasound T/R Path. Anti-parallel diodes used as grass clippers.
SWC_ = Transmitter Output, SWA_ = Input, SWB_ = Output. (One channel only.)

Figure 4. Ultrasound T/R Path. Anti-parallel diodes used as clamping diodes.
SWC_ = GND, SWB_ = Input, SWA_ = Output. (One channel only.)

Figure 5. Ultrasound T / R Path. Operation from a single supply $\left(V_{C C}=+5 V\right)$. (One channel only.)

Figure 6. Ultrasound T/R Path with Multiple Transmits per Receive Channel

Figure 7. Ultrasound IMD3 Measurement Technique

Ordering Information/Selector Guide

PART	ANTI-PARALLEL DIODES	TEMP RANGE	PIN-PACKAGE
MAX4936ACTO +	Yes	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	42 TQFN-EP*
MAX4937ACTO+	No	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	42 TQFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad.

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
42 TQFN-EP	T423590+1	$\underline{\mathbf{2 1 - 0 1 8 1}}$	$\underline{90-0078}$

Revision History

| REVISION
 NUMBER | REVISION
 DATE | DESCRIPTION | PAGES
 CHANGED |
| :---: | :---: | :---: | :---: | :---: |
| 0 | $10 / 11$ | Initial release | - |

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switch ICs - Various category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
CPC7514Z BCM56440XB0IFSBG NL3S325FCT2G 89H48T12G2ZCBLG LTC1043CN\#PBF LTC1470ES8\#PBF LTC1470CS8\#PBF LTC1315CG\#PBF 74HC4053N 74HC139N 74HC138N XD74LS138 XD74LS139 XD74LS147 XD4051 XD4052 XD4053 XD14051 XD14052 XD14053 XD74LS151 XD74HC4514Z XD4514 XD14514 CPC7512Z CPC7592BCTR HT18LG-G MD0100DK6-G MIC25601YWM MIC2560-0YWM NJM2750M NJM2521M PCA9848PWJ FSA8009UMX FSA8028UMX FSA8039AUMSX FSA8049UCX FSA8108BUCX FSA850UCX BD3375KV-CE2 74F138D 74HC4051M/TR 74HC138M/TR 74HC4053M/TR 74HC4052M/TR XL74LS138 $\underline{\text { XL74LS139 XL74LS148 XL4514 XL4067 }}$

