## Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers

The MAX4940/MAX4940A integrated circuits generate high-voltage, high-frequency, unipolar or bipolar pulses from low-voltage logic inputs. These quad/dual pulsers feature independent logic inputs, independent high-voltage pulser outputs with active clamps and independent high-voltage supply inputs.
The MAX4940/MAX4940A feature quad, high-voltage pulsers with $8.5 \Omega$ output impedance for the high-voltage outputs and a $21 \Omega$ impedance for the active clamp. The high-voltage outputs can provide 2.0A (typ) output current.
All devices use two logic inputs per channel to control the positive and negative pulses. The MAX4940/ MAX4940A have a dedicated input to control the active clamp. All devices feature an independent enable input EN. All digital inputs are CMOS compatible (see the Ordering Information/Selector Guide).
The MAX4940/MAX4940A are available in a 56-pin, $8 \mathrm{~mm} \times$ 8 mm , TQFN exposed pad package and are specified over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ commercial temperature range.

Warning: Exercise caution. The MAX4940/MAX4940A are designed to operate with high voltages.

Applications
Ultrasound Medical Imaging
Flaw Detection
Piezoelectric Drivers
Test Instruments
Cleaning Equipment

Features

## - High-Density Quad-Channel Pulser in One Package

- 0 to +220 V Unipolar or $\pm 110 \mathrm{~V}$ Bipolar Outputs
- $8.5 \Omega$ (typ) Output Impedance and 2.0A (typ) Output Current
- $21 \Omega$ (typ) Always-On Active Clamp with Integrated Blocking Diodes
- Integrated Output Diodes (MAX4940A Only)
- No Special Power-Supply Sequencing Required for Trilevel Applications
- Matched Rise/Fall Times and Matched Propagation Delays
- CMOS-Compatible Logic Inputs
- $56-\mathrm{Pin}, 8 \mathrm{~mm} \times 8 \mathrm{~mm}$, TQFN Package

| Ordering Information/ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Selector Guide |  |  |  |  |

Note: Devices operate over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range. +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad.

Pin Configuration


MAXIM

## Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers

## ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND.)
VDD Logic Supply Voltage ......................................-0.3V to +6V
VCC Output Driver Positive Supply Voltage ..........-0.3V to +15 V
VEe Output Driver Negative Supply Voltage ........-15V to +0.3 V
VPP_High-Positive Supply Voltage ........-0.3V to (VNN_ + 220V)
VNN_ Low-Negative Supply Voltage ....................-220V to +0.3 V
VPP1 - VNN1, VPP2 - VNN2 Supply Voltage .........-0.6V to +250V
INP_, INN_, CLP_, EN Logic Input........... -0.3V to (VDD + 0.3V)
CGN_ Voltage ......................... ( $-0.3 \mathrm{~V}+\mathrm{VNN}_{\mathrm{N}}$ ) to (+15V + VNN_)
CGP_ Voltage............................ ( $+0.3 V$ + VPP_) to ( $\left(-15 V+V_{P P}\right)$

CDP_, CDN_ Voltage ................................................-0.3V to VCC
Continuous Power Dissipation ( $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ )
$56-$ Pin TQFN (derate $47.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ )....... 3809 mW Thermal Resistance (Note 1)
$\qquad$
$\operatorname{OJC}$................................................................................. $1^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range ............................. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Junction Temperature .................................................... $+150^{\circ} \mathrm{C}$
Storage Temperature Range............................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) ................................ $+300^{\circ} \mathrm{C}$

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=+3 V, V_{C C}=+12 \mathrm{~V}, \mathrm{~V}_{E E}=-12 \mathrm{~V}, \mathrm{VPP}_{-}=+100 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-100 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MI}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T} A=+25^{\circ} \mathrm{C}$.) (Note 2)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| POWER SUPPLY (Vdd, Vcc, ${ }^{\text {VEE, }}$ VPP_, ${ }^{\text {VNN_) }}$ |  |  |  |  |  |  |
| Logic Supply Voltage | VDD |  | 2.37 | 3 | 6 | V |
| Positive Drive Supply Voltage | VCC |  | 4.75 | 12 | 12.6 | V |
| Negative Drive Supply Voltage | VEE |  | $\begin{aligned} & 1.05 \times \\ & \left(-V_{C C}\right) \end{aligned}$ | -VCC | $\begin{aligned} & 0.95 x \\ & \left(-V_{C C}\right) \end{aligned}$ | V |
| High-Side Supply Voltage | VPP1 |  | 0 |  | +200 | V |
| Low-Side Supply Voltage | VNN1 |  | -200 |  | 0 | V |
| High-Side Supply Voltage | VPP2 |  | 0 |  | VPP1 | V |
| Low-Side Supply Voltage | VNN2 |  | VNN1 |  | 0 | V |
| VPP_ - VNN_ Supply Voltage |  |  | 0 |  | +200 | V |
| SUPPLY CURRENT (for single channel) |  |  |  |  |  |  |
| VDD Supply Current | IDD | VINN_/VINP_/VCLP_ $=0$ or VDD, $\mathrm{V}_{\text {EN }}=0$ |  |  | 1 | $\mu \mathrm{A}$ |
|  |  | VEN = VDD, VCLP_ $=0$ or VDD, VINN_ = VINP_, $f=5 \mathrm{MHz}$, one channel switching |  | 100 | 200 | $\mu \mathrm{A}$ |
| VCc Supply Current | ICC_ | $\mathrm{V}_{\text {EN }}=0$ (static) |  |  | 1 |  |
|  |  | $\mathrm{V}_{\text {EN }}=\mathrm{V}_{\mathrm{DD}}$ (static) |  |  | 10 | $\mu \mathrm{A}$ |
|  |  | $\begin{aligned} & V_{E N}=V_{D D}, V_{C L P}=0 \text { or } V_{D D}, V_{I N N}= \\ & V_{\text {INP_, }}, f=5 M H z, V_{C C}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3 \mathrm{~V}, \\ & \text { one channel switching } \end{aligned}$ |  | 36 |  | mA |
|  |  | $V_{E N}=V_{D D}, V_{C L P}=0$ or $V_{D D}, V_{I N N}=$ $V_{I N P}, f=5 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3 \mathrm{~V}$, one channel switching |  | 15 |  |  |

# Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers 

## ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+3 V, V_{C C}=+12 \mathrm{~V}, \mathrm{~V}_{E E}=-12 \mathrm{~V}, \mathrm{~V}_{P P}=+100 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-100 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VEE_Supply Current | IEE_ | $\mathrm{V}_{\text {EN }}=0$ or $\mathrm{V}_{\text {DD }}$ | (tatic) | 1100 |  |  | $\mu \mathrm{A}$ |
|  |  | $V_{E E}=-5 V, V_{E N}=V_{D D}, V_{C L P}=V_{D D}$, PRF $=10 \mathrm{kHz}, f=5 \mathrm{MHz}$, four pulses, no load, one channel switching |  |  |  |  |  |
|  |  | $V_{E E}=-12 \mathrm{~V}, V_{E N}=V_{D D}, V_{C L P}=V_{D D}$, $P R F=10 \mathrm{kHz}, f=5 \mathrm{MHz}$, four pulses, no load, one channel switching |  |  |  | 200 |  |
| VPP_ Supply Current | IPP_ | $\mathrm{V}_{\text {EN }}=0$ or $\mathrm{V}_{\mathrm{DL}}$ | tatic) |  |  | 1 | $\mu \mathrm{A}$ |
|  |  | $V_{E N}=V_{D D}, V_{C L}$ $\mathrm{V}_{\mathrm{INP}}, \mathrm{f}=5 \mathrm{MHz}$ no load, one ch | $\begin{aligned} & =0 \text { or } \mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{1} \mathrm{NN}_{-}= \\ & \mathrm{V}_{\text {PP_ }}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}^{-} \\ & \text {inel switching } \end{aligned}$ |  | 9 |  | mA |
|  |  | $\begin{aligned} & V_{E N}=V_{D D}, V_{C L} \\ & V_{P P}=+80 V, V_{P} \\ & f=10 M H z, \text { four } \\ & \text { one channel swi } \end{aligned}$ | $\begin{aligned} & =0 \text { or VDD, } \\ & \mathrm{N}_{-}=-80 \mathrm{~V}, \mathrm{PRF}=10 \mathrm{kHz}, \end{aligned}$ <br> ulses, no load, <br> hing |  | 0.6 |  |  |
| VNN_ Supply Current | INN_ | $\mathrm{V}_{\text {EN }}=0$ or $\mathrm{V}_{\mathrm{D}}$ | atic) |  |  | 1 | $\mu \mathrm{A}$ |
|  |  | $V_{E N}=V_{D D}, V_{C L}$ $\mathrm{V}_{\mathrm{INP}}, \mathrm{f}=5 \mathrm{MHz}$ no load, one ch | $\begin{aligned} & =0 \text { or } \mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{1} \mathrm{NN}_{-}= \\ & \mathrm{V}_{\text {PP_ }}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}^{-} \\ & \text {inel switching } \end{aligned}$ |  | 9 |  | mA |
|  |  | VEN = VDD, VINC $V_{P P}=+80 \mathrm{~V}, \mathrm{~V}_{\mathrm{N}}$ $f=10 \mathrm{MHz}$, four one channel sw | $\begin{aligned} & =0 \text { or } \operatorname{VDD}, \\ & \mathrm{N}_{-}=-80 \mathrm{~V}, \mathrm{PRF}=10 \mathrm{kHz}, \end{aligned}$ <br> ulses, no load, hing |  | 0.6 |  |  |
| LOGIC INPUTS (EN, INN_, INP_, CLP_) |  |  |  |  |  |  |  |
| Low-Level Input Voltage | VIL |  |  |  |  | $\begin{gathered} 0.25 x \\ \operatorname{VDD} \end{gathered}$ | V |
| High-Level Input Voltage | VIH |  |  | $\begin{gathered} 0.75 \times \\ \text { VDD } \end{gathered}$ |  |  | V |
| Logic-Input Capacitance | CIn |  |  |  | 5 |  | pF |
| Logic-Input Leakage | IIN | V IN $=0$ or $\mathrm{V}_{\mathrm{DD}}$ |  |  | 0 | $\pm 1$ | $\mu \mathrm{A}$ |
| OUTPUT (OUT_) |  |  |  |  |  |  |  |
| OUT_ Output-Voltage Range | VOUT_ | No load at OUT_ |  | $\mathrm{V}_{\mathrm{NN}}$ |  | VPP_ | V |
|  |  | 100 mA load (MAX4940), VCC $=+12 \mathrm{~V} \pm 5 \%$ |  | $\underset{1.5}{\text { VNN }}+$ |  | $\begin{gathered} \text { VPP_ }^{1.5} \\ \hline \end{gathered}$ | V |
|  |  | 100mA load (MAX4940A), VCC $=+12 \mathrm{~V} \pm 5 \%$ |  | $\begin{gathered} \mathrm{V}_{\mathrm{NN},}+ \\ 2.5 \end{gathered}$ |  | $\begin{gathered} \mathrm{VPP}_{2 .}- \\ 2.5 \end{gathered}$ | V |
| Low-Side Output Impedance (MAX4940) | Rols | $\mathrm{IOUT}_{-}=-50 \mathrm{~mA}$ | $\mathrm{V}_{\text {CC }}=+12 \mathrm{~V} \pm 5 \%$ |  | 7.5 | 14 | $\Omega$ |
|  |  |  | $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ |  | 8 | 18 |  |
| High-Side Output Impedance (MAX4940) | ROHS | IOUT_ $=-50 \mathrm{~mA}$ | $V_{C C}=+12 \mathrm{~V} \pm 5 \%$ |  | 9 | 14 | $\Omega$ |
|  |  |  | V CC $=+5 \mathrm{~V} \pm 5 \%$ |  | 10.5 | 18 |  |

## Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers

## ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+3 \mathrm{~V}, \mathrm{~V}_{C C}=+12 \mathrm{~V}, \mathrm{~V}_{E E}=-12 \mathrm{~V}, \mathrm{VPP}_{-}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Low-Side Output Impedance (MAX4940A) | Rols | IOUT_ = -50mA | $\mathrm{VCC}=+12 \mathrm{~V} \pm 5 \%$ |  | 8.5 | 17 | $\Omega$ |
|  |  |  | $\mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%$ |  | 10.0 | 21 |  |
| High-Side Output Impedance (MAX4940A) | ROHS | IOUT_ = -50mA | $\mathrm{VCC}=+12 \mathrm{~V} \pm 5 \%$ |  | 11.5 | 17 | $\Omega$ |
|  |  |  | $\mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%$ |  | 13.0 | 21 |  |
| Low-Side Signal CLAMP Output Impedance | Rolsc | IOUT_ = -50mA | $\mathrm{V}_{\text {CC }}=+12 \mathrm{~V} \pm 5 \%$ |  | 18.7 | 45 | $\Omega$ |
|  |  |  | $\mathrm{V}_{\text {CC }}=+5 \mathrm{~V} \pm 5 \%$ |  | 20 | 60 |  |
| High-Side Signal CLAMP Output Impedance | Rohsc | IOUT_ $=-50 \mathrm{~mA}$ | $\mathrm{VCC}=+12 \mathrm{~V} \pm 5 \%$ |  | 26.5 | 45 | $\Omega$ |
|  |  |  | $\mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%$ |  | 37.0 | 60 |  |
| PEAK CURRENT |  |  |  |  |  |  |  |
| Low-Side Output Current | IOL | VCC $=+12 \mathrm{~V} \pm 5 \%$, Vout_ - VNN_ $=100 \mathrm{~V}$ |  | 1.3 | 2.0 |  | A |
| High-Side Output Current | IOH | VCC $=+12 \mathrm{~V} \pm 5 \%$, VOUT_ - VPP_ $=100 \mathrm{~V}$ |  | 1.3 | 2.0 |  | A |
| Low-Side Output Current Clamp | IOLC | $\mathrm{VCC}=+12 \mathrm{~V} \pm 5 \%, \mathrm{VOUT}_{-}=+40 \mathrm{~V}$ |  | 0.47 | 0.9 |  | A |
| High-Side Output Current Clamp | IOHC | $\mathrm{VCC}=+12 \mathrm{~V} \pm 5 \%$, VOUT_ $=+40 \mathrm{~V}$ |  | 0.47 | 0.9 |  |  |
| Off-Output Capacitance | Co(OFF) | MAX4940, MAX4940A (OUT1_) |  | 75 |  |  | pF |
|  |  | MAX4940A (OUT2_) |  |  |  |  |  |
| Off-Output Leakage Current | ILK | $\begin{aligned} & \text { VNN_ }=-100 \mathrm{~V}, \text { VPP_ }_{-}=+100 \mathrm{~V}, \mathrm{VEN}=0, \\ & \text { VOUT_ }^{2}=-100 \mathrm{~V} \text { to }+100 \mathrm{~V} \end{aligned}$ |  |  |  | $\pm 1$ | $\mu \mathrm{A}$ |
| GATE-SOURCE RESISTANCE |  |  |  |  |  |  |  |
| Gate-Source Resistance | RGS | $\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{DD}}$ |  | 5 | 7.5 | 10 | k $\Omega$ |
| DYNAMIC CHARACTERISTICS ( $\mathrm{RL}_{\mathrm{L}}=100 \Omega$, $C_{L}=100 \mathrm{pF}$, unless otherwise noted) |  |  |  |  |  |  |  |
| Logic Input-to-Output Rise Propagation Delay (Figure 1) | tPLH | INN_INP_ at 50\% to OUT_ 10/90\%, $\mathrm{V}_{\mathrm{CC}}=+12 \mathrm{~V}, \mathrm{VPP}_{-}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}^{-}=-5 \mathrm{~V}$ |  |  | 15 |  | ns |
| Logic Input-to-Output Fall Propagation Delay (Figure 1) | tPHL | INN_/INP_ at 50\% to OUT_ 10/90\%, $\mathrm{V}_{\mathrm{CC}}=+12 \mathrm{~V}, \mathrm{VPP}_{-}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}^{-}=-5 \mathrm{~V}$ |  |  | 15 |  | ns |
| Logic Input-to-Output Rise Propagation Delay Clamp (Figure 1) | tPLO | INN_/INP_ at 50\% to OUT_ 10/90\%, $\mathrm{V}_{\mathrm{CC}}=+12 \mathrm{~V}, \mathrm{~V}_{\text {PP_ }}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-5 \mathrm{~V}$ |  |  | 15 |  | ns |
| Logic Input-to-Output Fall Propagation Delay Clamp (Figure 1) | tPHO | INN_INP_ at 50\% to OUT_ 10/90\%, $\mathrm{V}_{\mathrm{CC}}=+12 \mathrm{~V}, \mathrm{~V}_{\text {PP_ }}=+5 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-5 \mathrm{~V}$ |  |  | 15 |  | ns |
| OUT_ Rise Time (GND to VPP_) <br> (Figure 1) | tROP | $\begin{aligned} & \hline \text { VPP_ }=+100 \mathrm{~V}, \mathrm{VNN}_{\text {N }}=-100 \mathrm{~V}, 10 \% \text { to } 90 \%, \\ & \text { VCC_ }_{-}=+12 \mathrm{~V} \pm 5 \%, \text { VEE }_{-}=-\mathrm{VCC}_{-} \end{aligned}$ |  |  | 9 | 20 | ns |
| OUT_ Rise Time (VNN_ to VPP_) (Figure 1) | tRNP | $\begin{aligned} & \text { VPP_ }=+100 \mathrm{~V}, \mathrm{VNN}_{\text {N }}=-100 \mathrm{~V}, 10 \% \text { to } 90 \%, \\ & \text { VCC_ }_{-}=+12 \mathrm{~V} \pm 5 \%, \text { VEE_ }^{2}=-\mathrm{VCC}_{-} \end{aligned}$ |  |  | 10.5 | 35 | ns |
| OUT_Fall Time (GND to VNN_) (Figure 1) | tFON | $\begin{aligned} & V_{P P}^{-}=+100 \mathrm{~V}, V_{N N}=-100 \mathrm{~V}, 10 \% \text { to } 90 \%, \\ & V_{C C}=+12 \mathrm{~V} \pm 5 \%, V_{E E}=-V_{C C} \end{aligned}$ |  |  | 9 | 20 | ns |
| OUT_ Fall Time (VPP_ to $\mathrm{V}_{\mathrm{NN}}$ ) (Figure 1) | tFPN | $\begin{aligned} & V_{P P}=+100 \mathrm{~V}, V_{N N_{2}}=-100 \mathrm{~V}, 10 \% \text { to } 90 \%, \\ & V_{C C}=+12 \mathrm{~V} \pm 5 \%, \text { VEE_ }^{2}=-V_{C C} \text { - } \end{aligned}$ |  |  | 10.5 | 35 | ns |
| OUT_ Rise Time (VNN_ to GND) (Figure 1) | trNo | $\begin{aligned} & V_{P P}=+100 \mathrm{~V}, V_{N N}=-100 \mathrm{~V}, 10 \% \text { to } 90 \%, \\ & V_{C C}=+12 \mathrm{~V} \pm 5 \%, V_{E E}=-V_{C C}- \end{aligned}$ |  |  | 17 | 35 | ns |

## Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers

## ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+3 V, V_{C C}=+12 \mathrm{~V}, \mathrm{~V}_{E E}=-12 \mathrm{~V}, \mathrm{~V}_{P P}=+100 \mathrm{~V}, \mathrm{~V}_{\text {NN }}=-100 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

| PARAMETER | SYMBOL | CONDITIONS | MIN TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OUT_ Fall Time (VPP_ to GND) (Figure 1) | tFPO | $\begin{aligned} & V_{P P}^{-}=+100 \mathrm{~V}, V_{N N_{-}}=-100 \mathrm{~V}, 10 \% \text { to } 90 \%, \\ & V_{C C}=+12 \mathrm{~V} \pm 5 \%, V_{E E_{-}}=-V_{C C} \end{aligned}$ | 17 | 35 | ns |
| Output Enable Time from EN (Figure 2) | ten | $V_{P P_{-}}=+5 \mathrm{~V}, \mathrm{~V}_{N N_{-}}=-5 \mathrm{~V}$ |  | 100 | ns |
| Output Disable Time from EN (Figure 2) | tDI | $V_{P P}+=+5 \mathrm{~V}, \mathrm{~V}_{\text {NN_ }}=-5 \mathrm{~V}$ |  | 150 | ns |
| 2nd Harmonic Distortion LV | THD2_LV | $\begin{aligned} & \mathrm{foUT}_{-}=5 \mathrm{MHz}, \mathrm{VPP}_{-}=-\mathrm{V}_{\mathrm{NN}}^{-}= \\ & \mathrm{VCC}_{\mathrm{Cl}}=+5 \mathrm{~V}, \end{aligned}$ | -40 |  | dB |
| 2nd Harmonic Distortion HV | THD2_HV | $\begin{aligned} & \text { fout_ }_{=}=5 \mathrm{MHz}, \mathrm{VPP}_{-}=-\mathrm{V}_{\mathrm{NN}}^{-}= \\ & =+50 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} \\ & =+12 \mathrm{~V}, 10 \text { periods } \end{aligned}$ | -45 |  | dB |
| Pulse Cancellation | 2 HD | fout $=5 \mathrm{MHz}, \mathrm{VPP}_{-}=-\mathrm{V}_{\mathrm{NN}}^{-}=+50 \mathrm{~V}$, $\mathrm{V}_{\mathrm{C}}=+12 \mathrm{~V}, 10$ periods, 1st harmonic cancellation | -43 |  | dB |
| RMS Output Jitter | tJ |  | 10 |  | ps |
| Crosstalk | CT | Adjacent channels, $\mathrm{f}=5 \mathrm{MHz}$ | -60 |  | dB |

Note 2: Specifications are guaranteed for the stated global conditions, unless otherwise noted. 100\% production tested at $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$. Specifications at $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ are guaranteed by design.

## Typical Operating Characteristics

$\left(V_{D D}=+3.3 \mathrm{~V}, \mathrm{VCC}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}, \mathrm{VPP}_{-}=+100 \mathrm{~V}, \mathrm{VNN}_{\mathrm{N}}=-100 \mathrm{~V}\right.$, fOUT $=5 \mathrm{MHz}, \mathrm{RL}_{\mathrm{L}}=100 \Omega, \mathrm{CL}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


## Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers

otherwise noted.)


IPP_vs. TEMPERATURE


InN_ vs. OUTPUT FREQUENCY


Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{C C}=+12 \mathrm{~V}, \mathrm{~V}_{E E}=-12 \mathrm{~V}, \mathrm{VPP}_{-}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}\right.$, fout $=5 \mathrm{MHz}, R_{L}=100 \Omega, C_{L}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless


IPP_vs. TEMPERATURE


InN_vs. TEMPERATURE


IPP vs. OUTPUT FREQUENCY


INN_vs. OUTPUT FREQUENCY


INN_vs. TEMPERATURE


## Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers

Typical Operating Characteristics (continued)
$\left(V_{D D}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{~V}, \mathrm{~V}_{E E}=-12 \mathrm{~V}, \mathrm{~V}_{P P}=+100 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}\right.$, foUT $=5 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


## Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers

| PIN | NAME | FUNCTION |
| :---: | :---: | :---: |
| 1 | INP1A | Channel 1A High-Side Logic Input. See the Truth Tables section. |
| 2 | CLP1A | Channel 1A Clamp Logic Input. Clamp is turned on when CLP1A is high and when INP1A and INN1A are low. See the Truth Table section. |
| 3 | INN1A | Channel 1A Low-Side Logic Input. See the Truth Tables section. |
| 4 | INP2A | Channel 2A High-Side Logic Input. See the Truth Tables section. |
| 5 | CLP2A | Channel 2A Clamp Logic Input. Clamp is turned on when CLP2A is high and when INP2A and INN2A are low. See the Truth Tables section. |
| 6 | INN2A | Channel 2A Low-Side Logic Input. See the Truth Tables section. |
| 7 | AGND | Analog Ground. Must be connected to common GND. |
| 8 | EN | Enable Logic Input. Drive EN high to enable OUT1A, OUT1B, OUT2A, and OUT2B. |
| 9 | INP2B | Channel 2B High-Side Logic Input. See the Truth Tables section. |
| 10 | CLP2B | Channel 2B Clamp Logic Input. Clamp is turned on when CLP2B is high and when INP2B and INN2B are low. See the Truth Tables section. |
| 11 | INN2B | Channel 2B Low-Side Logic Input. See the Truth Tables section. |
| 12 | INP1B | Channel 1B High-Side Logic Input. See the Truth Tables section. |
| 13 | CLP1B | Channel 1B Clamp Logic Input. Clamp is turned on when CLP1B is high and when INP1B and INN1B are low. See the Truth Tables section. |
| 14 | INN1B | Channel 1B Low-Side Logic Input. See the Truth Tables section. |
| 15 | VEE | Negative Supply Input. Gate-drive supply voltage for the clamp. Bypass $V_{E E}$ to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device. |
| $\begin{gathered} 16,27,29, \\ 34,37,42, \\ 44,55 \end{gathered}$ | GND | Ground |
| 17, 54 | VCC | Gate-Drive Supply Voltage Input. Bypass $\mathrm{V}_{\mathrm{C}}$ to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device. |
| 18 | CDP1B | Channel 1B High-Side Driver Output. Connect a 3.3nF capacitor between CDP1B and CGP1B as close as possible to the device. |
| 19 | CDN1B | Channel 1B Low-Side Driver Output. Connect a 3.3nF capacitor between CDN1B and CGN1B as close as possible to the device. |
| 20 | CDN2B | Channel 2B Low-Side Driver Output. Connect a 3.3nF capacitor between CDN2B and CGN2B as close as possible to the device. |
| 21 | CDP2B | Channel 2B High-Side Driver Output. Connect a 3.3nF capacitor between CDP2B and CGP2B as close as possible to the device. |
| 22 | CGP2B | Channel 2B High-Side Gate Input. Connect a 3.3nF capacitor between CDP2B and CGP2B as close as possible to the device. |
| 23 | CGN2B | Channel 2B Low-Side Gate Input. Connect a 3.3nF capacitor between CDN2B and CGN2B as close as possible to the device. |
| 24 | CGN1B | Channel 1B Low-Side Gate Input. Connect a 3.3nF capacitor between CDN1B and CGN1B as close as possible to the device. |
| 25 | CGP1B | Channel 1B High-Side Gate Input. Connect a 3.3nF capacitor between CDP1B and CGP1B as close as possible to the device. |

# Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers 

Pin Description (continued)

| PIN | NAME | FUNCTION |
| :---: | :---: | :---: |
| 26, 45 | VPP1 | Channel 1A, 1B High-Side Positive Supply Voltage Input. Bypass VPP1 to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device. |
| 28 | OUT1B | Channel 1B Output |
| 30,41 | VNN1 | Channel 1A, 1B Low-Side Negative Supply Voltage Input. Bypass VNN1 to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device. |
| 31,40 | VNN2 | Channel 2A, 2B Low-Side Negative Supply Voltage Input. Bypass VNN2 to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device. |
| 32, 39 | N.C. | No Connection. Not connected internally. |
| 33 | OUT2B | Channel 2B Output |
| 35, 36 | VPP2 | Channel 2A, 2B High-Side Positive Supply Voltage Input. Bypass VPP2 to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device. |
| 38 | OUT2A | Channel 2A Output |
| 43 | OUT1A | Channel 1A Output |
| 46 | CGP1A | Channel 1A High-Side Gate Input. Connect a 3.3nF capacitor between CDP1A and CGP1A as close as possible to the device. |
| 47 | CGN1A | Channel 1A Low-Side Gate Input. Connect a 3.3nF capacitor between CDN1A and CGN1A as close as possible to the device. |
| 48 | CGN2A | Channel 2A Low-Side Gate Input. Connect a 3.3nF capacitor between CDN2A and CGN2A as close as possible to the device. |
| 49 | CGP2A | Channel 2A High-Side Gate Input. Connect a 3.3nF capacitor between CDP2A and CGP2A as close as possible to the device. |
| 50 | CDP2A | Channel 2A High-Side Driver Output. Connect a 3.3nF capacitor between CDP2A and CGP2A as close as possible to the device. |
| 51 | CDN2A | Channel 2A Low-Side Driver Output. Connect a 3.3nF capacitor between CDN2A and CGN2A as close as possible to the device. |
| 52 | CDN1A | Channel 1A Low-Side Driver Output. Connect a 3.3nF capacitor between CDN1A and CGN1A as close as possible to the device. |
| 53 | CDP1A | Channel 1A High-Side Driver Output. Connect a 3.3nF capacitor between CDP1A and CGP1A as close as possible to the device. |
| 56 | VDD | Logic-Supply Voltage Input. Bypass VDD to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device. |
| - | EP | Exposed Pad. EP must be connected to $\mathrm{V}_{\mathrm{NN} 1}$. |

# Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers 

## Detailed Description

The MAX4940/MAX4940A are quad high-voltage, highspeed pulsers that can be independently configured for either unipolar/bipolar/multilevel pulse outputs (see Figures 5 and 6.). These devices have independent logic inputs for full pulse control and independent active clamps. The clamp input, CLP_, can be set high to activate the clamp automatically when the device is not pulsing to the positive or negative high-voltage supplies.

Logic Inputs (INP_, INN_, CLP_, EN)
INP_ controls the on and off states of the high-side FET, INN_ controls the on and off states of the low-side FET, and CLP_ controls the active clamp. A global enable input (EN) can be used to enable/disable all channels. These signals give complete control of the output stage of each driver (see the Truth Tables section for all logic combinations). The MAX4940/MAX4940A logic inputs are CMOS logic compatible and the logic levels are referenced to VDD for maximum flexibility. The low 5pF (typ) input capacitance of the logic inputs reduce loading and increase switching speed.

Truth Tables

## MAX4940

| INPUTS |  |  |  | OUTPUTS | STATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| EN | INP_ | INN_ | CLP_ | OUT_ |  |
| 0 | X | X | X | High impedance | Powered up, INP_/INN_ disabled. |
| 1 | 0 | 0 | 0 | High impedance | Powered up, all inputs enabled. |
| 1 | 0 | 0 | 1 | GND | Powered up, all inputs enabled. |
| 1 | 0 | 1 | X | VNN_ | Powered up, all inputs enabled. |
| 1 | 1 | 0 | X | VPP_ | Powered up, all inputs enabled. |
| 1 | 1 | 1 | X | Not allowed | Not allowed. |

## MAX4940A

| INPUTS |  |  |  | OUTPUTS |  |
| :---: | :---: | :---: | :---: | :---: | :--- |
| EN | INP1A <br> INP1B | INN1A <br> INN1B | CLP1A <br> CLP1B | OUT1A <br> OUT1B |  |
| 0 | $X$ | $X$ | $X$ | High impedance | Powered up, INP_INN_ disabled. |
| 1 | 0 | 0 | 0 | High impedance | Powered up, all inputs enabled. |
| 1 | 0 | 0 | 1 | GND | Powered up, all inputs enabled. |
| 1 | 0 | 1 | 0 | VNN_ | Powered up, all inputs enabled. |
| 1 | 1 | 0 | 0 | VPP_ | Powered up, all inputs enabled. |
| 1 | 1 | 1 | 1 | Not allowed | Not allowed. |


| INPUTS |  |  |  | OUTPUTS | STATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| EN | INP2A INP2B | INN2A INN2B | $\begin{aligned} & \text { CLP2A } \\ & \text { CLP2B } \end{aligned}$ | OUT2A OUT2B |  |
| 0 | X | X | X | High impedance | Powered up, INP_/INN_ disabled. |
| 1 | 0 | 0 | 0 | High impedance | Powered up, all inputs enabled. |
| 1 | 0 | 0 | 1 | GND | Powered up, all inputs enabled. |
| 1 | 0 | 1 | X | VNN | Powered up, all inputs enabled. |
| 1 | 1 | 0 | X | VPP_ | Powered up, all inputs enabled. |
| 1 | 1 | 1 | X | Not allowed | Not allowed. |

[^0]
# Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers 

## Active Clamps

The MAX4940/MAX4940A feature an integrated active clamp circuit to improve pulse quality and reduce 2 nd harmonic distortion. The clamp circuit consists of an n-channel (DC-coupled) and a p-channel (DC-coupled) high-voltage FETs that are switched on or off by the logic clamp input (CLP_).
The MAX4940/MAX4940A feature protected clamp devices, allowing the clamp circuit to be used in bipolar pulsing circuits (see Figures 3 and 4). A diode in series with the OUT_ output prevents the body diode of the low-side FET from turning on when a voltage lower than GND is present. Another diode in series with the OUT_ output prevents the body diode of the high-side FET from turning on when a voltage higher than ground is present. The MAX4940/ MAX4940A have an active clamp on all outputs.

For the MAX4940 only, the user can connect the active clamp input (CLP_) to a logic-high voltage and drive only the INP_ and INN_ inputs to minimize the number of signals used to drive the device. In this case, whenever both the INP_ and INN_ inputs are low and the CLP_ input is high, the active clamp circuit pulls the output to GND (see the Truth Tables section for more information).

## Integrated Blocking Diodes (MAX4940A Only)

 The high-voltage OUT2A/OUT2B outputs of the MAX4940A feature integrated blocking diodes that allow the user to implement multilevel pulsing by connecting the outputs of multiple pulser channels in parallel. Internal diodes in series with the OUT2A and OUT2B outputs prevent the body diode of the high-side and lowside FETs from switching on when a voltage greater than VNN2 or VPP2 is present on the output (see Figure 4).Thermal Protection
A thermal shutdown circuit with a typical threshold of $+155^{\circ} \mathrm{C}$ prevents damage due to excessive power dissipation. When the junction temperature exceeds $\mathrm{TJ}_{\mathrm{J}}=$ $+155^{\circ} \mathrm{C}$, all outputs are disabled. Normal operation typically resumes after the IC's junction temperature drops below $+130^{\circ} \mathrm{C}$.

## Applications Information

## AC-Coupling Capacitor Selection

The value of all AC-coupling capacitors (between CDP_ and CGP_, and between CDN_ and CGN_) should be between 1 nF to 10 nF . The voltage rating of the capacitor should be greater than VPP_ and VNN_. The capacitors should be placed as close as possible to the device.

Power Dissipation
The power dissipation of the MAX4940/MAX4940A consists of three major components caused by the current consumption from VCC, VPP_, and VNN_. The sum of these components (PVcc, PvPP_, and PVNn_) must be kept below the maximum power-dissipation limit. See the Typical Operating Characteristics section for more information on typical supply currents versus switching frequencies.
The device consumes most of the supply current from Vcc supply to charge and discharge internal nodes such as the gate capacitance of the high-side FET (CP) and the low-side FET (CN). Neglecting the small quiescent supply current and a small amount of current used to charge and discharge the capacitances at the internal gate clamp FETs, the power consumption can be estimated as follows:

$$
\begin{aligned}
& P_{V C C}=\left[\left(C_{N} \times V_{C C}{ }^{2} \times f_{I N}\right)+\left(C_{P} \times V_{C C}{ }^{2} \times f_{I N}\right)\right] \times(\text { BRF } \times \text { BTD }) \\
& \mathrm{f}_{\mathrm{IN}}=\mathrm{f}_{\mathrm{INN}}^{-}+\mathrm{f}_{\mathrm{INP}}^{-}
\end{aligned}
$$

where finn_ and finp_ are the switching frequency of the inputs $I N N_{-}$, INP_, respectively, and where BRF is the burst response frequency, and BTD is the burst time duration. The typical values of the gate capacitances are $\mathrm{CN}_{\mathrm{N}}=1.2 \mu \mathrm{~F}, \mathrm{CP}=0.4 \mu \mathrm{~F}$.
See the Typical Operating Characteristics for VPP_ and $\mathrm{V}_{\mathrm{NN}}$ _ power consumption.

## Power Supplies and Bypassing

 The MAX4940/MAX4940A operate from independent supply voltage sets (only VDD, VCC, and VEE are common to all channels). VPP1/VNN1 supply two channels and VPP2/ NNN2 supply the other two channels. The logic input circuit operates from a +2.37 V to +6 V single supply (VDD). The level-shift driver dual supplies, VCC/VEE operate from $\pm 4.75 \mathrm{~V}$ to $\pm 12.6 \mathrm{~V}$.The VPP_/VNN_ high-side and low-side supplies are driven from a single positive supply up to +220 V , from a single negative supply up to -220 V , or from $\pm 110 \mathrm{~V}$ dual supplies. Either VPP_ or VNN_ can be set at 0 . Bypass each supply input to ground with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device.
Depending on the applications, additional bypassing may be needed to maintain the input of both $\mathrm{V}_{\mathrm{NN}}$ _ and $\mathrm{VPP}_{-}$ stable during output transitions. For example, with Cout $=100 \mathrm{pF}$ and ROUT $=100 \Omega$ load, the use of an additional $10 \mu \mathrm{~F}(\mathrm{typ})$ electrolytic capacitor is recommended.

## Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers

Exposed Pad and Layout Concerns The MAX4940/MAX4940A provide an exposed pad (EP) underneath the TQFN package for improved thermal performance. EP is internally connected to VNN1. Connect EP to VNN1 externally. To aid heat dissipation, connect EP to a similarly sized pad on the component side of the PCB. This pad should be connected through the solder-side copper by several plated holes to a large heat spreading copper area to conduct heat away from the device.
The MAX4940/MAX4940A high-speed pulsers require lowinductance bypass capacitors to their supply inputs. Highspeed PCB trace design practices are recommended. Pay
particular attention to minimize trace lengths and use sufficient trace width to reduce inductance. Use of surfacemount components is recommended.

## Supply Sequencing

In a typical trilevel application when $\mathrm{V}_{\mathrm{NN}}$ and $\mathrm{V}_{\mathrm{NN}}$ 2 are externally shorted (VNN1 $=$ VNN2), the MAX4940/ MAX4940A do not require any power sequencing. In general, and in particular for the multilevel application, $\mathrm{V}_{\mathrm{NN}} 1$ must be less than or equal to $\mathrm{V}_{\mathrm{NN}}\left(\mathrm{V}_{\mathrm{NN}} 1 \leq\right.$ $\mathrm{V}_{\mathrm{NN}}$ ) at all times. No other power-supply sequencing is required for the MAX4940/MAX4940A.


Figure 1. Detail Timing ( $R L=100 \Omega, C L=100 \mathrm{pF}$ )

# Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers 

Timing Diagrams (continued)

$\forall 0 \not 6 t X V W / 0 \nmid 6 ゅ X V W$

Figure 2. Enable Timing ( $R_{L}=100 \Omega, C_{L}=100 \mathrm{pF}$ )

## Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers



Figure 3. MAX4940 Simplified Functional Diagram for One Channel

## Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers

Functional Diagrams (continued)

*OUT2A/OUT2B ONLY.

Figure 4. MAX4940A Simplified Functional Diagram for One Channel

## Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers



Figure 5. MAX4940 Quad Pulsing with Always-On Active Return-to-Zero

# Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers 

Typical Application Circuits (continued)


Figure 6. MAX4940A Dual Five-Level Pulsing

## Dual/Quad, Unipolar/Bipolar, High-Voltage Digital Pulsers

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

| PACKAGE TYPE | PACKAGE CODE | DOCUMENT NO. |
| :---: | :---: | :---: |
| 56 TQFN | T5688-3 | $\underline{\underline{\mathbf{2 1}-0135}}$ |

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management Specialised - PMIC category:
Click to view products by Maxim manufacturer:

Other Similar products are found below :
LV5686PVC-XH FAN7710VN NCP391FCALT2G SLG7NT4081VTR SLG7NT4192VTR AP4313UKTR-G1 AS3729B-BWLM MB39C831QN-G-EFE2 LV56841PVD-XH AP4306BUKTR-G1 MIC5164YMM PT8A3252WE NCP392CSFCCT1G PT8A3284WE PI3VST01ZEEX PI5USB1458AZAEX PI5USB1468AZAEX MCP16502TAC-E/S8B MCP16502TAE-E/S8B MCP16502TAA-E/S8B MCP16502TAB-E/S8B TCKE712BNL,RF ISL91211AIKZT7AR5874 ISL91211BIKZT7AR5878 MCP16501TC-E/RMB ISL91212AIIZTR5770 ISL91212BIIZ-TR5775 CPX200D AX-3005D-3 TP-1303 TP-1305 TP-1603 TP-2305 TP-30102 TP-4503N MIC5167YML-TR LPTM21-1AFTG237C LR745N8-G MPS-3003L-3 MPS-3005D SPD-3606 STLUX383A TP-60052 ADN8834ACBZ-R7 LM26480SQ$\underline{\text { AA/NOPB LM81BIMTX-3/NOPB LM81CIMT-3/NOPB MIC5166YML-TR GPE-4323 GPS-2303 }}$


[^0]:    $X=$ Don't care.
    $0=$ Logic-low.
    $1=$ Logic-high .

