16-Channel, Linear, High-Voltage Analog Switches

Abstract

General Description The MAX4968/MAX4968A are 16-channel, high-linearity, high-voltage, bidirectional SPST analog switches with 18Ω (typ) on-resistance. The devices are ideal for use in applications requiring high-voltage switching controlled by a low-voltage control signal, such as ultrasound imaging and printers. The MAX4968A provides integrated $40 \mathrm{k} \Omega$ (typ) bleed resistors on each switch terminal to discharge capacitive loads. Using HVCMOS technology, these switches combine high-voltage bilateral MOS switches and low-power CMOS logic to provide efficient control of high-voltage analog signals

The MAX4968 is pin-to-pin compatible with the MAX14802 and Supertex HV2601. The MAX4968A is pin-to-pin compatible with the MAX14803 and Supertex HV2701. The only difference is the VPP positive supply voltage level. The MAX4968/MAX4968A require a low + 10V (typ) voltage (VPP), whereas the MAX14802/MAX14803 and HV2601/HV2701 require a high +100V supply voltage. In a typical ultrasound application, these devices do not require a dedicated high-voltage supply that implies a significant simplification of system requirement. The negative voltage supply can be shared with the transmitter, and the positive voltage supply is typically +10 V . The devices are available in the 48-pin LQFP package and are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.

Applications
Medical Ultrasound Imaging
Nondestructive Testing (NDT)/Industrial
Ultrasound Imaging
Printers
Ordering Information/Selector Guide

PART	TEMP RANGE	SWITCH CHANNELS	BLEED RESISTOR	PIN-PACKAGE
MAX4968ECM +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16	No	48 LQFP
MAX4968AECM +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16	Yes	48 LQFP

+Denotes a lead(Pb)-free/RoHS-compliant package

16-Channel, Linear, High-Voltage Analog Switches

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)
$V_{D D}$ Logic Supply Voltage Range -0.3 V to +6 V
VPP - V ${ }_{\text {NN }}$ Supply Voltage.. +212 V
VPP Supply Voltage Range 0.3 V to +12 V
$V_{\text {NN }}$ Negative Supply Voltage...-200V
Logic Input Voltage Range (CLK, DIN, CLR)-0.3V to +6V
Logic Input Voltage Range
($\overline{\mathrm{LE}}$).
..-0.3 V to a minimum of $\left(\mathrm{V}_{\mathrm{PP}}+0.3 \mathrm{~V}\right)$ or 6 V
Logic Output Voltage Range (DOUT)...... - 0.3 V to ($\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$)
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

LQFP

Junction-to-Ambient Thermal Resistance ($\theta \mathrm{JA}$) $44^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance ($\theta \mathrm{JC}$) $10^{\circ} \mathrm{C} / \mathrm{W}$
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=+2.37 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+10 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{NN}}=0$ to $-200 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are $V_{D D}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{VPP}=+10 \mathrm{~V}$ at $\mathrm{T}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES						
VDD Logic Supply Voltage	VDD		+2.37		+5.5	V
VNN Supply Voltage	VNN		-200		0	V
VPP Supply Voltage	VPP		+9.5	+10	+10.5	V
VDD Static Current	IDDS				4	$\mu \mathrm{A}$
VDD Dynamic Current	IDD	VDD $=+5 \mathrm{~V}, \mathrm{fCLK}=5 \mathrm{MHz}, \mathrm{fDIN}=2.5 \mathrm{MHz}$			200	$\mu \mathrm{A}$
VNN Static Current	INNS	All switches remain on or off, SW_ = GND		10	25	$\mu \mathrm{A}$
VNN Supply Dynamic Current (All Channels Switching Simultaneously)	INN	$\begin{aligned} & V_{\mathrm{PP}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \\ & \text { fTURN_ON/OFF }=50 \mathrm{kHz}, \mathrm{SW}-=\text { GND } \end{aligned}$		3.3	5	mA
VPP Supply Static Current	IPPS	All switches remain on or off, SW_ = GND		12	25	$\mu \mathrm{A}$
VPp Supply Dynamic Current (All Channels Switching Simultaneously)	IPP	$\begin{aligned} & V_{P P}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \\ & \text { fTURN_ON/OFF }=50 \mathrm{kHz}, \mathrm{SW}=\mathrm{GND} \end{aligned}$		4	6	mA
SWITCH CHARACTERISTICS						
Analog Dynamic Signal Range	Vsw_	AC operation only, f > 500kHz	VNN		$\begin{gathered} V_{N N}+ \\ 210 \end{gathered}$	V
Small-Signal On-Resistance	Rons	$\begin{aligned} & \mathrm{VPP}=+10 \mathrm{~V}, \mathrm{VNN}=-100 \mathrm{~V}, \mathrm{VSW}_{-}=0 \mathrm{~V}, \\ & \mathrm{ISW}_{-}=5 \mathrm{~mA} \end{aligned}$		18	34	Ω

16-Channel, Linear, High-Voltage Analog Switches

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+2.37 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+10 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{NN}}=0$ to $-200 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are $\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+10 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Small-Signal On-Resistance Matching	\triangle Rons	$\mathrm{V}_{\mathrm{PP}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{ISW}_{-}=5 \mathrm{~mA}$		3		\%
Small-Signal On-Resistance Flatness	Ronf	```AC measured, fSW_= 0.5MHz, VSW_= 80VP-P, RLOAD = 50\Omega, VPP = +10V, VNN = -100V```		2		\%
Switch Output Bleed Resistor	Rint	MAX4968A only	30	40	50	k ת
Switch-Off Leakage	ISW_(OFF)	VSW_ = OV, switch off (MAX4968 only)		0	1	$\mu \mathrm{A}$
Switch-Off DC Offset		No load (MAX4968A only)	-15	0	+15	mV
Switch-On DC Offset		No load (MAX4968A only)	-15	0	+15	mV
Switch Output Isolation Diode Current		300ns pulse width, 2\% duty cycle		3.0		A
SWITCH DYNAMIC CHARACTERISITICS						
Turn-On Time	ton	$V_{S W}$ _A $=+1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}$, from enable to $V_{S W}$ B $=+0.9 \mathrm{~V}$		2	5	$\mu \mathrm{s}$
Turn-Off Time	tOFF	$V_{S W}$ _A $=+1 \mathrm{~V}, R_{L}=100 \Omega, V_{N N}=-100 \mathrm{~V}$, from disable to VSW_B $=+0.9 \mathrm{~V}$		2	3.5	$\mu \mathrm{s}$
Maximum Vsw_ Slew Rate	$\mathrm{dV} / \mathrm{dt}$	$C L=100 \mathrm{pF}$	20			V/ns
Off-Isolation	VISO	$\mathrm{f}=2 \mathrm{MHz}, \mathrm{RL}=50 \Omega$		-76		dB
Crosstalk	VCT	$f=5 \mathrm{MHz}, \mathrm{RL}_{\mathrm{L}}=50 \Omega$		-76		dB
SW_ Off-Capacitance	CSW_(OFF)	$\mathrm{f}=1 \mathrm{MHz}$, small signal close to zero		9		pF
SW_ On-Capacitance	CSW_ (ON)	$\mathrm{f}=1 \mathrm{MHz}$, small signal close to zero		13		pF
Output Voltage Spike	VSPK	$R \mathrm{~L}=50 \Omega$		± 70		mV
Large-Signal Analog Bandwidth (-3dB)	fBW_L	CLOAD $=200 \mathrm{pF}, 60 \mathrm{~V}$ amplitude sinusoidal burst, 1% duty cycle		30		MHz
Small-Signal Analog Bandwidth (-3dB)	fBW_S	CLOAD $=200 \mathrm{pF}, 100 \mathrm{mV}$ amplitude sinusoidal		50		MHz
Charge Injection	Q	$V_{P P}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}$, Figure 1		150		pC
LOGIC LEVELS						
Logic-Input Low Voltage	VIL				0.75	V
Logic-Input High Voltage	V_{IH}		$\begin{aligned} & \text { VDD - } \\ & 0.75 \end{aligned}$			V
Logic-Output Low Voltage	VOL	$\mathrm{ISINK}=1 \mathrm{~mA}$			0.4	V
Logic-Output High Voltage	VOH	ISOURCE $=1 \mathrm{~mA}$	$\begin{gathered} \hline \text { VDD }- \\ 0.4 \end{gathered}$			V
Logic-Input Capacitance	CIN			5		pF
Logic-Input Leakage	IIN		-1		+1	$\mu \mathrm{A}$

16-Channel, Linear, High-Voltage Analog Switches

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+2.37 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V} P \mathrm{VP}=+10 \mathrm{~V} \pm 5 \%, \mathrm{~V} N \mathrm{~N}=0$ to $-200 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are $\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=+10 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
TIMING CHARACTERISTICS (Figure 2)						
CLK Frequency	fCLK				25	MHz
DIN to CLK Setup Time	tDS		8			ns
DIN to CLK Hold Time	tDH		3			ns
CLK to $\overline{L E}$ Setup Time	tcs		8			ns
$\overline{\text { LE Low Pulse Width }}$	tWL		12			ns
CLR High Pulse Width	twc		12			ns
CLK Rise and Fall Times	tR, tF				50	ns
CLK to DOUT Delay	tDo	$\mathrm{V}_{\text {DD }}=+5 \mathrm{~V} \pm 10 \%$, CDOUT $=15 \mathrm{pF}$			28	ns
		$\mathrm{V}_{\text {DD }}=+2.5 \mathrm{~V} \pm 5 \%, \mathrm{C}$ DOUT $=15 \mathrm{pF}$			45	

Note 2: All devices are 100% tested at $\mathrm{T} A=+85^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design.

16-Channel, Linear, High-Voltage Analog Switches

16-Channel, Linear, High-Voltage Analog Switches

Figure 2. Serial Interface Timing

Figure 3. Latch-Enable Interface Timing

16-Channel, Linear, High-Voltage Analog Switches

Typical Operating Characteristics

LOGIC POWER-SUPPLY CURRENT vs. SUPPLY VOLTAGE

HIGH-VOLTAGE SUPPLY CURRENT vs. OUTPUT SWITCH FREQUENCY

16-Channel, Linear, High-Voltage Analog Switches

Pin Description

PIN	NAME	FUNCTION
$1,2,14,16$, $24,35,36$	N.C.	No Connection. Not connected internally.
3	SW4B	Analog Switch 4-Terminal
4	SW4A	Analog Switch 4-Terminal
5	SW3B	Analog Switch 3-Terminal
6	SW3A	Analog Switch 3-Terminal
7	SW2B	Analog Switch 2-Terminal
8	SW2A	Analog Switch 2-Terminal
9	SW1B	Analog Switch 1 -Terminal
10	SW1A	Analog Switch 1-Terminal
11	SW0B	Analog Switch 0-Terminal
12	SWOA	Analog Switch 0-Terminal
13	VNN	Negative High-Voltage Supply. Bypass VNN to GND with a 0.1 or greater ceramic capacitor.

PIN	NAME	FUNCTION
15	VPP	Positive Voltage Supply. Bypass Vpp to GND with a 0.1 μ F or greater ceramic capacitor.
17	GND	Ground
18	VDD	Logic Supply Voltage. Bypass VDD to GND with a 0.1 μ F or greater ceramic capacitor.
19	DIN	Serial-Data Input
20	CLK	Serial-Clock Input
21	$\overline{\text { LE }}$	Active-Low Latch-Enable Input
22	CLR	Latch-Clear Input
23	DOUT	Serial-Data Output
25	SW15B	Analog Switch 15-Terminal
26	SW15A	Analog Switch 15-Terminal
27	SW14B	Analog Switch 14-Terminal

16-Channel, Linear, High-Voltage Analog Switches

Pin Description (continued)

PIN	NAME	FUNCTION
28	SW14A	Analog Switch 14-Terminal
29	SW13B	Analog Switch 13-Terminal
30	SW13A	Analog Switch 13-Terminal
31	SW12B	Analog Switch 12-Terminal
32	SW12A	Analog Switch 12-Terminal
33	SW11B	Analog Switch 11-Terminal
34	SW11A	Analog Switch 11-Terminal
37	SW10B	Analog Switch 10-Terminal
38	SW10A	Analog Switch 10-Terminal
39	SW9B	Analog Switch 9-Terminal

Detailed Description

The MAX4968/MAX4968A are 16-channel, high-linearity, high-voltage, bidirectional SPST analog switches with 18Ω (typ) on-resistance. The devices are ideal for use in applications requiring high-voltage switching controlled by a low-voltage control signal, such as ultrasound imaging and printers. The MAX4968A provides integrated $40 k \Omega$ (typ) bleed resistors on each switch terminal to discharge capacitive loads. Using HVCMOS technology, these switches combine high-voltage, bilateral MOS switches and low-power CMOS logic to provide efficient control of high-voltage analog signals.
The MAX4968 is pin-to-pin compatible with the MAX14802 and Supertex HV2601. The MAX4968A is pin-to-pin compatible with the MAX14803 and Supertex HV2701. The only difference is the VPP positive supply voltage level. The MAX4968/MAX4968A require a low + 10V (typ) voltage (VPP), whereas the MAX14802/MAX14803 and HV2601/HV2701 require a high +100V supply voltage.
In typical ultrasound applications, these devices do not require dedicated high-voltage supply, which implies a significant simplification of system requirement. The negative voltage supply can be shared with the transmitter and the positive voltage supply is typically +10 V .

PIN	NAME	FUNCTION
40	SW9A	Analog Switch 9-Terminal
41	SW8B	Analog Switch 8-Terminal
42	SW8A	Analog Switch 8-Terminal
43	SW7B	Analog Switch 7-Terminal
44	SW7A	Analog Switch 7-Terminal
45	SW6B	Analog Switch 6-Terminal
46	SW6A	Analog Switch 6-Terminal
47	SW5B	Analog Switch 5-Terminal
48	SW5A	Analog Switch 5-Terminal

Analog Switch

The devices can transmit analog signals up to 210VP-P, with an analog signal range from VNN to VNN + 210V. Before starting the high-voltage burst transmission (VP-P $>+20 \mathrm{~V}$), the input voltage is required to be close to GND to allow a proper settling of the pass FET. The highvoltage burst frequency must be greater than 500 kHz .
Extremely long high-voltage bursts (VP-P > +10V) with duty cycle greater than 20% could result in signal degradation, especially for unipolar transmission. In general, this applies for burst transmission with a nonzero DC content.

Low-voltage signal (VP-P < 10V) continuous-wave bipolar transmission is supported for frequencies greater than 500 kHz . For very small signals, such as the small echoes in typical ultrasound imaging systems (VP-P < 10 V), the devices are not limited to a low-frequency bandwidth and can transmit DC signals.

Voltage Supplies

The devices operate with a high-voltage supply VNN from -200V to 0, Vpp supply of +10 V (typ), and a logic supply $\mathrm{V}_{\mathrm{DD}}(+2.37 \mathrm{~V}$ to $+5.5 \mathrm{~V})$.

16-Channel, Linear, High-Voltage Analog Switches

Bleed Resistors (MAX4968A)

The MAX4968A features integrated $40 \mathrm{k} \Omega$ (typ) bleed resistors to discharge capacitive loads such as piezoelectric transducers. Each analog switch terminal is connected to GND with a bleed resistor.

Serial Interface
The MAX4968/MAX4968A are controlled by a serial interface with a 16 -bit serial shift register and transparent latch. Each of the 16 data bits controls a single analog switch (see Table 1). Data on DIN is clocked with the most significant bit (MSB) first into the shift register on the rising edge of CLK. Data is clocked out of the shift register onto DOUT on the rising edge of CLK. DOUT reflects the status of DIN, delayed by 16 clock cycles (see Figures 2 and 3).

Latch Enable ($\overline{L E}$)
Drive $\overline{\mathrm{LE}}$ logic-low to change the contents of the latch and update the state of the high-voltage switches
(Figure 3). Drive $\overline{\mathrm{LE}}$ logic-high to freeze the contents of the latch and prevent changes to the switch states. To reduce noise due to clock feedthrough, drive $\overline{\mathrm{LE}}$ logichigh while data is clocked into the shift register. After the data shift register is loaded with valid data, pulse $\overline{\mathrm{LE}}$ logic-low to load the contents of the shift register into the latch.

Latch Clear (CLR)

The MAX4968/MAX4968A feature a latch-clear input. Drive CLR logic-high to reset the contents of the latch to zero and open all switches. CLR does not affect the contents of the data shift register. Pulse $\overline{\mathrm{LE}}$ logic-low to reload the contents of the shift register into the latch.

Power-On Reset
The MAX4968/MAX4968A feature a power-on-reset circuit to ensure all switches are open at power-on. The internal 16 -bit serial shift register and latch are set to zero on power-up.

Table 1. Serial Interface Programming (Notes 1-6)

DATA BITS								CONTROL BITS		FUNCTION							
$\begin{aligned} & \text { DO } \\ & \text { (LSB) } \end{aligned}$	D1	D2	D3	D4	D5	D6	D7	$\overline{\text { LE }}$	CLR	SW0	SW1	SW2	SW3	SW4	SW5	SW6	SW7
L								L	L	Off							
H								L	L	On							
	L							L	L		Off						
	H							L	L		On						
		L						L	L			Off					
		H						L	L			On					
			L					L	L				Off				
			H					L	L				On				
				L				L	L					Off			
				H				L	L					On			
					L			L	L						Off		
					H			L	L						On		
						L		L	L							Off	
						H		L	L							On	
							L	L	L								Off
							H	L	L								On
X	X	X	X	X	X	X	X	H	L				old Pre	ious S			
X	X	X	X	X	X	X	X	X	H	Off							

16-Channel, Linear, High-Voltage Analog Switches

Table 1. Serial Interface Programming (Notes 1-6) (continued)

DATA BITS								CONTROL BITS		FUNCTION							
D8	D9	D10	D11	D12	D13	D14	$\begin{gathered} \text { D15 } \\ \text { (MSB) } \end{gathered}$	$\overline{\text { LE }}$	CLR	SW8	SW9	SW10	SW11	SW12	SW13	SW14	SW15
L								L	L	Off							
H								L	L	On							
	L							L	L		Off						
	H							L	L		On						
		L						L	L			Off					
		H						L	L			On					
			L					L	L				Off				
			H					L	L				On				
				L				L	L					Off			
				H				L	L					On			
					L			L	L						Off		
					H			L	L						On		
						L		L	L							Off	
						H		L	L							On	
							L	L	L								Off
							H	L	L								On
X	X	X	X	X	X	X	X	H	L	Hold Previous State							
X	X	X	X	X	X	X	X	X	H	Off							

Note 1: The 16 switches operate independently.
Note 2: Serial data is clocked in on the rising edge of CLK.
Note 3: The switches go to a state retaining their present condition on the rising edge of $\overline{\mathrm{LE}}$. When $\overline{\mathrm{LE}}$ is low, the shift register data flows through the latch.
Note 4: DOUT is high when switch 15 is on.
Note 5: Shift register clocking has no effect on the switch states if $\overline{\mathrm{LE}}$ is high.
Note 6: The CLR input overrides all other inputs.

Applications Information

In typical ultrasound applications, the MAX4968/MAX4968A do not require dedicated high-voltage supplies; the negative voltage supply can be shared with the transmitter and the positive voltage supply is typically +10 V . See Figures 5 , 6 , and 7 for medical ultrasound applications.

Logic Levels
The MAX4968/MAX4968A digital interface inputs CLK, DIN, $\overline{L E}$, and CLR operate on the VDD logic supply voltage.

Daisy-Chaining Multiple Devices

Digital output DOUT is provided to allow the connection of multiple MAX4968/MAX4968A devices by daisy-
chaining (Figure 4). Connect each DOUT to the DIN of the subsequent device in the chain. Connect CLK, $\overline{\mathrm{LE}}$, and CLR inputs of all devices, and drive $\overline{\mathrm{LE}}$ logic-low to update all devices simultaneously. Drive CLR high to open all the switches simultaneously. Additional shift registers can be included anywhere in series with the MAX4968/MAX4968A daisy-chain.

Supply Sequencing and Bypassing The MAX4968/MAX4968A do not require special sequencing of the VDD, VPP, and VNN supply voltages. Bypass VDD, VPP, and VNN to GND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor as close as possible to the device.
Note: Keep $\overline{\mathrm{LE}}$ low during power-up.

16-Channel, Linear, High-Voltage Analog Switches

Figure 4. Interfacing Multiple Devices by Daisy-Chaining

16-Channel, Linear, High-Voltage Analog Switches

Application Diagrams (continued)

Figure 5. Medical Ultrasound Application-High-Voltage Analog Switches in Probe

16-Channel, Linear, High-Voltage Analog Switches

Figure 6. Medical Ultrasound Application—High-Voltage Analog Switches in Mainframe

16-Channel, Linear, High-Voltage Analog Switches

Figure 7. Medical Ultrasound Application—Multiple Transmit and Isolation per Receiver Channel

16-Channel, Linear, High-Voltage Analog Switches

Chip Information
PROCESS: BiCMOS

Package Information
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
48 LQFP	C48+6	$\underline{\underline{21-0054}}$	$\underline{\underline{90-0093}}$

16-Channel, Linear, High-Voltage Analog Switches

Revision History

REVISION NUMBER	REVISION DATE	PAGESCRIPTION CHANGED	
0	$3 / 11$	Initial release	-
1	$5 / 11$	Removed future product asterisk from MAX4968 in Ordering Information, corrected Off-Isolation specification in Electrical Characteristics	1,3
2	$1 / 12$	Updated $V_{N N}$ specifications in Absolute Maximum Ratings and Electrical Characteristics supply voltage and $\mathrm{V}_{\text {NN }}$ static current specifications	$2,3,4,9$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX XS3A1T3157GMX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG419LDY+T DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) HV2201FG-G 74HC2G66DC. 125 DG3257DN-T1-GE4 ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118

