\qquad
General Description
The MAX498/MAX499 are high-speed, quad/triple, sin-gle-pole/double-throw video switches with on-board closed-loop buffer amplifiers. The buffer amplifiers feature +6 dB gain ($\mathrm{AvCL}=2 \mathrm{~V} / \mathrm{V}$), 250MHz-3dB bandwidth, 70 MHz 0.1 dB gain flatness, and $1250 \mathrm{~V} / \mu \mathrm{s}$ slew rate. Fast switching time (3ns) and fast settling time (12ns for a 4 V step) make these devices excellent choices for a wide variety of video applications. The low differential gain/phase errors ($0.03 \% / 0.06^{\circ}$) and wide bandwidth make them ideal for both composite-video and RGB applications. The amplifiers are capable of delivering $\pm 2.5 \mathrm{~V}$ into back-terminated 50Ω or 75Ω cables, and they deliver $\pm 2 \mathrm{~V}$ to a 75Ω load, allowing multiple cables to be driven from a single output.
For implementation of large switch arrays, a low-power disable mode places the amplifier outputs in a highimpedance state. Channel selection and output enable/disable are controlled by four TTL/CMOScompatible logic inputs. Each video input is isolated by an AC-ground pin, which minimizes channel-to-channel capacitance and reduces crosstalk to 90 dB at 10 MHz .
The four-channel MAX498 dissipates 390 mW (typical) from ± 5 VDC power supplies with all output buffers enabled. Power consumption is reduced to 130 mW with all buffers disabled. The corresponding dissipation for the three-channel MAX499 is 300 mW enabled and 100 mW disabled.

Applications
Video Switching and Routing
Broadcast-Quality Composite-Video Multiplexing Workstations
Video Editing
Broadcast and High-Definition TV Systems
Multimedia Products
Medical Imaging

Pin Configurations

Quad/Triple, SPDT, RGB Switches with 250MHz Video Buffer Amplifiers

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC to VEE)
Voltage on IN__ to GND(VEE -0.3 V) to (VCC +0.3 V)
Voltage on Digital Inputs
(LL, EN, AO, CS). \qquad -0.3 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Output Short-Circuit Duration
Output Short-Circuit D.
to $-4 \mathrm{~V} \leq \mathrm{OUT}_{-} \leq+4 \mathrm{~V}$.
V
\qquad

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V} C \mathrm{C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=-5 \mathrm{~V}, \mathrm{VIN}_{-}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{LE}=\overline{\mathrm{EN}}=\overline{\mathrm{CS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

Note 1: Limited by package power dissipation.

Quad/Triple, SPDT, RGB Switches with 250MHz Video Buffer Amplifiers

AC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Small-Signal, -3dB Bandwidth	BW-3dB	$\mathrm{V}_{\mathrm{IN}} \leq 100 \mathrm{mVp}-\mathrm{p}$	250		MHz
$\pm 0.1 \mathrm{~dB}$ Gain Flatness		$\mathrm{V}_{\text {IN }} \leq 100 \mathrm{mVp}-\mathrm{p}$	70		MHz
Full-Power, -3dB Bandwidth	FPBW	VOUT $= \pm 2 \mathrm{~V}$	135		MHz
Slew Rate	SR	$\mathrm{V}_{\text {OUT }}=4 \mathrm{~V}$ step	1250		V/ $/ \mathrm{s}$
Settling Time	$\mathrm{t}_{\text {s }}$	0.1%, Vout $=4 \mathrm{~V}$ step	12		ns
Input Voltage Noise Density		$\mathrm{f}=100 \mathrm{kHz}$	7.8		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Current Noise Density		$\mathrm{f}=100 \mathrm{kHz}$	2.6		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Total Harmonic Distortion	THD	$\mathrm{f}=10 \mathrm{MHz}$	-50		dB
Spurious-Free Dynamic Range	SFDR	$\mathrm{fc}_{\mathrm{C}}=3 \mathrm{MHz}$	-66		dBc
Adjacent-Channel Crosstalk		$\mathrm{f}=10 \mathrm{MHz}$ (Note 2)	90		dB
All-Hostile Crosstalk		$\mathrm{f}=10 \mathrm{MHz}$ (Note 3)	62		dB
Off-Isolation		$\overline{\mathrm{EN}}=1, \mathrm{f}=10 \mathrm{MHz}$ (Note 4)	81		dB
Differential Gain	Diff Gain	$\mathrm{f}=3.58 \mathrm{MHz}$ (Note 5), RL= 150Ω	0.03		\%
Differential Phase	Diff Phase	$\mathrm{f}=3.58 \mathrm{MHz}$ (Note 5), $\mathrm{RL}_{\mathrm{L}}=150 \Omega$	0.06		degrees

TIMING CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{LE}=\overline{\mathrm{EN}}=\overline{\mathrm{CS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
A0/EN to $\overline{\mathrm{CS}}$ Setup Time	tSU	LE = high (Note 6)		8		ns
A0/EN to $\overline{\mathrm{CS}}$ Hold Time	t_{H}	LE = high (Note 6)			4	ns
$\overline{\overline{C S}}$ Pulse Width	tcs	(Note 6)		15		ns
Channel-Switching Propagation Delay	tPD	(Note 7)		20		ns
Channel-Switching Time	tsw	(Note 8)		3		ns
Channel-Switching Transient		V INA $=\mathrm{V}$ INB $=0 \mathrm{~V}$	Positive	70		mV
			Negative	50		
Enable/Disable Switching Transient		V INA $=\mathrm{V}$ INB $=0 \mathrm{~V}$	Positive	10		mV
			Negative	150		
Amplifier-Disable Time	tofF	(Note 9)		16		ns
Amplifier-Enable Time	ton	(Note 10)		24		ns

Note 2: Test-channel input grounded through a 50Ω resistor. Adjacent channel driven to a $2 \mathrm{Vp}-\mathrm{p}$ output with a 10 MHz sine wave (Figure 9).
Note 3: Same as Note 2, except all channels but the test channel are driven to a $2 \mathrm{Vp}-\mathrm{p}$ output with a 10 MHz sine wave (Figure 9).
Note 4: Test-channel input connected to a $2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ sine wave at 10 MHz . The test channel's output is measured with the outputs disabled (Figure 9).
Note 5: Input test signal is a 3.58 MHz sine wave of 40 IRE amplitude, superimposed on a OIRE to 100 IRE linear ramp (Figure 10).
Note 6: Guaranteed by design.
Note 7: $\quad \mathrm{V}_{\text {INA }}=+1 \mathrm{~V}, \mathrm{~V}_{\text {INB }}=-1 \mathrm{~V}$, delay from $\overline{\mathrm{CS}}$ to 10% of Vout.
Note 8: $\quad \mathrm{V}_{\text {INA }}=+1 \mathrm{~V}, \mathrm{~V}_{\text {INB }}=-1 \mathrm{~V}$, delay from $\overline{\mathrm{CS}}$ to 10% of VOUT.
Note 9: Delay from EN to 90% of VOUT.
Note 10: Delay from $\overline{E N}$ to 10% of VOUT.

Quad/Triple, SPDT, RGB Switches with 250MHz Video Buffer Amplifiers

Quad/Triple, SPDT, RGB Switches with 250MHz Video Buffer Amplifiers

Quad/Triple, SPDT, RGB Switches with 250MHz Video Buffer Amplifiers

Typical Operating Characteristics (continued)

SM ALL-SIGNAL PULSE RESPONSE (CL = 100 pF)

ENABLE/DISABLE SWITCHING

CHANNEL-SWITCHING TRANSIENT

IN $A=-1 V$
$1 \mathrm{NB}=+1 \mathrm{~V}$

Quad/Triple, SPDT, RGB Switches with 250MHz Video Buffer Amplifiers

PIN		NAME	FUNCTION
MAX498	MAX499		
$\begin{gathered} 1,3,5, \\ 11,13, \\ 19 \end{gathered}$	$\begin{gathered} 2,4,9 \\ 11,24 \end{gathered}$	GND	Analog Ground. All ground pins are internally connected. Connect all ground pins externally to ground to minimize impedance.
2	1	IN1A	Signal Input 1, Channel A
4	3	IN2A	Signal Input 2, Channel A
6	5	IN3A	Signal Input 3, Channel A
7, 22	6, 18	Vcc	Positive Power-Supply Voltage. Connect V_{CC} to +5 V . V_{CC} pins are internally connected. Connect both pins externally to +5 V to minimize supply impedance. Bypass each pin to ground with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
8	-	INOB	Signal Input 0, Channel B
9, 21	7, 17	VEE	Negative Power-Supply Voltage. Connect V_{EE} to -5V. VEE pins are internally connected. Connect both pins to -5 V externally to minimize supply impedance. Bypass each pin to ground with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
10	8	IN1B	Signal Input 1, Channel B
12	10	IN2B	Signal Input 2, Channel B
14	12	IN3B	Signal Input 3, Channel B
15, 17	13, 15	N.C.	No Connect. Not internally connected; connect to GND.
16	14	OUT3	Output 3
18	16	OUT2	Output 2
20	19	OUT1	Output 1
23	-	OUTO	Output 0
24	20	$\overline{\mathrm{CS}}$	Chip-Select Input. When $\overline{\mathrm{CS}}$ is low, the A 0 and $\overline{\mathrm{EN}}$ latches are transparent. The data present at AO is latched when $\overline{\mathrm{CS}}$ goes high. LE's status determines whether $\overline{\mathrm{EN}}$ is latched along with AO , or if the $\overline{\mathrm{EN}}$ latch remains transparent independently of $\overline{\mathrm{CS}}$.
25	21	A0	Address Input. $A 0=0$ selects channel A, and $A 0=1$ selects channel B if $\overline{C S}$ is low. $A 0$ is latched on $\overline{\mathrm{CS}}$'s low-to-high transition.
26	22	$\overline{E N}$	Output Buffer-Enable Input. $\overline{\mathrm{EN}}=0$ enables the output buffer amplifiers, and $\overline{\mathrm{EN}}=1$ disables the output buffers if $\overline{C S}$ is low. $\overline{E N}$ is latched during $\overline{C S}$'s low-to-high transition if $L E$ is high. $\overline{E N}$ is not latched if LE is low.
27	23	LE	Latch-Enable Input. With $\mathrm{LE}=1, \overline{\mathrm{EN}}$ is latched along with A 0 when $\overline{\mathrm{CS}}$ goes high. When $\mathrm{LE}=0$, the $\overline{\mathrm{EN}}$ latch is transparent independently of $\overline{\mathrm{CS}}$'s state.
28	-	INOA	Signal Input 0, Channel A

Quad/Triple, SPDT, RGB Switches

 with 250MHz Video Buffer Amplifiers

Figure 1a. MAX498 Typical Application Circuit

Quad/Triple, SPDT, RGB Switches with 250MHz Video Buffer Amplifiers

Figure 1b. MAX499 Typical Application Circuit

Quad/Triple, SPDT, RGB Switches with 250MHz Video Buffer Amplifiers

\qquad

Detailed Description

The MAX498/MAX499 are quad/triple video switches with high-speed, closed-loop, voltage-feedback amplifiers set to a $2 \mathrm{~V} / \mathrm{V}$ gain. Figure 1 shows typical application circuits. The amplifiers use a unique two-stage, voltage-feedback architecture that combines the benefits of conventional voltage-feedback and currentfeedback topologies to achieve wide bandwidths and high slew rates while maintaining precision.
Figure 2 is a simplified block diagram of the MAX498/ MAX499. All four amplifier/switch blocks are identical to that shown for Ch_0. A common control logic block accepts external logic inputs AO, EN, $\overline{C S}$, and LE, and controls the status of switches S1, S2, and S3 of each amplifier in parallel, as described in the Digital Interface section.
S 3 is open in the enabled state, and if $\mathrm{Ch} A$ is selected, S1 is connected to IN_A and S2 is connected to GND. If Ch_B is selected, S1 is connected to GND and S2 is connected to IN_B. Connecting the deselected GM_block to GND ensures minimum feedthrough.
S 3 is closed in the disabled state, and both S1 and S2 are connected to GND. Disconnecting both inputs and connecting the amplifier's inputs to GND significantly improves off-isolation.

Applications Information

Power Dissipation
The MAX498/MAX499's maximum output current is limited by the package's maximum allowable power dissipation. The maximum junction temperature should not exceed $+150^{\circ} \mathrm{C}$. Power dissipation increases with load, and this increase can be approximated by one of the following equations:

$$
\begin{aligned}
& \text { For VOUT > OV: } \mid \text { VCC - VOUT } \mid \text { ILOAD } \\
& \text { OR } \\
& \text { For Vout < } 0 \text { V: } \mid V_{E E}-\text { VOut }^{\prime} \mid \text { lload. }
\end{aligned}
$$

These devices can drive 100Ω loads connected to each of the outputs over the entire rated output swing and temperature range. While the output is short-circuit protected to 120 mA , this does not necessarily guarantee that under all conditions, the maximum junction temperature will not be exceeded. Do not exceed the derating values given in the Absolute Maximum Ratings section.

Figure 2. Block Diagram

Total Noise

The MAX498/MAX499's low $2.6 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ input current noise and $7.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ voltage noise provide for lower total noise compared to typical current-mode feedback amplifiers, which usually have significantly higher input current noise. The input current noise multiplied by the feedback resistor is the dominant noise source of cur-rent-mode feedback amplifiers.

Differential Gain and Phase Errors

Differential gain and phase errors are critical specifications for a buffer in composite (NTSC, PAL, SECAM) video applications, because these errors correspond directly to color changes in the displayed picture of composite video systems. The MAX498/MAX499's low differential gain and phase errors $\left(0.03 \% / 0.06^{\circ}\right)$ make them ideal in broadcastquality, composite video applications.

Quad/Triple, SPDT, RGB Switches with 250MHz Video Buffer Amplifiers

Figure 3a. Small-Signal Gain vs. Frequency and Load Capacitor ($R_{L}=100 \Omega, R_{I S O}=0 \Omega$)

Figure 4a. Large-Signal Pulse Response with $C_{L}=100 \mathrm{pF}$ and $R_{I S O}=5.1 \Omega$

Coaxial Cable Drivers

High-speed performance, excellent output current capability, and an internally fixed gain of +2 make the MAX498/MAX499 ideal for driving back-terminated 50Ω or 75Ω coaxial cables to $\pm 2.5 \mathrm{~V}$.
In a typical application, the MAX498/MAX499 drive a back-terminated cable (Figure 1). The back-termination resistor, at the output, matches the impedance of the cable's driven end to the cable's impedance, eliminating signal reflections. This resistor, along with the loadtermination resistor, forms a voltage divider with the load impedance, which attenuates the signal at the cable's output by one-half. The MAX498/MAX499 operate with an internal $+2 \mathrm{~V} / \mathrm{V}$ closed-loop gain to provide unity gain at the cable's output.

Figure 3b. Small-Signal Gain vs. Frequency and Load Capacitor ($R_{L}=100 \Omega, R_{I S O}=6.8 \Omega$)

Figure 4b. Small-Signal Pulse Response with $C_{L}=100 \mathrm{pF}$ and $R_{I S O}=5.1 \Omega$

Capacitive-Load Driving

In most amplifier circuits, driving large capacitive loads increases the likelihood of oscillation. This is especially true for circuits with high loop gains, such as voltage followers. The amplifier's output resistance and the capacitive load form an RC filter that adds a pole to the loop response. If the pole frequency is low enough (as when driving a large capacitive load), the circuit-phase margin is degraded and oscillation may occur.
The MAX498/MAX499 drive capacitive loads up to 100 pF without sustained oscillation, although some peaking may occur (Figures 3a and 3b). When driving larger capacitive loads, or to reduce peaking, add an isolation resistor (RISO) between the output and the capacitive load (Figures 4a, 4b, and 5).

Quad/Triple, SPDT, RGB Switches with 250MHz Video Buffer Amplifiers

Figure 5. Isolation Resistor vs. Capacitive Load

Switching Audio Signals

 (Audio-Distortion Measurement)When switching audio signals, distortion is the prime consideration in performance. Figure 6 shows total harmonic distortion vs. frequency, in the audio range, for the MAX498/MAX499.

Large Switch Arrays
Large crosspoint switch arrays are possible with the MAX498/MAX499 using the enable function EN. When the amplifiers are disabled, output impedance is typically $1.2 \mathrm{k} \Omega$, due to the feedback and gain resistors. This limits the number of outputs that can be paralleled without a buffer. Since each output can drive 100Ω, eight outputs can typically be connected together. If additional outputs must be connected in parallel, a MAX4178 (single), MAX496 (quad), or equivalent unitygain buffer can be used.
Whether enabled or disabled, each input represents more than $200 \mathrm{k} \Omega$ of resistance. Capacitance is the prime consideration limiting the number of inputs that can be connected to a single output. Since each output can drive 100 pF of capacitance without an isolation resistor, 50 inputs ($\mathrm{CIN}=2 \mathrm{pF}$, typical) can be driven by a single output. However, peaking will occur as inputs are added (Figure 3), which reduces the 0.1 dB bandwidth.

Figure 6. Total Harmonic Distortion (Audio) vs. Frequency

Digital Interface

The MAX498/MAX499 multiplexer architecture ensures that no input channels are ever connected together. Select a channel by changing A0's state ($\mathrm{AO}=0$ for channel A, and $A 0=1$ for channel B) and pulsing $\overline{C S}$ low (see Tables 1a and 1b). Figure 7 shows the logic timing diagram.
When the enable input ($\overline{\mathrm{EN}}$) is driven to a TTL low state, it enables the MAX498/MAX499 amplifier outputs. When EN is driven high, it disables the amplifier outputs. When disabled, the MAX498/MAX499 exhibit a $1.2 \mathrm{k} \Omega$ disabled output resistance due to their internal feedback resistors.
LE determines whether $\overline{\mathrm{EN}}$ is latched by $\overline{\mathrm{CS}}$ or operates independently. When the latch-enable input (LE) is connected to $\mathrm{V}_{+}, \overline{\mathrm{CS}}$ becomes the latch control for the $\overline{\mathrm{EN}}$ input register. If $\overline{C S}$ is low, both the EN and AO latches are transparent; once $\overline{\mathrm{CS}}$ returns high, both AO and EN are latched.
When LE is connected to ground, the $\overline{\mathrm{EN}}$ latch is transparent and independent of $\overline{\mathrm{CS}}$. This allows all MAX498/MAX499 devices to be shut down simultaneously, regardless of CS's input state. Simply connect LE to ground and connect all EN inputs together (Figure 8a). Hard wire LE to $\mathrm{V}+$ or ground (rather than driving LE with a gate) to prevent crosstalk from the digital inputs to INOA.

Quad/Triple, SPDT, RGB Switches with 250MHz Video Buffer Amplifiers

Another option for output disable is to connect LE to V_{+}, parallel the outputs of several MAX498/MAX499s, and use EN to individually disable all devices but the one in use (Figure 8b).
When the outputs are disabled, off-isolation from the analog inputs to the amplifier outputs is typically 81 dB at 10 MHz .

Grounding and Layout

The MAX498/MAX499 bandwidths are in the RF frequency range. Depending on the size of the PC board used and the frequency of operation, it may be necessary to use Micro-strip or Stripline techniques.
To realize the full AC performance of these high-speed buffers, pay careful attention to power-supply bypassing and board layout. The PC board should have at least two layers (wire-wrap boards are too inductive, and bread boards are too capacitive), with one side a signal layer and the other a large, low-impedance ground plane. With multilayer boards, locate the ground plane on the layer that is not dedicated to a specific signal trace. The ground plane should be as free from voids as possible. Connect all ground pins to the ground plane.
Connect both positive power-supply pins together and bypass with a $0.10 \mu \mathrm{~F}$ ceramic capacitor at each powersupply pin, as close to the device as possible. Repeat for the negative power-supply pins. The capacitor lead lengths should be as short as possible to minimize lead inductance; surface-mount chip capacitors are ideal. A large-value ($10 \mu \mathrm{~F}$ or greater) tantalum or electrolytic bypass capacitor on each supply may be required for high-current loads. The location of this capacitor is not critical.
The MAX498/MAX499's analog input pins are isolated with ground pins to minimize parasitic coupling, which can degrade crosstalk and/or amplifier stability. Keep signal paths as short as possible to minimize inductance. Ensure that all input channel traces are the same length, to maintain the phase relationship between the four channels. To further reduce crosstalk, connect the coaxial-cable shield to the ground side of the 75Ω terminating resistor at the ground plane, and terminate all unused inputs to ground and outputs with a 100Ω or 150Ω resistor to ground.

Table 1a. Amplifier and Channel Selection with LE = V+

$\overline{\mathrm{CS}}$	$\overline{\mathrm{EN}}$	A0	FUNCTION
0	0	0	Enables amplifier outputs. Selects channel A.
0	0	1	Enables amplifier outputs. Selects channel B.
0	1	X	Disables amplifiers. Outputs high-Z.
1	X	X	Latches A0, $\overline{\mathrm{EN} . \text { Outputs unchanged. }}$

Table 1b. Amplifier and Channel Selection with LE = GND

$\overline{\mathrm{CE}}$	$\overline{\mathrm{EN}}$	$\overline{\mathrm{AO}}$	FUNCTION
0	0	0	Enables amplifier outputs. Selects channel A.
1	0	X	Enables amplifier outputs. Latches AO to output A or B, according to A0's state at $\overline{\text { CS's last edge. }}$
X	1	X	Disables amplifiers. Outputs high-Z. A0 latch = channel A.
0	0	1	Enables amplifier outputs. Selects channel B.

Quad/Triple, SPDT, RGB Switches with 250MHz Video Buffer Amplifiers

Figure 7. Logic Timing Diagram

Figure 8. (a) Simultaneous Shutdown of all MAX498/MAX499s; (b) Enable ($\overline{E N})$ Register Latched by $\overline{C S}$

Quad/Triple, SPDT, RGB Switches with 250MHz Video Buffer Amplifiers

66tXVW/86tXVW

Figure 9. Test Circuits for Measuring Crosstalk: a) Adjacent Channel; b) All Hostile

Figure 10. Differential Phase and Gain Error Test Circuit

Quad/Triple, SPDT, RGB Switches with 250MHz Video Buffer Amplifiers

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
16 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600
© 1996 Maxim Integrated Products
Printed USA
MIAXIAI is a registered trademark of Maxim Integrated Products.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :
EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV 124352-HMC860LP3E DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8EVALZ ADP130-1.8-EVALZ ADP1740-1.5-EVALZ ADP1870-0.3-EVALZ ADP1874-0.3-EVALZ ADP199CB-EVALZ ADP2102-1.25EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ AS3606-DB BQ25010EVM BQ3055EVM ISLUSBI2CKIT1Z LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ ADP122UJZREDYKIT ADP166Z-REDYKIT ADP170-1.8-EVALZ ADP171-EVALZ ADP1853-EVALZ ADP1873-0.3-EVALZ ADP198CP-EVALZ ADP2102-1.0-EVALZ ADP2102-1-EVALZ ADP2107-1.8-EVALZ ADP5020CP-EVALZ CC-ACC-DBMX-51 ATPL230A-EK MIC23250S4YMT EV MIC26603YJL EV MIC33050-SYHL EV TPS60100EVM-131 TPS65010EVM-230 TPS71933-28EVM-213 TPS72728YFFEVM-407 TPS79318YEQEVM UCC28810EVM-002 XILINXPWR-083 LMR22007YMINI-EVM LP38501ATJ-EV

