50 mA to 600 mA Programmable Current-Limit Switches

General Description

The MAX4995A/MAX4995AF/MAX4995AL/MAX4995B/ MAX4995C programmable current-limit switches feature internal current limiting to prevent damage to host devices due to faulty load conditions. These analog switches feature a low $130 \mathrm{~m} \Omega$ (typ) on-resistance and operate from $\mathrm{a}+1.7 \mathrm{~V}$ to +5.5 V input voltage range. The current limit is adjustable from 50 mA to 600 mA , making these devices ideal for SDIO (secure digital input/output) and other loadswitching applications.
Each device in the family handles an overcurrent event differently depending on the option selected. The MAX4995A/MAX4995AF/MAX4995AL go into an autoretry mode, the MAX4995B latches off the switch, and the MAX4995C places the device in a continuous current-limit mode. Additional safety features include thermal shutdown to prevent overheating and reverse-current blocking to prevent current from being driven back into the source.
The MAX4995A/MAX4995AF/MAX4995AL/MAX4995B/ MAX4995C are available in a tiny $10-\mathrm{pin}, 1.4 \mathrm{~mm} \times 1.8 \mathrm{~mm}$ UTQFN, a $6-$ pin SOT23, or an $8-\mathrm{pin}, 2 \mathrm{~mm} \times 2 \mathrm{~mm}$ TDFN package and operate over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ extended temperature range.

Features

- 50 mA to 600 mA Programmable Current Limit
- $\pm 10 \%$ Accurate Current Limit
- Overload FLAG Threshold
- Low Dropout Voltage
- Short-Circuit Protection
- Thermal Shutdown
- Reverse-Current Protection
- $170 \mu \mathrm{~A}$ (typ) Supply Current
- +1.7 V to +5.5 V Supply Voltage Range
- Tiny $10-\mathrm{Pin}, 1.4 \mathrm{~mm} \times 1.8 \mathrm{~mm}$ UTQFN Package

Applications

- SDIO Ports
- Cell Phones
- USB Ports
- MP3 Players
- Notebook VGA Ports
- UTCA/ATCA Platforms
- GPS

Typical Operating Circuit appears at end of data sheet.

Ordering Information/Selector Guide

PART	PIN-PACKAGE	ON POLARITY	OVERCURRENT RESPONSE	SHORT-CIRCUIT RESPONSE	TOP MARK
MAX4995AAUT+T*	6 SOT23	Active-High	Autoretry	Normal	+ACNZ
MAX4995AAVB+T	10 UTQFN	Active-High	Autoretry	Normal	+AAM
MAX4995AATA+T	8 TDFN-EP**	Active-High	Autoretry	Normal	+ABL
MAX4995AFAUT+T*	6 SOT23	Active-High	Autoretry	Fast	+ACOE
MAX4995AFAVB+T	10 UTQFN	Active-High	Autoretry	Fast	+AAR
MAX4995AFATA+T*	8 TDFN-EP**	Active-High	Autoretry	Fast	+ACO
MAX4995ALAUT+T*	6 SOT23	Active-Low	Autoretry	Normal	+ACOA
MAX4995ALAVB+T	10 UTQFN	Active-Low	Autoretry	Normal	+AAN
MAX4995ALATA+T*	8 TDFN-EP**	Active-Low	Autoretry	Normal	+ABM
MAX4995BAUT+T*	6 SOT23	Active-High	Latchoff	Normal	+ACOB
MAX4995BAVB+T	10 UTQFN	Active-High	Latchoff	Normal	+AAO
MAX4995BATA+T*	8 TDFN-EP**	Active-High	Latchoff	Normal	+ABN
MAX4995CAUT+T*	6 SOT23	Active-High	Continuous	Normal	+ACOD
MAX4995CAVB+T	10 UTQFN	Active-High	Continuous	Normal	+AAQ
MAX4995CATA+T*	8 TDFN-EP**	Active-High	Continuous	Normal	+ABP

All devices operate over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.
+Denotes a lead(Pb)-free/RoHS-compliant package.
T = Tape and reel.
*Future product. Contact factory for availability.
${ }^{* *} E P=$ Exposed pad.

50mA to 600 mA Programmable Current-Limit Switches

Absolute Maximum Ratings

AG, OUT, and SETI to GND..........-0.3V to +6V	Junction-to-Ambient Thermal Resistance ($\theta_{\text {JA }}$)
Current into Any Pin (Except IN, OUT)20mA	(Note 2)..143.1² $/$ / W
OUT Short-Circuit to GND..800mA	Operating Temperature Range...................... $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)($ Note 1)	Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$10-P i n$ UTQFN (derate $6.99 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)559mW	Junction Temperature ... $+150^{\circ} \mathrm{C}$
6 -Pin SOT23 (derate $13.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)... .1072 .4 mW	Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Note 1: These power limits are defined by the thermal characteristics of the package, maximum function temperature $\left(+150^{\circ} \mathrm{C}\right)$, and the JEDEC51-7 defined setup. Maximum power dissipation could be lower, limited by the thermal-shutdown protection included in this IC.
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

10 UTQFN

Package Code	V101A1CN+1
Outline Number	$\underline{21-0028}$

6 SOT23

Package Code	U6SN+1		
Outline Number	$\underline{21-0058}$		
$\mathbf{8}$ TDFN			
Package Code	$\underline{21-0168}$		
Outline Number			

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or " - " in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{IN}}=+1.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{R}_{\text {SETI }}=94.3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}$, and $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{IN}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

Electrical Characteristics (continued)

$\left(\mathrm{V}_{I N}=+1.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{SETI}}=94.3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}$, and $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{IN}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

Note 3: ILIM is forward current limit.
$\mathrm{I}_{\mathrm{LIM}}(\mathrm{mA})=\frac{29042(\mathrm{~V})}{\mathrm{R}_{\mathrm{SETI}}(\mathrm{k} \Omega)+2.48(\mathrm{k} \Omega)}$
Note 4: Turn-on time and turn-off time are defined as the difference in the time between when the output crosses 10% and 90% of the final output voltage.
Note 5: Blanking time and retry time are generated by the same oscillator. Therefore, the ratio of
${ }^{t_{\text {RETRY }}}$
tBLANK
is a constant value of 32 . See Figure 2 and 3 .

Figure 1. Timing Diagram for Measuring Turn-On Time ($t_{S S}$) and Turn-Off Time ($t_{O F F}$).

Typical Operating Characteristics

$\left(\mathrm{V}_{\text {IN }}=+3.3 \mathrm{~V}, \mathrm{C}_{\text {IN }}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F}, \mathrm{R}_{\text {SETI }}=94.2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\text {IN }}=+3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{OUT}}=1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{SETI}}=94.2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\text {IN }}=+3.3 \mathrm{~V}, \mathrm{C}_{\text {IN }}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F}, \mathrm{R}_{\text {SETI }}=94.2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

SWITCH DROPOUT VOLTAGE
vs. TEMPERATURE

Pin Configurations

Pin Description

PIN (UTQFN)		PIN (TDFN-EP)		PIN (SOT23)		NAME	FUNCTION
MAX4995AL	MAX4995	MAX4995AL	MAX4995_	MAX4995AL	MAX4995_		
1, 10	1, 10	1, 2	1, 2	5	5	IN	Power Input. Bypass IN with a $1 \mu \mathrm{~F}$ ceramic capacitor to ground. Use higher capacitance to prevent large load transients from pulling down the supply voltage if necessary. Connect both power inputs (IN) together.
2	2	3	3	6	6	$\overline{\text { FLAG }}$	Open-Drain, Overload Indicator Output. FLAG goes low when the overload fault duration exceeds the blanking time, reverse current is detected, thermal shutdown mode is active, or SETI is connected to ground.
3	-	4	-	4	-	$\overline{\mathrm{ON}}$	Active-Low, Switch-On Input. Drive $\overline{\mathrm{ON}}$ low to turn on the switch.
-	3	-	4	-	4	ON	Active-High, Switch-On Input. Drive ON high to turn on the switch.
4	4	5	5	2	2	GND	Ground
5	5	6	6	3	3	SETI	Overload Current Limit Adjust. Connect a resistor from SETI to ground to program the overcurrent limit. Do not connect any capacitance larger than 20 pF to SETI.

Pin Description (continued)

PIN (UTQFN)		PIN (TDFN-EP)		PIN (SOT23)		NAME	FUNCTION
MAX4995AL	MAX4995	MAX4995AL	MAX4995	MAX4995AL	MAX4995		
6, 9	6, 9	7	7	-	-	N.C.	No Connect. Not internally connected.
7, 8	7, 8	8	8	1	1	OUT	Switch Output. Bypass OUT with a $1 \mu \mathrm{~F}$ capacitor to ground. Connect both outputs (OUT) together.
-	-	-	-	-	-	EP	Exposed Pad. Connect EP to GND. For TDFN package only.

Functional Diagram

Detailed Description

The MAX4995A/MAX4995AF/MAX4995AL/MAX4995B/ MAX4995C programmable current-limit switches operate from +1.7 V to +5.5 V and provide internal current limiting adjustable from 50 mA to 600 mA . These devices feature a fixed blanking time and a FLAG output that notifies the processor when a fault condition is present.

Programmable Current Limit

A resistor from SETI to GND programs the current limit for the switch (see the Setting the Current Limit section). If the output current exceeds the current limit for a time equal to or longer than $t_{B L A N K, ~ t h e ~ o u t p u t ~ f l a g ~ a s s e r t s ~ a n d ~ t h e ~}^{\text {a }}$ MAX4995A/MAX4995AF/MAX4995AL enter the autoretry mode. The MAX4995B latches off the switch, and the MAX4995C enters the continuous current-limit mode.

Autoretry (MAX4995A/MAX4995AF/ MAX4995AL)

When the forward current reaches the current-limit threshold, the tBLANK timer begins counting (Figure 2). FLAG asserts if the overcurrent-limit condition is present for tBLANK. The timer resets if the overcurrent condition disappears before the blanking time (tBLANK) has elapsed. A retry time delay (tRETRY) starts immediately after the blanking time has elapsed and during that time, the switch latches off. At the end of $t_{\text {RETRY, }}$ the switch turns on again. If the fault still exists, the cycle repeats. If the fault has been removed, the switch stays on. During this cycle, FLAG stays low. In autoretry if the thermal power rating of the package is exceeded, the MAX4995A/MAX4995AF/ MAX4995AL go into thermal shutdown.
The autoretry feature saves system power in case of an overcurrent or short-circuit condition. During tBLANK time when the switch is on, the supply current is held at the current limit. During time tretry when the switch is off, the current through the switch is zero. Thus, the average output current is much less than the programmed current limit. Calculate the average output current using the following equation:

$$
\mathrm{I}_{\mathrm{LOAD}}=\mathrm{I}_{\mathrm{LIM}}\left[\mathrm{t}_{\mathrm{BLANK}} /\left(\mathrm{t}_{\text {BLANK }}+\mathrm{t}_{\text {RETRY }}\right)\right]
$$

With a typical $t_{\text {BLANK }}=16.3 \mathrm{~ms}$ and typical $t_{\text {RETRY }}=$ 524 ms , the duty cycle is 3%, resulting in a 97% power savings over the switch being on the entire time.

Table 1. Switch Truth Table

MAX4995_I MAX4995AF	MAX4995AL	SWITCH STATUS
ON	$\overline{\text { ON }}$	
0	1	Off
1	0	On

Latchoff (MAX4995B)

When the forward current reaches the current-limit threshold, the tBLANK timer begins counting (Figure 3). FLAG asserts if an overcurrent-limit condition is present for greater than $t_{B L A N K}$ time. The timer resets if the overcurrent condition disappears before $\mathrm{t}_{\text {BLANK }}$ has elapsed. The switch turns off if the overcurrent condition continues beyond the blanking time. Reset the switch by either toggling the control logic (ON) or cycling the input voltage. If the thermal power rating of the package is exceeded during $t_{B L A N K}$, the MAX4995B goes into thermal shutdown.

Continuous Current Limit (MAX4995C)

When the forward current reaches the forward currentlimit threshold, the MAX4995C limits the output current to the programmed current limit. FLAG asserts if the current limit is present for tBLANK and deasserts when the overload condition is removed. In this mode, if the thermal power rating of the package is exceeded, the MAX4995C goes into thermal shutdown.

Switch-On/Off Control

The ON input for the MAX4995_/MAX4995AF and $\overline{O N}$ input for the MAX4995AL control the switch; see Table 1. Toggle ON for the MAX4995B to reset the fault condition once the short current is detected and the device shuts down.

Reverse-Current Protection

The MAX4995 features a reverse-current protection circuit that limits the backflow current to $10 \mu \mathrm{~A}$ when the output voltage exceeds the input voltage by 110 mV (typ). The switch turns off and FLAG asserts without waiting for tBLANK to elapse. The switch turns back on and $\overline{\text { FLAG }}$ deasserts when the output voltage drops below the detecting threshold by 10 mV (typ).

Figure 2. Autoretry Fault Diagram

Figure 3. Latchoff Fault Diagram

FLAG Indicator

$\overline{F L A G}$ is an open-drain fault indicator output and requires an external pullup resistor to a DC supply. FLAG goes low when any of the following conditions occurs:

- The device is in current-limit mode.
- The OUT voltage is above the IN voltage by more than 110mV (typ).
- The die temperature exceeds the thermal-shutdown temperature limit of $+150^{\circ} \mathrm{C}$.
- SETI is connected to ground.

Thermal Shutdown

Thermal-shutdown circuitry protects the devices from overheating. The switch turns off and FLAG goes low immediately when the junction temperature exceeds $+150^{\circ} \mathrm{C}$ (typ). The switch turns on again after the device temperature drops by approximately $15^{\circ} \mathrm{C}$ (typ).

50mA to 600 mA Programmable Current-Limit Switches

Applications Information

Setting the Current Limit

A resistor from SETI to ground programs the current-limit value for the MAX4995. Table 2 lists various current limits set by different resistor values at SETI. Shorting SETI to ground asserts FLAG.
Use the following formula to calculate the current limit:

$$
\mathrm{R}_{\mathrm{SETI}}(\mathrm{k} \Omega)=\frac{29042(\mathrm{~V})}{\mathrm{I}_{\mathrm{LIM}}(\mathrm{~mA})}-2.48(\mathrm{k} \Omega)
$$

Using an RSETI with a value smaller than $45.8 \mathrm{k} \Omega$ results in a higher current limit. A programmed output current greater than 660 mA can damage the device.
Connecting any capacitance larger than 20 pF to SETI can cause instability.
Table 2. Current Limit vs. Resistor Values

RSETI (k $\mathbf{\Omega})$	TYPICAL CURRENT LIMIT (mA)
45.8	602
55.6	500
70.6	397
94.2	300
143	200
191	150
287	100
576	50
∞ (Open)	0

Input Capacitor

Connect a capacitor from IN to GND to limit the input voltage drop during momentary output short-circuit conditions. Use a $1 \mu \mathrm{~F}$ minimum ceramic capacitor for proper device operation. Larger capacitor values reduce the voltage undershoot at the input.
Due to the very fast current-limit reaction time of the MAX4995AF, a larger input capacitance might need to be connected at the input to dampen oscillation due to long wires. Choose a value large enough to ensure IN doesn't exceed the absolute maximum ratings.

Output Capacitor

For stable operation over the full temperature range and over the full programmable current-limit range, use a $1 \mu \mathrm{~F}$ ceramic capacitor from OUT to ground.
If the load capacitance is too large, then current may not have enough time to charge the capacitance and the device assumes that there is a faulty load condition. Calculate the maximum capacitive load ($\mathrm{C}_{\mathrm{MAX}}$) value that can be connected to OUT using the following formula:

$$
\mathrm{C}_{\mathrm{MAX}}(\mu \mathrm{~F})=\frac{\mathrm{I}_{\mathrm{LIM}}(\mathrm{~mA}) \times \mathrm{t}_{\mathrm{BLANK}(\mathrm{MIN})}(\mathrm{ms})}{\mathrm{V}_{\mathrm{IN}}(\mathrm{~V})}
$$

For example, for $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{t}_{\mathrm{BLANK}(\mathrm{MIN})}=10 \mathrm{~ms}$, and $\mathrm{I}_{\mathrm{LIM}}=300 \mathrm{~mA}, \mathrm{C}_{\text {MAX }}$ equals $909 \mu \mathrm{~F}$.
Due to the very fast current-limit reaction time of the MAX4995AF, a larger output capacitance might need to be connected at the output to dampen oscillation due to long wires. Choose a value large enough to ensure OUT doesn't exceed the absolute maximum ratings.

Layout and Thermal Dissipation

To optimize the switch response time to output shortcircuit conditions, it is very important to keep all traces as short as possible to reduce the effect of undesirable parasitic inductance. Place input and output capacitors as close as possible to the device. IN and OUT must be connected with wide, short traces to the power bus. During normal operation, the power dissipation is small and the package temperature change is minimal. If the output is continuously shorted to ground at the maximum supply voltage, the operation of the switches with the autoretry option does not cause problems because the total power dissipated during the short is scaled by the duty cycle:

$$
\mathrm{P}_{\mathrm{MAX}}=\frac{\mathrm{V}_{\mathrm{IN}(\mathrm{MAX}} \times \mathrm{I}_{\mathrm{OUT}(\mathrm{MAX})} \times \mathrm{t}_{\mathrm{BLANK}}}{\mathrm{t}_{\text {RETRY }}+\mathrm{t}_{\mathrm{BLANK}}}
$$

Attention must be given to the MAX4995C continuous current-limit version when the power dissipation during a fault condition may cause the device to reach thermal shutdown threshold.

MAX4995A/AF/AL/
MAX4995B/MAX4995C
50 mA to 600 mA Programmable
Current-Limit Switches

Typical Operating Circuit

Chip Information
PROCESS: BiCMOS

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$1 / 15$	Initial release.	-
1	$6 / 09$	Corrected the Ordering Information/Selector Guide.	1,11
2	$2 / 10$	Added TDFN package information to the Ordering Information/Selector Guide, Absolute Maximum Ratings, Pin Description, and Package Information sections, added the TDFN pin configuration drawing to the Pin Configurations section.	$1,2,7,12$
3	$10 / 19$	Updated the Ordering Information/Selector Guide.	1

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR U6513A MIC2012YM-TR MP5095GJ-P TPS2021IDRQ1 TPS2104DBVR TPS22958NDGKR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC25051YM MIC94085YFT-TR MIC94042YFL-TR MIC2005-1.2YM6-TR NCP333FCT2G NCP331SNT1G TPS2092DR TPS2063DR MIC2008YML-TR MIC94084YFT-TR MIC2040-1YMM DIO1280WL12 AP22814ASN-7 MIC2043-2YTS

