7A Sink/3A Source Current, 8ns, SOT23, MOSFET Driver

Benefits and Features

- Improved Power Conversion Efficiency
- Low 8ns Propagation Delay
- 5ns Typical Rise and 4ns Typical Fall Times with 1nF Load
- 0.3Ω Open-Drain n-Channel Sink Output
- 0.84Ω Open-Drain p-Channel Source Output
- Improved EMI
- Independent Source/Sink Outputs for Controllable Rise and Fall Times
- Reduced Solution Size and Cost
- Low Input Capacitance (10pF, typ)
- 6-Pin SOT-23 Package
- +4 V to +14 V Single Power Supply
- Greater Flexibility in Controlling the MOSFET
- Matching Delay Time Between Inverting and Noninverting Inputs
- 7A/3A Peak Sink/Source Drive Current
- TTL Logic-Level Inputs with Hysteresis for Noise Immunity
- Improved System Reliabilty
- Inputs Rated to +14 V Regardless of $\mathrm{V}+$ Voltage
- Thermal Shutdown Protection
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating Temperature Range
- Easy Upgrade from MAX5048B
- Pin-Compatible with the MAX5048B

Typical Operating Circuit

Abstract

Absolute Maximum Ratings V+, IN+, IN-, P_OUT, N_OUT to GND -0.3 V to +16 V Operating Temperature Range......................... $40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Storage Temperature Range. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Junction Temperature $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Package Thermal Characteristics (Note 1)

Junction-to-Ambient Thermal Resistance (θ_{JA}) \qquad $.80^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Measured on the MAX5048C evaluation kit.

Electrical Characteristics

$\left(\mathrm{V}+=12 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=0, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are specified at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY (V+)						
V+ Operating Range	V+		4		14	V
V+ Undervoltage Lockout	UVLO	V+ rising	3.28	3.45	3.63	V
V+ UVLO Hysteresis				200		mV
V+ UVLO to Output Delay		$\mathrm{V}+$ rising, $\mathrm{IN}+=\mathrm{V}+$, $\mathrm{IN}-=$ GND		127		$\mu \mathrm{s}$
V+ Supply Current	${ }^{+}{ }_{Q}$	Not switching, V+= 14 V		0.5	1	mA
	I+sw	$\mathrm{V}+=6 \mathrm{~V}$, switching at 1 MHz		2.65		
n-CHANNEL OUTPUT						
Driver Output Resistance Pulling Down	RON-N	$\mathrm{V}+=14 \mathrm{~V}, \mathrm{I}_{\text {N_OUT }}=-100 \mathrm{~mA}$		0.31	0.55	Ω
		$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{I}_{\text {N_OUT }}=-100 \mathrm{~mA}$		0.32	0.56	
Power-Off Pulldown Resistance		$\mathrm{V}+=$ unconnected, $\mathrm{I}_{\text {N_OUT }}=-10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	4	6.1	8.5	Ω
Power-Off Pulldown Clamp Voltage		$\mathrm{V}+=$ unconnected, $\mathrm{I}_{\mathrm{N} \text { _OUT }}=-10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0.95	1.29	1.65	V
Output Leakage Current	ILK-N	N_OUT $=14 \mathrm{~V}$		6.5	11	$\mu \mathrm{A}$
Peak Output Current (Sinking)	IPK-N	$C_{L}=10 \mathrm{nF}$		7		A
p-CHANNEL OUTPUT						
Driver Output Resistance Pulling Up	RON-P	$\mathrm{V}+=14 \mathrm{~V}, \mathrm{IP}$ _OUT $=100 \mathrm{~mA}$		0.84	1.47	Ω
		$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{IP}_{\text {- }} \mathrm{OUT}=100 \mathrm{~mA}$		0.88	1.55	
Output Leakage Current	lLK-P	P_OUT = 0V	-1		+1	$\mu \mathrm{A}$
Peak Output Current (Sourcing)	IPK-P	$C_{L}=10 n F$		3		A
LOGIC INPUT (IN+, IN-)						
Logic High Input Voltage	V_{IH}		2.0			V
Logic Low Input Voltage	V_{IL}				0.8	V
Logic Input Hysteresis	$\mathrm{V}_{\mathrm{HYS}}$			300		mV
Logic Input Current		$\mathrm{IN}+=\mathrm{IN}-=\mathrm{V}+$ or $0 \mathrm{~V}, \mathrm{~V}+=14 \mathrm{~V}$	-1000		+1000	nA
Logic Input Capacitance	$\mathrm{ClN}_{\text {IN }}$	(Note 3)		10		pF

Electrical Characteristics (continued)

$\left(\mathrm{V}+=12 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=0, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are specified at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

SWITCHING CHARACTERISTICS (V+ = 14V) (Figure 2 and Note 3)						
Rise Time	$t_{\text {R }}$	$C_{L}=1 \mathrm{nF}$		5		ns
		$\mathrm{C}_{\mathrm{L}}=4.7 \mathrm{nF}$		19		
		$C_{L}=10 n F$		37		
Fall Time	t_{F}	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$		4		ns
		$\mathrm{C}_{\mathrm{L}}=4.7 \mathrm{nF}$		10		
		$C_{L}=10 n F$		18		
Turn-On Delay Time	$t_{\text {D-ON }}$	$C_{L}=1 \mathrm{nF}$	3	7	18	ns
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{D}-\mathrm{OFF}}$	$C_{L}=1 \mathrm{nF}$	3	7	18	ns
Break-Before-Make Time				5		ns
SWITCHING CHARACTERISTICS (V+ = 4.5V) (Figure 2 and Note 3)						
Rise Time	t_{R}	$C_{L}=1 \mathrm{nF}$		4		ns
		$\mathrm{C}_{\mathrm{L}}=4.7 \mathrm{nF}$		13		
		$C_{L}=10 n F$		28		
Fall Time	t_{F}	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$		4		ns
		$\mathrm{C}_{\mathrm{L}}=4.7 \mathrm{nF}$		7		
		$C_{L}=10 n F$		13		
Turn-On Delay Time	$\mathrm{t}_{\mathrm{D}-\mathrm{ON}}$	$C_{L}=1 \mathrm{nF}$	2	8	21	ns
Turn-Off Delay Time	$\mathrm{t}_{\text {D-OFF }}$	$C_{L}=1 \mathrm{nF}$	2	8	21	ns
Break-Before-Make Time				5		ns
THERMAL SHUTDOWN						
Thermal Shutdown Threshold		Temperature rising		166		${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis				13		${ }^{\circ} \mathrm{C}$

Note 2: All devices are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over temperature are guaranteed by design.
Note 3: Design guaranteed by bench characterization. Limits are not production tested.

Typical Operating Characteristics

($C_{L}=1 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Typical Operating Characteristics (continued)

($\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

 SOT23, MOSFET Driver

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1	V+	Power-Supply Input. Bypass to GND with a minimum of 1μ F low-ESR ceramic capacitor.
2	P_OUT	Open-Drain p-Channel Output. Sources current for MOSFET turn-on.
3	N_OUT	Open-Drain n-Channel Output. Sinks current for MOSFET turn-off.
4	GND	Ground
5	IN-	Inverting Logic Input Terminal. Connect to GND when not used.
6	IN+	Noninverting Logic Input Terminal. Connect to V+ when not used.

Functional Diagram

Figure 1. MAX5048C Functional Block Diagram

Timing Diagram and Test Circuit

Figure 2. Timing Diagram and Test Circuit for $1 \mathrm{~N}+$ Operation

7A Sink/3A Source Current, 8ns, SOT23, MOSFET Driver

Table 1. Truth Table

IN+	IN-	P_OUT	N_OUT
L	L	Off	On
L	H	Off	On
H	L	On	Off
H	H	Off	On

$L=$ Logic-low.
$H=$ Logic-high .

Detailed Description

Logic Inputs

The MAX5048C has a TTL inverting and noninverting input that gives the user greater flexibility in controlling the MOSFET. Table 1 shows all the possible input combinations and the corresponding output states.

Undervoltage Lockout (UVLO)

When V+ is below the UVLO threshold, the outputstage n-channel device is on and the p-channel is off, independent of the state of the inputs. This holds the outputs low. The UVLO is typically 3.45 V with 200 mV typical hysteresis to avoid chattering.

Driver Outputs

The device provides two separate outputs. One is an open-drain p-channel, the other an open-drain n-channel. They have distinct current sourcing/sinking capabilities to independently control the rise and fall times of the MOSFET gate. Add a resistor in series with P_OUT/ N_OUT to slow the corresponding rise/fall time of the MOSFET gate.

Applications Information

Supply Bypassing, Device Grounding, and Placement

Ample supply bypassing and device grounding are extremely important because when large external capacitive loads are driven, the peak current at the $\mathrm{V}+$ pin can approach 3A, while at the GND pin the peak current can approach 7A. V+ drops and ground shifts are forms of negative feedback for inverters and, if excessive, can cause multiple switching when the inverting input is used and the input slew rate is low. The device driving the input should be referenced to the GND pin, especially when the inverting input is used. Ground shifts due to insufficient device grounding may disturb other circuits sharing the same AC ground return path. Any series inductance in
the V+, P_OUT, N_OUT, and/or GND paths can cause oscillations due to the very high di/dt that results when the device is switched with any capacitive load. A minimum of $1 \mu \mathrm{~F}$, low-ESR ceramic capacitor is recommended, bypassing $\mathrm{V}+$ to GND and placed as close as possible to the pins. When driving very large loads (e.g., 10nF) at minimum rise time, $10 \mu \mathrm{~F}$ or more of parallel storage capacitance is recommended. A ground plane is highly recommended to minimize ground return resistance and series inductance. Care should be taken to place the device as close as possible to the external MOSFET being driven to further minimize board inductance and AC path resistance.

Power Dissipation

Power dissipation of the device consists of three components, caused by the quiescent current, capacitive charge and discharge of internal nodes, and the output current (either capacitive or resistive load). The sum of these components must be kept below the maximum powerdissipation limit corresponding value.
The quiescent current is 0.5 mA (typ). The current required to charge and discharge the internal nodes is frequency dependent (see the Typical Operating Characteristics). The device's approximate power dissipation when driving a ground-referenced resistive load is:

$$
\mathrm{P}=\mathrm{D} \times \mathrm{R}_{\mathrm{ON}}(\mathrm{MAX}) \times \mathrm{L}_{\mathrm{LOAD}}{ }^{2}
$$

where D is the fraction of the period that the device output pulls high, R R_{ON} (MAX) is the maximum pullup on-resistance of the device with the output high, and ILOAD is the output load current of the device.
For capacitive loads, the approximate power dissipation is:

$$
P=C_{L O A D} \times(V+)^{2} \times F R E Q
$$

where $C_{\text {LOAD }}$ is the capacitive load, $\mathrm{V}+$ is the supply voltage, and FREQ is the switching frequency.

PCB Layout Information

The MOSFET driver can source and sink large currents to create very fast rise and fall edges at the gate of the switching MOSFET. The high di/dt can cause unacceptable ringing if the trace lengths and impedances are not well controlled. The following PCB layout guidelines are recommended when designing with the MAX5048C:

- Place at least $1 \mu \mathrm{~F}$ decoupling ceramic capacitor from V+ to GND as close as possible to the device. At least one storage capacitor of $10 \mu \mathrm{~F}(\mathrm{~min})$ should be located on the PCB with a low resistance path to the $V+$ pin of the device.
- There are two AC current loops formed between the device and the gate of the MOSFET being driven. The MOSFET looks like a large capacitance from gate to source when the gate is being pulled low. The active current loop is from N_OUT of the device to the MOSFET gate, to the MOSFET source, and to GND of the device.
- When the gate of the MOSFET is being pulled high, the active current loop is from P _OUT of the device, to the MOSFET gate, to the MOSFET source, to the

GND terminal of the decoupling capacitor, to the $\mathrm{V}+$ terminal of the decoupling capacitor, and to the $\mathrm{V}+$ terminal of the device. While the charging current loop is important, the discharging current loop is also critical. It is important to minimize the physical distance and the impedance in these AC current loops.

- In a multilayer PCB, the component surface layer surrounding the device should consist of a GND plane containing the discharging and charging current loops.

Figure 5. MAX5048C in High-Power Synchronous Buck Converter

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	LOGIC INPUT	TOP MARK
MAX5048CAUT +$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT23	TTL	+ +ACSC	

+Denotes a lead(Pb)-free/RoHS-compliant package.
Chip Information
PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
6 SOT 23	$U 6+8$	$\underline{21-0058}$	$\underline{90-0175}$

7A Sink/3A Source Current, 8ns, SOT23, MOSFET Driver

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$11 / 12$	Initial release	-
1	$1 / 15$	Updated Benefits and Features section	1

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
89076GBEST 00053P0231 $56956 \underline{57.404 .7355 .5} \underline{\text { LT4936 } 57.904 .0755 .05882900001 \text { 00600P0005 00-9050-LRPP 00-9090-RDPP }}$ 5951900000 01-1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 02071000000207400000 $01312 \underline{0134220000} \underline{60713816}$ M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131-220-21149P 6131-260-2358P 6131-265-11149P

