4A, 20ns, Dual MOSFET Drivers

Abstract

General Description The MAX5054-MAX5057 dual, high-speed MOSFET drivers source and sink up to 4A peak current. These devices feature a fast 20ns propagation delay and 20ns rise and fall times while driving a 5000pF capacitive load. Propagation delay time is minimized and matched between the inverting and noninverting inputs and between channels. High sourcing/sinking peak currents, low propagation delay, and thermally enhanced packages make the MAX5054-MAX5057 ideal for highfrequency and high-power circuits. The MAX5054-MAX5057 operate from a 4 V to 15 V single power supply and consume $40 \mu \mathrm{~A}$ (typ) of supply current when not switching. These devices have internal logic circuitry that prevents shoot-through during output state changes to minimize the operating current at high switching frequency. The logic inputs are protected against voltage spikes up to +18 V , regardless of the VDD voltage. The MAX5054A is the only version that has CMOS input logic levels while the MAX5054B/MAX5055/ MAX5056/MAX5057 have TTL input logic levels. The MAX5055-MAX5057 provide the combination of dual inverting, dual noninverting, and inverting/noninverting input drivers. The MAX5054 feature both inverting and noninverting inputs per driver for greater flexibility. They are available in 8 -pin TDFN (3mm x 3mm), standard SO, and thermally enhanced SO packages. These devices operate over the automotive temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Applications

$\begin{array}{ll}\text { Power MOSFET Switching } & \text { Motor Control } \\ \text { Switch-Mode Power Supplies } & \text { Power-Supply Modules }\end{array}$
DC-DC Converters
Typical Operating Circuit

- 4V to 15V Single Power Supply
- 4A Peak Source/Sink Drive Current
- 20ns (typ) Propagation Delay
- Matching Delay Between Inverting and Noninverting Inputs
- Matching Propagation Delay Between Two Channels
- VDD / 2 CMOS Logic Inputs (MAX5054AATA)
- TTL Logic Inputs (MAX5054B/MAX5055/MAX5056/MAX5057)
- $0.1 \times$ VDD (CMOS) and 0.3V (TTL) Logic-Input Hysteresis
- Up to +18V Logic Inputs (Regardless of VDD Voltage)
- Low Input Capacitance: 2.5pF (typ)
- 40 $\mu \mathrm{A}$ (typ) Quiescent Current
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating Temperature Range
- 8-Pin TDFN and SO Packages

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX5054AATA +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 TDFN-EP*	AGS
MAX5054AATA/V +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 TDFN-EP*	BMF
MAX5054BATA +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 TDFN-EP*	AGR
MAX5055AASA +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO-EP*	-
MAX5055BASA +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO	-
MAX5056AASA +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mathrm{SO}-E P^{*}$	-
MAX5056BASA +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO	-
MAX5057AASA +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mathrm{SO}-E P^{*}$	-
MAX5057BASA +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO	-

* $E P=$ Exposed pad.

NDenotes an automotive qualified part.
+Denotes a lead(Pb)-free/RoHS-compliant package.

Selector Guide and Pin Configurations appear at end of data sheet.

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

4A, 20ns, Dual MOSFET Drivers

ABSOLUTE MAXIMUM RATINGS
(Voltages referenced to GND.)
VDD..-0.3V to +18V
INA+, INA-, INB+, INB0.3 V to +18 V OUTA, OUTB................................-0.3V to (VDD +0.3 V)
OUTA, OUTB Short-Circuit Duration10ms
Continuous Source/Sink Current at OUT_ (PD < PDMAX)200mA Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
8-Pin TDFN-EP (derate $18.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)........ 1454 mW

8-Pin SO-EP (derate $19.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1538 mW 8 -Pin SO (derate $5.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)..................... 471 mW
Operating Temperature Range............................. $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature .. $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s).................................... $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow) .. $260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

8 TDFN-EP
Junction-to-Ambient Thermal Resistance ($\theta \mathrm{JA}$)............... $+41^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance (θ_{JC})...................... $+8^{\circ} \mathrm{C} / \mathrm{W}$ 8 SO
Junction-to-Ambient Thermal Resistance ($\theta \mathrm{JA}$)................ $+132^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance (θ_{JC})...................... $+40^{\circ} \mathrm{C} / \mathrm{W}$

Junction-to-Ambient Thermal Resistance ($\theta \mathrm{JA}$)................. $+41^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance (θ_{JC})...................... $+7^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=4 \mathrm{~V}\right.$ to $15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
POWER SUPPLY							
VDD Operating Range	VDD			4		15	V
VDD Undervoltage Lockout	UVLO	V ${ }_{\text {DD }}$ rising		3.00	3.50	3.85	V
$V_{D D}$ Undervoltage Lockout Hysteresis				200			mV
VDD Undervoltage Lockout to Output Delay		VDD rising		12			$\mu \mathrm{s}$
VDD Supply Current	IDD	$\begin{aligned} & \text { INA- = INB- = VDD, } \\ & \text { INA+ = INB+ = OV } \\ & \text { (not switching) } \end{aligned}$	$V_{D D}=4 \mathrm{~V}$		28	55	$\mu \mathrm{A}$
			$V_{D D}=15 \mathrm{~V}$		40	75	
	IDD-SW	$\begin{aligned} & \text { INA- }=0 \mathrm{~V}, \mathrm{INB}+=\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \text {, } \\ & \text { INA }+=\mathrm{INB}-\text { both channels switching at } \\ & 250 \mathrm{kHz}, \mathrm{CL}=0 \mathrm{~F} \end{aligned}$		1	2.4	4	mA
DRIVER OUTPUT (SINK)							
Driver Output Resistance Pulling Down	Ron-N	$\begin{aligned} & \text { VDD }=15 \mathrm{~V}, \\ & \text { lout_ }=-100 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.1	1.8	Ω
			$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		1.5	2.4	
		$\begin{aligned} & \text { VDD }=4.5 \mathrm{~V}, \\ & \text { lout_ }=-100 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2.2	3.3	
			$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		3.0	4.5	
Peak Output Current (Sinking)	IPK-N	$V_{D D}=15 \mathrm{~V}, C_{L}=10,000 \mathrm{pF}$			4		A
Output-Voltage Low		IOUT_ $=-100 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$			0.45	V
			$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$			0.24	
Latchup Protection	ILUP	Reverse current Iout_ (Note 2)		400			mA

4A, 20ns, Dual MOSFET Drivers

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\mathrm{DD}}=4 \mathrm{~V}$ to $15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

SWITCHING CHARACTERISTICS FOR VDD = 15V (Figure 1)

OUT_ Rise Time	t_{R}	$C_{L}=1000 \mathrm{pF}$		4		ns
		$C_{L}=5000 \mathrm{pF}$		18		
		$C_{L}=10,000 \mathrm{pF}$		32		
OUT_ Fall Time	$\mathrm{tF}_{\text {F }}$	$C_{L}=1000 \mathrm{pF}$		4		ns
		$C_{L}=5000 \mathrm{pF}$		15		
		$C_{L}=10,000 \mathrm{pF}$		26		
Turn-On Delay Time	tD-ON	$C L=10,000 \mathrm{pF}$ (Note 3)	10	20	34	ns
Turn-Off Delay Time	tD-OFF	$C L=10,000 \mathrm{pF}$ (Note 3)	10	20	34	ns
SWITCHING CHARACTERISTICS FOR $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ (Figure 1)						
OUT_ Rise Time	t_{R}	$C_{L}=1000 \mathrm{pF}$		7		ns
		$C_{L}=5000 \mathrm{pF}$		37		
		$C_{L}=10,000 \mathrm{pF}$		85		
OUT_ Fall Time	$\mathrm{tF}_{\text {F }}$	$C_{L}=1000 \mathrm{pF}$		7		ns
		$C_{L}=5000 \mathrm{pF}$		30		
		$C_{L}=10,000 \mathrm{pF}$		75		
Turn-On Delay Time	tD-ON	$C_{L}=10,000 \mathrm{pF}$ (Note 3)	18	35	70	ns
Turn-Off Delay Time	tD-OFF	$C L=10,000 \mathrm{pF}$ (Note 3)	18	35	70	ns

4A, 20ns, Dual MOSFET Drivers

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\mathrm{DD}}=4 \mathrm{~V}$ to $15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MATCHING CHARACTERISTICS						
Mismatch Propagation Delays from Inverting and Noninverting Inputs to Output	\triangle ton-OFF	$V_{D D}=15 \mathrm{~V}, C_{L}=10,000 \mathrm{pF}$		2		ns
		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{CL}=10,000 \mathrm{pF}$		4		
Mismatch Propagation Delays Between Channel A and Channel B	$\Delta t_{\text {A-B }}$	$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10,000 \mathrm{pF}$		1		ns
		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{CL}=10,000 \mathrm{pF}$		2		

Note 2: All devices are 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ are guaranteed by design.
Note 3: Limits are guaranteed by design, not production tested.
Note 4: The logic-input thresholds are tested at $\mathrm{V}_{\mathrm{DD}}=4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$.
Note 5: TTL compatible with reduced noise immunity.
Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

RISE TIME vs. SUPPLY VOLTAGE ($\mathrm{CL}_{\mathrm{L}}=5000 \mathrm{pF}$)

PROPAGATION DELAY TIME, HIGH-TO-LOW vs. SUPPLY VOLTAGE ($C_{L}=5000 \mathrm{pF}$)

FALL TIME vs. SUPPLY VOLTAGE ($C_{L}=5000 \mathrm{pF}$)

IDD-SW SUPPLY CURRENT vs. SUPPLY VOLTAGE

PROPAGATION DELAY TIME, LOW-TO-HIGH vs. SUPPLY VOLTAGE ($C_{L}=5000 \mathrm{pF}$)

SUPPLY CURRENT vs. SUPPLY VOLTAGE

4A, 20ns, Dual MOSFET Drivers

Typical Operating Characteristics (continued)

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SUPPLY CURRENT vs. LOGIC-INPUT VOLTAGE (INPUT HIGH-TO-LOW)

INPUT THRESHOLD VOLTAGE
vs. SUPPLY VOLTAGE

SUPPLY CURRENT vs. LOGIC-INPUT VOLTAGE (INPUT HIGH-TO-LOW)

DELAY MISMATCH BETWEEN IN_+ AND IN_- TO OUT_ vs. TEMPERATURE

INPUT THRESHOLD VOLTAGE vs. SUPPLY VOLTAGE

SUPPLY CURRENT vs. LOGIC-INPUT VOLTAGE (INPUT LOW-TO-HIGH)

DELAY MISMATCH BETWEEN IN_+ AND IN_- TO OUT_ vs. TEMPERATURE

4A, 20ns, Dual MOSFET Drivers

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

LOGIC-INPUT VOLTAGE vs. OUTPUT VOLTAGE ($\mathrm{V}_{\mathrm{DD}}=4 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=5000 \mathrm{pF}$)

DELAY MISMATCH BETWEEN 2 CHANNELS vs. TEMPERATURE

LOGIC-INPUT VOLTAGE vs. OUTPUT VOLTAGE ($\mathrm{V}_{\mathrm{DD}}=\mathbf{4 V}, \mathrm{C}_{\mathrm{L}}=\mathbf{1 0 , 0 0 0 p F}$)

LOGIC-INPUT VOLTAGE vs. OUTPUT VOLTAGE

4A, 20ns, Dual MOSFET Drivers

Typical Operating Characteristics (continued)
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

LOGIC-INPUT VOLTAGE vs. OUTPUT VOLTAGE
($V_{D D}=15 \mathrm{~V}, C_{L}=5000 \mathrm{pF}$)

20ns/div

LOGIC-INPUT VOLTAGE vs. OUTPUT VOLTAGE

VDD vs. OUTPUT VOLTAGE

LOGIC-INPUT VOLTAGE vs. OUTPUT VOLTAGE

LOGIC-INPUT VOLTAGE vs. OUTPUT VOLTAGE

VDD vs. OUTPUT VOLTAGE

4A, 20ns, Dual MOSFET Drivers

MAX5054

PIN	NAME	
1	INA-	Inverting Logic-Input Terminal for Driver A. Connect to GND when not used.
2	INB-	Inverting Logic-Input Terminal for Driver B. Connect to GND when not used.
3	GND	Ground
4	OUTB	Driver B Output. Sources or sinks current for channel B to turn the external MOSFET on or off.
5	VDD	Power Supply. Bypass to GND with one or more 0.1 μ F ceramic capacitors.
6	OUTA	Driver A Output. Sources or sinks current for channel A to turn the external MOSFET on or off.
7	INB+	Noninverting Logic-Input Terminal for Driver B. Connect to VDD when not used.
8	INA+	Noninverting Logic-Input Terminal for Driver A. Connect to VDD when not used.
-	EP	Exposed Pad. Internally connected to GND. Do not use the exposed pad as the only electrical ground connection.

MAX5055/MAX5056/MAX5057

PIN			NAME	
MAX5055	MAX5056	MAX5057		
1,8	1,8	1,8	N.C.	No Connection. Not internally connected.
2	-	2	INA-	Inverting Logic-Input Terminal for Driver A. Connect to GND if not used.
3	3	3	GND	Ground
4	-	-	INB-	Inverting Logic-Input Terminal for Driver B. Connect to GND if not used.
5	5	5	OUTB	Driver B Output. Sources or sinks current for channel B to turn the external MOSFET on or off.
6	6	6	VDD	Power Supply. Bypass to GND with one or more 0.14F ceramic capacitors.
7	7	7	OUTA	Driver A Output. Sources or sinks current for channel A to turn the external MOSFET on or off.
-	4	4	INB+	Noninverting Logic-Input Terminal for Driver B. Connect to VDD if not used. -
-	-	-	INA+	Noninverting Logic-Input Terminal for Driver A. Connect to VDD if not used.
-	-	EP	Exposed Pad. Internally connected to GND. Do not use the exposed pad as the only electrical ground connection.	

4A, 20ns, Dual MOSFET Drivers

Figure 1. Timing Diagram

Figure 2. MAX5054 Block Diagram (1 Driver)

Detailed Description

VDD Undervoltage Lockout (UVLO)

The MAX5054-MAX5057 have internal undervoltage lockout for VDD. When VDD is below the UVLO threshold, OUT_ is low, independent of the state of the inputs. The undervoltage lockout is typically 3.5 V with 200 mV typical hysteresis to avoid chattering. When VDD rises above the UVLO threshold, the outputs go high or low depending upon the logic-input levels. Bypass VDD using low-ESR ceramic capacitors for proper operation (see the Applications Information section).

Figure 3. MAX5055/MAX5056/MAX5057 Functional Diagrams (1 Driver)

Logic Inputs

The MAX5054B-MAX5057 have TTL-compatible logic inputs, while the MAX5054A is a CMOS logic-input driver. The logic-input signals can be independent of the VDD voltage. For example, the device can be powered by a 5 V supply while the logic inputs are provided from CMOS logic. Also, the logic inputs are protected against the voltage spikes up to 18 V , regardless of the VDD voltage. The TTL and CMOS logic inputs have 300 mV and $0.1 \times$ VDD hysteresis, respectively, to avoid possible double pulsing during transition. The low 2.5 pF input capacitance reduces loading and increases switching speed.

4A, 20ns, Dual MOSFET Drivers

Table 1. MAX5054 Truth Table

INA+/INB+	INA-/INB-	OUTA/OUTB
Low	Low	Low
Low	High	Low
High	Low	High
High	High	Low

Table 2. MAX5055/MAX5056/MAX5057 Truth Table

NONINVERTING	
IN_+	OUT_- $^{\|c\|}$ Low
High	Low
INVERTING	
IN_-	OUT_- $^{\|c\|}$
Low	High
High	Low

The logic inputs are high impedance and must not be left floating. If the inputs are left open, OUT_ can go to an undefined state as soon as $V_{D D}$ rises above the UVLO threshold. Therefore, the PWM output from the controller must assume proper state when powering up the device.
The MAX5054 has two logic inputs per driver providing greater flexibility in controlling the MOSFET. Use IN_+ for noninverting logic and IN_{-}- for inverting logic operation. Connect IN_+ to VDD and IN_- to GND if not used. Alternatively, the unused input can be used as an ON/OFF function. Use IN_+ for active-low shutdown logic and IN - for active-high shutdown logic (see Figure 4). See Table 1 for all possible input combinations.

Driver Output
The MAX5054-MAX5057 have low RDS(ON) p-channel and n -channel devices (totem pole) in the output stage for the fast turn-on and turn-off high gate-charge switching MOSFETs. The peak source or sink current is typically 4A. The OUT_ voltage is approximately equal to VDD when in high state and is ground when in low state. The driver $\operatorname{RDS}(O N)$ is lower at higher $V_{D D}$, thus higher source-/sink-current capability and faster switching speeds. The propagation delays from the noninverting and inverting logic inputs to outputs are matched to 2 ns . The break-before-make logic avoids any cross-conduction between the internal p - and n -channel devices, and eliminates shoot-through currents reducing the quiescent supply current.

Figure 4. Unused Input as an ON/OFF Function (1/2 MAX5054A)

Applications Information

RLC Series Circuit

The driver's RDS(ON) (RON), internal bond and lead inductance (LP), trace inductance (LS), gate inductance (LG), and gate capacitance (CG) form a series RLC circuit with a second-order characteristic equation. The series RLC circuit has an undamped natural frequency (ω_{0}) and a damping ratio (ζ) where:

$$
\begin{aligned}
& \omega_{0}=\frac{1}{\sqrt{\left(L_{P}+L_{S}+L_{G}\right) \times C_{G}}} \\
& \xi=\frac{R_{O N}}{2 \times \sqrt{\frac{\left(L_{P}+L_{S}+L_{G}\right)}{C_{G}}}}
\end{aligned}
$$

The damping ratio needs to be greater than 0.5 (ideally 1) to avoid ringing. Add a small resistor (RGATE) in series with the gate when driving a very low gate-charge MOSFET, or when the driver is placed away from the MOSFET. Use the following equation to calculate the series resistor:

$$
\mathrm{R}_{\mathrm{GATE}} \geq \sqrt{\frac{\left(\mathrm{L}_{\mathrm{P}}+\mathrm{L}_{\mathrm{S}}+\mathrm{L}_{\mathrm{G}}\right)}{\mathrm{C}_{\mathrm{G}}}}-\mathrm{R}_{\mathrm{ON}}
$$

Lp can be approximated as 3 nH and 2 nH for SO and TDFN packages, respectively. Ls is on the order of $20 n H / i n$. Verify LG with the MOSFET vendor.

4A, 20ns, Dual MOSFET Drivers

Supply Bypassing and Grounding

Pay extra attention to bypassing and grounding the MAX5054-MAX5057. Peak supply and output currents may exceed 8 A when both drivers drive large external capacitive loads in phase. Supply voltage drops and ground shifts create forms of negative feedback for inverters and may degrade the delay and transition times. Ground shifts due to insufficient device grounding may also disturb other circuits sharing the same AC ground return path. Any series inductance in the VDD, OUT_, and/or GND paths can cause oscillations due to the very high di/dt when switching the MAX5054-MAX5057 with any capacitive load. Place one or more $0.1 \mu \mathrm{~F}$ ceramic capacitors in parallel as close to the device as possible to bypass $V_{D D}$ to GND. Use a ground plane to minimize ground return resistance and series inductance. Place the external MOSFET as close as possible to the MAX5054-MAX5057 to further minimize board inductance and AC path impedance.

Power Dissipation
Power dissipation of the MAX5054-MAX5057 consists of three components: caused by the quiescent current, capacitive charge/discharge of internal nodes, and the output current (either capacitive or resistive load). Maintain the sum of these components below the maximum power dissipation limit.
The current required to charge and discharge the internal nodes is frequency dependent (see the Supply Current vs. Supply Voltage graph in the Typical Operating Characteristics). The power dissipation (PQ_{Q}) due to the quiescent switching supply current (IDD-SW) per driver can be calculated as:

$$
P Q=V_{D D} \times I_{D D}-S W
$$

For capacitive loads, use the following equation to estimate the power dissipation per driver:

$$
\text { PCLOAD }=\text { CLOAD } \times\left(V_{D D}\right)^{2} \times f s w
$$

where CLOAD is the capacitive load, VDD is the supply voltage, and fsw is the switching frequency.
Calculate the total power dissipation (PT) per driver as follows:

$$
\mathrm{PT}_{\mathrm{T}}=\mathrm{PQ}+\mathrm{PCLOAD}
$$

Use the following equation to estimate the MAX5054MAX5057 total power dissipation per driver when driving a ground-referenced resistive load:

$$
\begin{gathered}
\text { PT }=\text { PQ }+ \text { PrLOAD } \\
\text { PRLOAD }=\mathrm{D} \times \operatorname{RON}(\mathrm{MAX}) \times \mathrm{ILOAD}^{2}
\end{gathered}
$$

where D (duty cycle) is the fraction of the period the MAX5054-MAX5057's output pulls high duty cycle, RON(MAX) is the maximum on-resistance of the device with the output high, and ILOAD is the output load current of the MAX5054-MAX5057.

Layout Information The MAX5054-MAX5057 MOSFET drivers source and sink large currents to create very fast rising and falling edges at the gate of the switching MOSFET. The high di/dt can cause unacceptable ringing if the trace lengths and impedances are not well controlled. Use the following PC board layout guidelines when designing with the MAX5054-MAX5057:

- Place one or more $0.1 \mu \mathrm{~F}$ decoupling ceramic capacitors from VDD to GND as close to the device as possible. Connect VDD and GND to large copper areas. Place one bulk capacitor of $10 \mu \mathrm{~F}$ (min) on the PC board with a low resistance path to the $V_{D D}$ input and GND of the MAX5054-MAX5057.
- Two AC current loops form between the device and the gate of the driven MOSFET. The MOSFET looks like a large capacitance from gate to source when the gate pulls low. The active current loop is from the MOSFET gate to OUT_ of the MAX5054-MAX5057, to GND of the MAX5054-MAX5057, and to the source of the MOSFET. When the gate of the MOSFET pulls high, the active current is from the $V_{D D}$ terminal of the decoupling capacitor, to VDD of the MAX5054MAX5057, to OUT_ of the MAX5054-MAX5057, to the MOSFET gate, to the MOSFET source, and to the negative terminal of the decoupling capacitor. Both charging current and discharging current loops are important. Minimize the physical distance and the impedance in these AC current paths.
- Keep the device as close to the MOSFET as possible.
- In a multilayer PC board, the inner layers should consist of a GND plane containing the discharging and charging current loops.
- Pay extra attention to the ground loop and use a low-impedance source when using a TTL logicinput device. Fast fall time at OUT_ may corrupt the input during transition.

4A, 20ns, Dual MOSFET Drivers

Exposed Pad
Both the SO-EP and TDFN-EP packages have an exposed pad on the bottom of their package. These pads are internally connected to GND. For the best thermal conductivity, solder the exposed pad to the
ground plane to dissipate 1.5 W and 1.9 W in SO-EP and TDFN-EP packages, respectively. Do not use the ground-connected pads as the only electrical ground connection or ground return. Use GND (pin 3) as the primary electrical ground connection.

Additional Application Circuits

Figure 5. Push-Pull Converter with Synchronous Rectification Drive Using MAX5054

4A, 20ns, Dual MOSFET Drivers

LSOGXVW-十GOGXVW

Figure 6. Schematic of a 48V Input, 3.3V at 15A Output Synchronously Rectified, Isolated Power Supply

4A, 20ns, Dual MOSFET Drivers

Selector Guide

PART	PIN- PACKAGE	LOGIC INPUT
MAX5054AATA	8 TDFN-EP*	VDD / 2 CMOS Dual Inverting and Dual Noninverting Inputs
MAX5054BATA	8 TDFN-EP**	TTL Dual Inverting and Dual Noninverting Inputs
MAX5055AASA	8 SO-EP*	TTL Dual Inverting Inputs
MAX5055BASA	8 SO	TTL Dual Inverting Inputs
MAX5056AASA	8 SO-EP*	TTL Dual Noninverting Inputs
MAX5056BASA	8 SO	TTL Dual Noninverting Inputs
MAX5057AASA	8 SO-EP*	TTL Inverting and Noninverting Inputs
MAX5057BASA	8 SO	TTL Inverting and Noninverting Inputs

[^0]PROCESS: CMOS
Chip Information

Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
8 TDFN-EP	$\mathrm{T} 833+2$	$\underline{\mathbf{2 1 - 0 1 3 7}}$	$\underline{\underline{\mathbf{9 0}-0059}}$
$8 \mathrm{SO}-\mathrm{EP}$	$\mathrm{S} 8 \mathrm{E}+14$	$\underline{\mathbf{2 1 - 0 1 1 1}}$	$\underline{\mathbf{9 0 - 0 1 5 1}}$
8 SO	$\mathrm{S} 8+4$	$\underline{\mathbf{2 1 - 0 0 4 1}}$	$\underline{\mathbf{9 0}-0096}$

4A, 20ns, Dual MOSFET Drivers

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$8 / 04$	Initial release	0
1	$9 / 05$	Package-related changes	TBD
2	$9 / 10$	Added automotive part; updated Package Information table	$1,2,14$,
3	$3 / 11$	Corrected top mark discrepancy and actual top mark for MAX5054AATA/V +	1,2

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
89076GBEST 00053P0231 $56956 \underline{57.404 .7355 .5} \underline{\text { LT4936 } 57.904 .0755 .05882900001 \text { 00600P0005 00-9050-LRPP 00-9090-RDPP }}$ 5951900000 01-1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 02071000000207400000 $01312 \underline{0134220000} \underline{60713816}$ M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131-220-21149P 6131-260-2358P 6131-265-11149P

[^0]: ${ }^{*} E P=$ Exposed pad.

