High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator

Abstract

General Description The MAX5068 is a high-frequency, current-mode, pulse-width modulation (PWM) controller that integrates all the building blocks necessary for implementing ACDC or DC-DC fixed-frequency power supplies. Isolated or nonisolated power supplies are easily constructed using either primary- or secondary-side regulation. Current-mode control with leading-edge blanking simplifies control-loop design, and a programmable internal slope-compensation circuit stabilizes the current loop when operating at duty cycles above 50%. The MAX5068A/B limit the maximum duty cycle to 50% for use in single-ended forward converters. The MAX5068C/D/E/F allow duty cycles up to 75%. The MAX5068 features an accurate externally programmable oscillator that simplifies system design.

An input undervoltage lockout (UVLO) programs the input-supply startup voltage and ensures proper operation during brownout conditions. A single external resistor programs the output switching frequency from 12.5 kHz to 1.25 MHz . The MAX5068A/ B/C/E provide a SYNC input for synchronization to an external clock. The maximum FET-driver duty cycle is 50\% for the MAX5068A/B and 75\% for the MAX5068C/ D/E/F. Programmable hiccup current limit provides additional protection under severe faults. The MAX5068 is specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ automotive temperature range and is available in a 16-pin thermally enhanced TSSOP-EP package. Refer to the MAX5069 data sheet for dual FET-driver applications. Warning: The MAX5068 is designed to work with high voltages. Exercise caution.

Applications
Universal-Input AC Power Supplies Isolated Telecom Power Supplies Networking System Power Supplies
Server Power Supplies
Industrial Power Conversion
\qquad Features

- Current-Mode Control with $47 \mu \mathrm{~A}$ (typ) Startup Current
- Resistor-Programmable $\pm 4.5 \%$ Accurate Switching Frequency:

25kHz to 1.25MHz (MAX5068A/B) 12.5kHz to 625kHz (MAX5068C/D/E/F)

- Rectified 85VAC to $265 V_{\text {AC }}$ or $36 V_{\text {DC }}$ to $72 V_{D C}$ Input (MAX5068A/C/D)
- Input Directly Driven from 10.8V to 24V (MAX5068B/E/F)
- Frequency Synchronization Input (MAX5068A/B/C/E)
- Programmable Dead Time and Slope Compensation
- Programmable Startup Voltage (UVLO)
- Programmable UVLO Hysteresis (MAX5068A/B/D/F)
- Integrating Fault Protection (Hiccup)
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Automotive Temperature Range
- 16-Pin Thermally Enhanced TSSOP-EP Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX5068AAUE	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 TSSOP-EP*
MAX5068BAUE	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 TSSOP-EP*
MAX5068CAUE	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 TSSOP-EP*
MAX5068DAUE	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 TSSOP-EP*
MAX5068EAUE	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 TSSOP-EP*
MAX5068FAUE	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 TSSOP-EP*
${ }^{*}$ EP $=$ Exposed pad.		

Pin Configurations

Pin Configurations continued at end of data sheet.

High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator

ABSOLUTE MAXIMUM RATINGS

IN to PGND -0.3 V to +30 V
IN to AGND..-0.3V to +30 V
$V_{C c}$ to PGND $-0.3 V$ to $+13 V$ $V_{C C}$ to AGND...-0.3V to +13 V FB, COMP, CS, HYST, SYNC, REG5 to AGND-0.3V to +6V UVLO/EN, RT, DT, SCOMP, FLTINT to AGND-0.3V to +6V NDRV to PGND..-0.3V to (VCC +0.3 V)

AGND to PGND ..-0.3V to +0.3V	
Operating Temperature Range....................... $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Maximum Junction Temperature $+150^{\circ} \mathrm{C}$	
Storage Temperature Range $60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (soldering, 10s)+300	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{I N}=+12 \mathrm{~V}\right.$ for the MAX5068B/E/F; $\mathrm{V}_{\text {IN }}=+23.6 \mathrm{~V}$ for the MAX5068A/C/D at startup, then reduces to +12 V ; $\mathrm{C}_{\mathrm{IN}}=\mathrm{C}_{\text {REG5 }}=0.1 \mu \mathrm{~F}$; $C_{V C C}=1 \mu F ; R_{R T}=100 \mathrm{k} \Omega ;$ NDRV = floating; $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
UNDERVOLTAGE LOCKOUT/STARTUP							
Bootstrap UVLO Wake-Up Level	VSUVR	VIN rising, MAX5068A/C/D only		19.68	21.6	23.60	V
Bootstrap UVLO Shutdown Level	VSUVF	VIN falling, MAX5068A/C/D only		9.05	9.74	10.43	V
UVLO/EN Wake-Up Threshold	VULR2	VUVLO/EN rising		1.205	1.230	1.255	V
UVLO/EN Shutdown Threshold	VULF2	VUVLO/EN falling		1.18			V
HYST FET On-Resistance	RDS(ON)_H	MAX5068A/B/D/F only, sinking 50mA, VUVLO/EN = OV		10			Ω
HYST FET Leakage Current	ILEAK_H	VUVLO/EN $=2 \mathrm{~V}, \mathrm{~V}$ HYST $=5 \mathrm{~V}$		3			nA
IN Supply Current In Undervoltage Lockout	ISTART	VIN $=+19 \mathrm{~V}, \mathrm{~V}$ UVLO/EN $<$ VULF2			47	90	$\mu \mathrm{A}$
IN Range	VIN			10.8		24.0	V
INTERNAL SUPPLIES (VCC and REG5)							
VCC Regulator Set Point	VCCSP	$\mathrm{V}_{\mathrm{IN}}=+10.8 \mathrm{~V}$ to $+24 \mathrm{~V}, \mathrm{~V}_{\text {CC }}$ sourcing $1 \mu \mathrm{~A}$ to 25 mA		7.0		10.5	V
REG5 Output Voltage	VREG5	IREG5 $=0$ to 1 mA		4.85	5.00	5.15	V
REG5 Short-Circuit Current Limit	IREG5_SC			18			mA
IN Supply Current After Startup	In	VIN $=+24 \mathrm{~V}$	$\mathrm{fsW}=1.25 \mathrm{MHz}$	5			mA
			fSw $=100 \mathrm{kHz}$	2.5			
Shutdown Supply Current	IIN_SD					90	$\mu \mathrm{A}$
GATE DRIVER (NDRV)							
Driver Output Impedance	ZOUT(LOW)	NDRV sinking 100 mA			2	4	Ω
	ZOUT(HIGH)	NDRV sourcing 25mA			3	6	
Driver Peak Output Current	INDRV	Sinking		1000			mA
		Sourcing		650			
PWM COMPARATOR							
Comparator Offset Voltage	VOS_PWM	VCOMP - VCS		1.30	1.60	2.00	V
Comparator Propagation Delay	tPD_PWM	$\mathrm{V}_{\text {CS }}=0.1 \mathrm{~V}$		40			ns
Minimum On-Time	ton(MIN)	Includes tcs_BLANK		110			ns
CURRENT-LIMIT COMPARATOR							
Current-Limit Trip Threshold	VCS			298	314	330	mV

High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}\right.$ IN $=+12 \mathrm{~V}$ for the MAX5068B/E/F; V IN $=+23.6 \mathrm{~V}$ for the MAX5068A/C/D at startup, then reduces to $+12 \mathrm{~V} ; \mathrm{CIN}_{\mathrm{IN}}=\mathrm{C}_{\text {REG }}=0.1 \mu \mathrm{~F}$; $C_{V C C}=1 \mu F ; R_{R T}=100 \mathrm{k} \Omega ;$ NDRV = floating; $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CS Input Bias Current	IB_CS	$\mathrm{V}_{\mathrm{CS}}=0 \mathrm{~V}$	0		+2	$\mu \mathrm{A}$
CS Blanking Time	tCS_BLANK			70		ns
Propagation Delay from Comparator Input to NDRV		50 mV overdrive		40		ns
IN CLAMP VOLTAGE						
IN Clamp Voltage	VIN_CLAMP	VIN sinking 2mA (Note 2)	24.0	26.0	29.0	V
ERROR AMPLIFIER (FB, COMP)						
Voltage Gain	Av	RCOMP $=100 \mathrm{k} \Omega$ to AGND		80		dB
Unity-Gain Bandwidth	BW	$\begin{aligned} & \text { RCOMP }=100 \mathrm{k} \Omega \text { to } A G N D, \\ & C_{\text {LOAD }}=100 \mathrm{pF} \text { to } \mathrm{AGND} \end{aligned}$		5		MHz
Phase Margin	PM	$\begin{aligned} & \text { RCOMP }=100 \mathrm{k} \Omega \text { to AGND, } \\ & \mathrm{CLOAD}=100 \mathrm{pF} \text { to AGND } \\ & \hline \end{aligned}$		65		degrees
FB Input Offset Voltage	VoS_FB				3	mV
COMP Clamp Voltage	$V_{\text {COMP }}$	High	2.6		3.8	V
		Low	0.4		1.1	
Error-Amplifier Output Current	ICOMP	Sinking or sourcing	0.5			mA
Reference Voltage	VREF	$+25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ (Note 3)	1.215	1.230	1.245	V
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	1.205	1.230	1.242	
Input Bias Current	IB_EA			100	300	nA
COMP Short-Circuit Current	ICOMP_SC			12		mA
THERMAL SHUTDOWN						
Thermal-Shutdown Temperature	TSD			+170		${ }^{\circ} \mathrm{C}$
Thermal Hysteresis	THYST			+25		${ }^{\circ} \mathrm{C}$
OSCILLATOR SYNC INPUT (MAX5068A/B/C/E Only)						
SYNC High-Level Voltage	VIH_SYNC		2.4			V
SYNC Low-Level Voltage	VIL_SYNC				0.4	V
SYNC Input Bias Current	IB_SYNC			10		nA
Maximum SYNC Frequency	fSYNC	fosc $=2.5 \mathrm{MHz}$ (Note 4)	3.125			MHz
SYNC High-Level Pulse Width	tSYNC_HI		30			ns
SYNC Low-Level Pulse Width	tSYNC_LO		30			ns
DIGITAL SOFT-START						
Soft-Start Duration	tss	(Note 5)		2047		cycles
Reference-Voltage Step	VSTEP			9.7		mV
Reference-Voltage Steps During Soft-Start				127		steps
OSCILLATOR						
Internal Oscillator Frequency Range	fosc	$\mathrm{fOSC}=\left(10^{11} / \mathrm{RRT}^{\text {}}\right.$)	50		2500	kHz

High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{\mathbb{I N}}=+12 \mathrm{~V}\right.$ for the MAX5068B/E/F; $\mathrm{V}_{\mathbb{I}}=+23.6 \mathrm{~V}$ for the $\mathrm{MAX5068A/C/D}$ at startup, then reduces to +12 V ; $\mathrm{C}_{\mathbb{I}}=\mathrm{C}_{\text {REG5 }}=0.1 \mu \mathrm{~F}$; $C_{V C C}=1 \mu F ; R_{R T}=100 \mathrm{k} \Omega ;$ NDRV = floating; $T_{A}=T_{\text {MIN }}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
NDRV Switching Frequency	fsw	(Note 6)	$\begin{aligned} & \mathrm{fSW}=10^{11} /\left(2 \times R_{R T}\right), \\ & \text { MAX5068A/B } \end{aligned}$	25		1250	kHz
			$\begin{aligned} & \text { fSW }=10^{11} /\left(4 \times R_{R T}\right), \\ & \text { MAX5068C/D/E/F } \end{aligned}$	12.5		625	kHz
RT Voltage	$V_{\text {RT }}$	$40 \mathrm{k} \Omega<\mathrm{RRT}<500 \mathrm{k} \Omega$			2.0		V
Oscillator Accuracy		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	fosc $\leq 500 \mathrm{kHz}$	-2.5		+2.5	\%
			fosc $>500 \mathrm{kHz}$	-4		+4	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	fosc $\leq 500 \mathrm{kHz}$	-4.5		+4.5	
			fosc $>500 \mathrm{kHz}$	-6		+6	
Maximum Duty Cycle	Dmax	DT connected to REG5	MAX5068A/B	50			\%
			MAX5068C/D/E/F		75		
DEAD-TIME CONTROL (DT)							
Dead Time	tDT	R $\mathrm{DT}=24.9 \mathrm{k} \Omega$		60			ns
Dead-Time Disable Voltage	V${ }_{\text {DT_ }}$ DISABLE			$\begin{aligned} & \text { VREG5 } \\ & -0.5 \mathrm{~V} \end{aligned}$			V
Dead-Time Regulation Voltage	$V_{\text {DT }}$				1.23		V
INTEGRATING FAULT PROTECTION (FLTINT)							
FLTINT Source Current	IfLTINT	$\mathrm{V}_{\text {FLTINT }}=0$		60			$\mu \mathrm{A}$
FLTINT Shutdown Threshold	VFLTINT_SD	$V_{\text {FLTINT }}$ rising		2.8			V
FLTINT Restart Threshold	VFLTINT_RS	$V_{\text {FLTINT }}$ falling		1.6			V
SLOPE COMPENSATION (SCOMP) MAX5068C/D/E/F Only							
Slope Compensation	$V_{\text {SLOPE }}$	CSLOPE $=100 \mathrm{pF}, \mathrm{R}_{\text {RT }}=110 \mathrm{k} \Omega$		15			$\mathrm{mV} / \mathrm{us}$
Slope-Compensation Range	VSLOPER			0		90	$\mathrm{mV} / \mathrm{\mu s}$
Slope-Compensation Voltage Range	VSCOMP			0		2.7	V

Note 1: The MAX5068 is 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All limits over temperature are guaranteed by design.
Note 2: The MAX5068A/B are intended for use in universal-input power supplies. The internal clamp circuit is used to prevent the bootstrap capacitor (C1 in Figure 1) from charging to a voltage beyond the absolute maximum rating of the device when UVLO/EN is low. The maximum current to VIN (hence to clamp) when UVLO is low (device is in shutdown) must be externally limited to 2 mA . Clamp currents higher than 2 mA may result in clamp voltages higher than 30 V , thus exceeding the absolute maximum rating for $V_{I N}$. For the MAX5068C/D, do not exceed the 24 V maximum operating voltage of the device.
Note 3: Reference voltage ($V_{\text {REF }}$) is measured with FB connected to COMP (see the Functional Diagram).
Note 4: The SYNC frequency must be at least 25% higher than the programmed oscillator frequency.
Note 5: The internal oscillator clock cycle.
Note 6: The MAX5068A/B driver switching frequency is one-half of the oscillator frequency. The MAX5068C/D/E/F driver switching frequency is one-quarter of the oscillator frequency.

High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{IN}}=+12 \mathrm{~V}\right.$ for the $\mathrm{MAX5068B} / \mathrm{E} / \mathrm{F} ; \mathrm{V}_{\mathrm{IN}}=+23.6 \mathrm{~V}$ for MAX5068A/C/D at startup, then reduces to +12 V ; $\mathrm{C}_{\mathrm{IN}}=\mathrm{C}_{\text {REG5 }}=0.1 \mu \mathrm{~F}$; $C_{V C C}=1 \mu F ; R_{R T}=100 \mathrm{k} \Omega ;$ NDRV $=$ floating; $\mathrm{V}_{\mathrm{FB}}=0 ; \mathrm{V}_{\mathrm{COMP}}=$ floating; $\mathrm{V}_{\mathrm{CS}}=0 ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. .

Vcc vs. TEMPERATURE

BOOTSTRAP UVLO SHUTDOWN LEVEL
vs. TEMPERATURE

VIN SUPPLY CURRENT IN UNDERVOLTAGE LOCKOUT vs. TEMPERATURE

REG5 OUTPUT VOLTAGE
vs. OUTPUT CURRENT

UVLO/EN WAKE-UP THRESHOLD vs. TEMPERATURE

VIN SUPPLY CURRENT AFTER STARTUP vs. TEMPERATURE

REG5 vs. TEMPERATURE

High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{IN}}=+12 \mathrm{~V}\right.$ for the $\mathrm{MAX5068B} / \mathrm{E} / \mathrm{F} ; \mathrm{V}_{\mathrm{IN}}=+23.6 \mathrm{~V}$ for MAX5068A/C/D at startup, then reduces to +12 V ; $\mathrm{C}_{\mathrm{IN}}=\mathrm{C}_{\text {REG5 }}=0.1 \mu \mathrm{~F}$;
$C_{V C C}=1 \mu F ; R_{R T}=100 \mathrm{k} \Omega ;$ NDRV $=$ floating; $\mathrm{V}_{\mathrm{FB}}=0 ; \mathrm{V}_{\mathrm{COMP}}=$ floating; $\mathrm{V}_{\mathrm{CS}}=0 ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. .

vs. TEMPERATURE

CS TRIP THRESHOLD
vs. TEMPERATURE

INPUT CURRENT
vs. INPUT CLAMP VOLTAGE

NDRV OUTPUT IMPEDANCE
vs. TEMPERATURE

SWITCHING FREQUENCY
vs. TEMPERATURE

INPUT CLAMP VOLTAGE vs. TEMPERATURE

ERROR AMPLIFIER OPEN-LOOP GAIN AND PHASE vs. FREQUENCY

High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{IN}}=+12 \mathrm{~V}\right.$ for the $\mathrm{MAX5068B} / \mathrm{E} / \mathrm{F} ; \mathrm{V}_{\mathrm{IN}}=+23.6 \mathrm{~V}$ for MAX5068A/C/D at startup, then reduces to +12 V ; $\mathrm{C}_{\mathrm{IN}}=\mathrm{C}_{\text {REG5 }}=0.1 \mu \mathrm{~F}$; $C_{V C C}=1 \mu F ; R_{R T}=100 \mathrm{k} \Omega ;$ NDRV $=$ floating; $\mathrm{V}_{\mathrm{FB}}=0 ; \mathrm{V}_{\mathrm{COMP}}=$ floating; $\mathrm{V}_{\mathrm{CS}}=0 ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. .

High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator

Pin Description

PIN			NAME	FUNCTION
MAX5068A MAX5068B	MAX5068C MAX5068E	MAX5068D MAX5068F		
1	1	1	RT	Oscillator-Timing Resistor Connection. Connect a resistor from RT to AGND to set the internal oscillator frequency.
2	2	-	SYNC	External-Clock Sync Input. Connect SYNC to AGND when not using an external clock.
3	-	2	HYST	Programmable Hysteresis Input
-	3	3	SCOMP	Slope-Compensation Capacitor Input. Connect a capacitor to AGND to set the slope compensation.
4	4	4	DT	Dead-Time Adjustment. Connect a resistor from DT to AGND to adjust NDRV dead time. Connect to REG5 for maximum duty cycle.
5	5	5	UVLO/EN	Externally Programmable Undervoltage Lockout. UVLO/EN programs the input start voltage. Drive UVLO/EN to AGND to disable the output.
6	6	6	FB	Error-Amplifier Inverting Input
7	7	7	COMP	Error-Amplifier Compensation Output
8	8	8	FLTINT	Fault-Integration Input. A capacitor connected to FLTINT charges with an internal $60 \mu \mathrm{~A}$ current source during repeated current-limit events. Switching terminates when VFLTINT reaches 2.9V. An external resistor connected in parallel discharges the capacitor. Switching resumes when VFLTINT drops to 1.6V.
9	9	9	CS	Current-Sense Resistor Connection
10, 12	10, 12	10, 12	AGND	Analog Ground. Connect to PGND through a ground plane.
11	11	11	PGND	Power Ground. Connect to AGND through a ground plane.
13	13	13	NDRV	Gate-Driver Output. Connect the NDRV output to the gate of the external N-channel FET.
14	14	14	VCC	9V Linear-Regulator Output. Decouple VCc with a minimum 1 1 F ceramic capacitor to the AGND plane; also internally connected to the FET driver.
15	15	15	IN	Power-Supply Input. IN provides power for all internal circuitry. Decouple IN with a minimum $0.1 \mu \mathrm{~F}$ ceramic capacitor to AGND (see the Typical Operating Circuit).
16	16	16	REG5	5V Linear-Regulator Output. Decouple to AGND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
EP	EP	EP	PAD	Exposed Pad. Connect to GND.

High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator

Detailed Description

The MAX5068 is a current-mode PWM controller for use in isolated and nonisolated power-supply applications. A bootstrap UVLO with a programmable hysteresis, very low startup, and low operating current result in high-efficiency universal-input power supplies. In addition to the internal bootstrap UVLO, the device also offers programmable input startup and turn-off voltages, programmed through the UVLO/EN input. When using the MAX5068 in the bootstrapped mode, if the power-supply output is shorted, the tertiary winding voltage drops below the 10V threshold, causing the bootstrap UVLO to turn off the gate drive to the external power MOSFET, reinitiating a startup sequence with soft-start.
The MAX5068 includes a cycle-by-cycle current limit that turns off the gate drive to the external MOSFET during an overcurrent condition. The MAX5068 integrating fault protection reduces average power dissipation during persistent fault conditions (see the Integrating Fault Protection section).
The MAX5068 features a very accurate, wide-range, programmable oscillator that simplifies and optimizes the design of the magnetics. The MAX5068A/C/D are well suited for universal-input (rectified 85VAC to $265 V_{A C}$) or telecom (-36VDC to $-72 V_{D C}$) power supplies. The MAX5068B/E/F are well suited for low-input voltage (10.8VDC to $24 V_{D C}$) power supplies.
The MAX5068 high-frequency, universal input, offline/ telecom, current-mode PWM controller integrates all the building blocks necessary for implementing AC-DC and DC-DC fixed-frequency power supplies. Isolated or nonisolated power supplies are easily constructed using either primary- or secondary-side regulation. Currentmode control with leading-edge blanking simplifies con-trol-loop design, and an external slope-compensation control stabilizes the current loop when operating at duty cycles above 50\% (MAX5068C/D/E/F). The MAX5068A/B limit the maximum duty cycle to 50% for use in single-ended forward converters. The MAX5068C/D/E/F allow duty cycles up to 75% for use in flyback converters.
An input undervoltage lockout (UVLO) programs the input-supply startup voltage and ensures proper operation during brownout conditions. An external voltagedivider programs the supply startup voltage. The MAX5068A/B/D/F feature a programmable UVLO hysteresis. The MAX5068A/C/D feature an additional internal bootstrap UVLO with large hysteresis that requires a minimum startup voltage of 23.6V. The MAX5068B/E/F start
up from a minimum voltage of 10.8 V . Internal digital softstart reduces output-voltage overshoot at startup.
A single external resistor programs the switching frequency from 12.5 kHz to 1.25 MHz . The MAX5068A/B/C/E provide a SYNC input for synchronization to an external clock. The maximum FET driver duty cycle is 50% for the MAX5068A/B, and 75% for the MAX5068C/D/E/F. Integrating fault protection ignores transient overcurrent conditions for a set length of time. The length of time is programmed by an external capacitor. The internal ther-mal-shutdown circuit protects the device if the junction temperature should exceed $+170^{\circ} \mathrm{C}$.
Power supplies designed with the MAX5068 use a high-value startup resistor, R1, which charges a reservoir capacitor, C1 (Figure 1). During this initial period, while the voltage is less than the internal bootstrap UVLO threshold, the device typically consumes only $47 \mu \mathrm{~A}$ of quiescent current. This low startup current and the large bootstrap UVLO hysteresis help to minimize the power dissipation across R1, even at the high end of the universal AC input voltage (265 V AC).
The MAX5068 includes a cycle-by-cycle current limit that turns off the gate to the external MOSFET during an overcurrent condition. When using the MAX5068A/C/D in the bootstrap mode (if the power-supply output is shorted), the tertiary winding voltage drops below the 9.74 V bootstrap UVLO to turn off the gate to the external power MOSFET. This reinitiates a startup sequence with soft-start.

Current-Mode Control

The MAX5068 offers a current-mode control operation feature, such as leading-edge blanking with a dual internal path that only blanks the sensed current signal applied to the input of the PWM controller. The currentlimit comparator monitors CS at all times and provides cycle-by-cycle current limit without being blanked. The leading-edge blanking of the CS signal prevents the PWM comparator from prematurely terminating the on cycle. The CS signal contains a leading-edge spike that results from the MOSFET gate charge current, and the capacitive and diode reverse-recovery current of the power circuit. Since this leading-edge spike is normally lower than the current-limit comparator threshold, current limiting is provided under all conditions.
Use the MAX5068C/D/E/F in flyback applications where wide line voltage and load-current variations are expected. Use the MAX5068A/B for forward/flyback converters where the maximum duty must be limited to less than 50\%.

High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator

Figure 1. Nonisolated Power Supply with Programmable Input Supply Voltage

Use the MAX5068C/D/E/F in forward converter applications with greater than 50% duty cycle. The large duty cycle results in much lower operating primary RMS current through the MOSFET switch and, in most cases, requires a smaller output filter capacitor. The major disadvantage to this is that the MOSFET voltage rating must be higher. The MAX5068C/D/E/F capacitor adjustable-slope-compensation feature allows for easy stabilization of the inner current loop.

Undervoltage Lockout

The MAX5068 features an input voltage UVLO/EN function to enable the PWM controller before any operation can begin. The MAX5068C/E shut down if the voltage at UVLO/EN falls below its 1.18 V threshold. The MAX5068A/B/D/F also incorporate an UVLO hysteresis input to set the desired turn-off voltage.

MAX5068C/E UVLO Adjustment
The MAX5068C/E have an input voltage UVLO/EN with a 1.231 V threshold. Before any operation can commence, the UVLO/EN voltage must exceed the 1.231 V threshold. The UVLO circuit keeps the PWM comparator, ILIM comparator, oscillator, and output driver shut down to reduce current consumption (see the Functional Diagram).
Calculate R6 in Figure 2 by using the following formula:

$$
\mathrm{R} 6=\left(\frac{\mathrm{V}_{\mathrm{ON}}}{\mathrm{~V}_{\mathrm{ULR} 2}}-1\right) \times \mathrm{R} 7
$$

where VULR2 is the UVLO/EN's 1.231 V rising threshold and VON is the desired startup voltage. Choose an R7 value in the $20 \mathrm{k} \Omega$ range.
After a successful startup, the MAX5068C/E shut down if the voltage at UVLO/EN drops below its 1.18 V threshold.

High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator

Figure 2. Setting the MAX5068C/E Undervoltage Lockout Threshold

MAX5068A/B/D/F UVLO with
 Programmable Hysteresis

 In addition to programmable undervoltage lockout during startup, the MAX5068A/B/D/F incorporate a UVLO/EN hysteresis that allows the user to set a voltage (VOFF) to disable the controller (see Figure 3).At the beginning of the startup sequence, UVLO/EN is below the 1.23 V threshold, Q1 turns on connecting RHYST to GND (Figure 4). Once the UVLO 1.23V threshold is crossed, Q1 turns off, resulting in the series combination of R6, RHYST, and R7, placing the MAX5068 in normal operating condition.
Calculate the turn-on voltage (VON) by using the following formula:

$$
R 6=\left(\frac{V_{\mathrm{ON}}}{V_{\mathrm{ULR} 2}}-1\right) \times R_{\mathrm{HYST}}
$$

where VULR2 is the UVLO/EN's 1.23 V rising threshold.
Choose an Rhyst value in the $20 \mathrm{k} \Omega$ range.
The MAX5068 turns off when the MAX5068 UVLO/EN falls below the 1.18 V falling threshold. The turn-off voltage (VOFF) is then defined as:

$$
\mathrm{R} 7=\mathrm{R} 6 /\left(\frac{\mathrm{V}_{\mathrm{OFF}}}{\mathrm{~V}_{\mathrm{ULF} 2}}-1\right)-\mathrm{R}_{\mathrm{HYST}}
$$

where VULF2 is the 1.18 V UVLO/EN falling threshold.

Figure 3. MAX5068 Hysteresis

Figure 4. Setting the MAX5068A/B/D/F Turn-On/Turn-Off Voltages

Bootstrap Undervoltage Lockout (MAX5068A/C/D Only)

In addition to the externally programmable UVLO function offered by the MAX5068, the MAX5068A/C/D feature an additional internal bootstrap UVLO for use in high-voltage power supplies (see the Functional Diagram). This allows the device to bootstrap itself during initial power-up. The MAX5068A/C/D start when VIN exceeds the bootstrap UVLO threshold of 23.6 V .

High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator

During startup, the UVLO circuit keeps the PWM comparator, ILIM comparator, oscillator, and output driver shut down to reduce current consumption. Once VIN reaches 23.6V, the UVLO circuit turns on both the PWM and ILIM comparators, as well as the oscillator, and allows the output driver to switch. When VIN drops below 9.7 V , the UVLO circuit shuts down the PWM comparator, ILIM comparator, oscillator, and output driver returning the MAX5068A/C/D to the startup mode.

MAX5068A/C/D Startup Operation
Normally, VIN is derived from the tertiary winding of the transformer. However, at startup there is no energy delivered through the transformer, hence, a special bootstrap sequence is required. Figure 5 shows the voltages on VIN and VCC during startup. Initially, both VIN and VCC are zero. After the input voltage is applied, C1 charges through the startup resistor, R1, to an intermediate voltage (see Figure 1). At this point, the internal regulator begins charging C3 (see Figure 5). Only $47 \mu \mathrm{~A}$ of the current supplied by R1 is used by the MAX5068A/C/D. The remaining input current charges C1 and C3. The charging of C3 stops when the VCC voltage reaches approximately 9.5 V . The voltage across C1 continues rising until it reaches the wake-up level of 23.6V. Once VIN exceeds the bootstrap UVLO threshold, NDRV begins switching the MOSFET and energy is transferred to the secondary and tertiary outputs. If the voltage on the tertiary output builds to higher than 9.74 V (the bootstrap UVLO lower threshold), startup ends and sustained operation commences.
If VIN drops below 9.74 V before startup is complete, the device goes back to low-current UVLO. If this occurs, increase the value of C1 to store enough energy to allow for the voltage at the tertiary winding to build up.

Startup Time Considerations for
 Power Supplies Using the MAX5068A/C/D

The VIN bypass capacitor, C1, supplies current immediately after wakeup (see Figure 1). The size of C1 and the connection configuration of the tertiary winding determine the number of cycles available for startup. Large values of C1 increase the startup time and also supply extra gate charge for more cycles during initial startup. If the value of C1 is too small, VIN drops below 9.74 V because NDRV does not have enough time to switch and build up sufficient voltage across the tertiary output that powers the device. The device goes back into UVLO and does not start. Use low-leakage capacitors for C1 and C3.
Generally, offline power supplies keep typical startup times to less than 500ms, even in low-line conditions (85VAC input for universal offline applications or 36VDC

Figure 5. VIN and VCC During Startup When Using the MAX5068 in Bootstrapped Mode (Also see Figure 1)
for telecom applications). Size the startup resistor, R1, to supply both the maximum startup bias of the device $(90 \mu \mathrm{~A})$ and the charging current for C1 and C3. The bypass capacitor, C3, must charge to 9.5 V , and C1 must charge to 24 V , within the desired time period of 500 ms . Because of the internal soft-start time of the MAX5068, C1 must store enough charge to deliver current to the device for at least 2047 oscillator clock cycles. To calculate the approximate amount of capacitance required, use the following formula:

$$
\begin{gathered}
\mathrm{I}_{\mathrm{g}}=\mathrm{Q}_{\mathrm{gtot}} \times \mathrm{f}_{\mathrm{SW}} \\
\mathrm{C} 1=\frac{\left(\mathrm{I}_{\mathrm{N}}+\mathrm{I}_{\mathrm{g}}\right) \times \mathrm{t}_{\mathrm{SS}}}{\mathrm{~V}_{\mathrm{HYST}}}
\end{gathered}
$$

where I_{N} is the MAX5068's internal supply current after startup (2.5 mA typ), $\mathrm{Qg}_{\text {got }}$ is the total gate charge for Q1, fsw is the MAX5068's programmed switching frequency, VHYST is the bootstrap UVLO hysteresis (12V), and $\mathrm{t}_{\text {ss }}$ is the internal soft-start time ($2047 \times 1 / \mathrm{fOSC}$).
Example: $\operatorname{Ig}=(8 \mathrm{nC})(250 \mathrm{kHz}) \cong 2.0 \mathrm{~mA}$

$$
\begin{gathered}
\text { fOSC }=2 \times 250 \mathrm{kHz} \\
\text { Soft-start duration }=2047 \times(1 / \mathrm{fOSC})=4.1 \mathrm{~ms}
\end{gathered}
$$

$$
\mathrm{C} 1=\frac{(2.5 \mathrm{~mA}+2 \mathrm{~mA})(4.1 \mathrm{~ms})}{12 \mathrm{~V}}=1.54 \mu \mathrm{~F}
$$

Use a 2.2μ F ceramic capacitor for C 1 .

High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator

Figure 6. Secondary-Side, Regulated, Isolated Power Supply

Assuming C1 > C3, calculate the value of R1 as follows:

$$
\begin{gathered}
\mathrm{I}_{\mathrm{C} 1}=\frac{\mathrm{V}_{\text {SUVR }} \times \mathrm{C} 1}{500 \mathrm{~ms}} \\
\mathrm{R} 1 \cong \frac{\mathrm{~V}_{\mathrm{IN}(\mathrm{MIN})}-0.5 \times \mathrm{V}_{\mathrm{SUVR}}}{I_{\mathrm{C} 1}+I_{\text {START }}}
\end{gathered}
$$

where VSUVR is the bootstrap UVLO wakeup level (23.6 V max), $\mathrm{VIN}(\mathrm{MIN}$) is the minimum input supply voltage for the application (36 V for telecom), and ISTART is the Vin supply current at startup ($90 \mu \mathrm{~A}$, max).
For example:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C} 1}=\frac{24 \mathrm{~V} \times 2.2 \mu \mathrm{~F}}{500 \mathrm{~ms}} \\
&=106 \mu \mathrm{~A} \\
& \mathrm{R} 1 \cong \frac{36 \mathrm{~V}-12 \mathrm{~V}}{106 \mu \mathrm{~A}+90 \mu \mathrm{~A}}=122.4 \mathrm{k} \Omega
\end{aligned}
$$

To minimize power loss on this resistor, choose a higher value for R1 than the one calculated above (if a longer startup time can be tolerated).
The above startup method is applicable to a circuit similar to the one shown in Figure 1. In this circuit, the tertiary winding has the same phase as the output windings. Thus, the voltage on the tertiary winding at any given time is proportional to the output voltage and goes through the same soft-start period as the output voltage. The minimum discharge time of C1 from 22 V to 10 V must be greater than the soft-start time (tss).

Oscillator/Switching Frequency Use an external resistor at RT to program the MAX5068 internal oscillator frequency from 50 kHz to 2.5 MHz . The MAX5068A/B output switching frequency is one-half of the programmed oscillator frequency with a 50% duty cycle. The MAX5068C/D/E/F output switching frequency is one-quarter of the programmed oscillator frequency with a 75% duty cycle.

High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator

Use the following formula to calculate the internal oscillator frequency:

$$
\mathrm{f}_{\mathrm{OSC}}=\frac{10^{11}}{R_{R T}}
$$

where fOSC is the oscillator frequency and RRT is a resistor connected from RT to AGND.
Choose the appropriate resistor at RT to calculate the desired output switching frequency (fsw):

$$
\begin{aligned}
& R_{R T}=\frac{10^{11}}{2 f_{S W}} \text { for the MAX5068A/B and } \\
& R_{R T}=\frac{10^{11}}{4 f_{S W}} \text { for the MAX5068C/D/E/F }
\end{aligned}
$$

The MAX5068A/B and the MAX5068C/D/E/F have programmable output switching frequencies from 25 kHz to 1.25 MHz and 12.5 kHz to 625 kHz , respectively.

Dead-Time Adjustment

The MAX5068 programmable dead-time function (Figure 7) allows additional flexibility in optimizing magnetics design and overcoming parasitic effects. The MAX5068A/B and the MAX5068C/D/E/F have a maximum 50% and 75% duty cycle, respectively. In many applications, the duty cycle of the external MOSFET may need to be slightly decreased to prevent saturation in the transformer's primary. The dead time can be configured from 30ns to $1 /(0.5 \times \mathrm{fSW})$ when programming the MAX5068. Connect a resistor between DT and AGND to set the desired dead time using the following formula:

$$
\text { Dead time }=\frac{60}{29.4} \times R_{D T}(\mathrm{~ns})
$$

where $R_{D T}$ is in $k \Omega$ and the dead time is in $n s$.
Connect DT to REG5 to remove the delay and achieve the MAX5068 maximum duty cycles.

Figure 7. MAX5068 NDRV Dead-Time Timing Diagram

External Synchronization
 (MAX5068A/B/C/E)

The MAX5068A/B/C/E can be synchronized using an external clock at the SYNC input. For proper frequency synchronization, the SYNC's input frequency must be at least 25% higher than the MAX5068A/B/C/E programmed internal oscillator frequency. Connect SYNC to AGND when not using an external clock.

Integrating Fault Protection

The integrating fault-protection feature allows transient overcurrent conditions to be ignored for a programmable amount of time, giving the power supply time to behave like a current source to the load. For example, this can occur under load current transients when the control loop requests maximum current to keep the output voltage from going out of regulation. Program the fault-integration time by connecting an external suitably sized capacitor to the FLTINT. Under sustained overcurrent faults, the voltage across this capacitor ramps up towards the FLTINT shutdown threshold (typically 2.8 V). Once the threshold is reached, the power supply shuts down. A high-value bleed resistor connected in parallel with the FLTINT capacitor allows it to discharge towards the restart threshold (typically 1.6V). Once this threshold is reached, the supply restarts with a new soft-start cycle.
Note that cycle-by-cycle current limiting is provided at all times by CS with a threshold of 314 mV (typ). The fault-integration circuit forces a $60 \mu \mathrm{~A}$ current onto FLTINT each time that the current-limit comparator is tripped (see the Functional Diagram). Use the following formula to calculate the value of the capacitor necessary for the desired shutdown time of the circuit:

$$
\mathrm{C}_{\text {FLTINT }} \cong \frac{\mathrm{IFLTINT} \times \mathrm{t}_{\mathrm{SH}}}{2.8 \mathrm{~V}}
$$

Figure 8. External Synchronization of the MAX5068A/B/C/E

High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator

where IFLTINT $=60 \mu \mathrm{~A}$, tSH is the desired fault-integration time during which current-limit events from the cur-rent-limit comparator are ignored. For example, a $0.1 \mu \mathrm{~F}$ capacitor gives a fault-integration time of 4.7 ms .
This is an approximate formula. Some testing may be required to fine-tune the actual value of the capacitor. To calculate the recovery time, use the following formula:

$$
\mathrm{R}_{\mathrm{FLTINT}} \cong \frac{\mathrm{t}_{\mathrm{RT}}}{0.595 \times \mathrm{C}_{\mathrm{FLTINT}}}
$$

where tRT is the desired recovery time.
Choose trt $=10 \times$ tsH. Typical values for tsH range from a few hundred microseconds to a few milliseconds.

Soft-Start
The MAX5068 soft-start feature allows the load voltage to ramp up in a controlled manner, eliminating outputvoltage overshoot. Soft-start begins after UVLO is deasserted. The voltage applied to the noninverting node of the amplifier ramps from 0 to 1.23 V in 2047 oscillator clock cycles (soft-start timeout period). Unlike other devices, the MAX5068 reference voltage to the internal amplifier is soft-started. This method results in superior control of the output voltage under heavy- and light-load conditions.

Internal Regulators

Two internal linear regulators power the MAX5068 internal and external control circuits. VCC powers the external N-channel MOSFET and is internally set to approximately 9.5 V . The REG5 5 V regulator has a 1 mA sourcing capability and may be used to provide power to external circuitry. Bypass VCC and REG5 with $1 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ high quality capacitors, respectively. Use lower value ceramics in parallel to bypass other unwanted noise signals. Bootstrapped operation requires startup through a bleed resistor. Do not excessively load the regulators while the MAX5068 is in the power-up mode. Overloading the outputs can cause the MAX5068 to fail upon startup.

N-ChanneI MOSFET Switch Driver

NDRV drives an external N-channel MOSFET. The NDRV output is supplied by the internal regulator (VCC), which is internally set to approximately 9.5 V . For the universal input-voltage range, the MOSFET used must be able to withstand the DC level of the high-line input voltage plus the reflected voltage at the primary of the transformer. For most applications that use the discontinuous flyback topology, a MOSFET rated at 600V is required. NDRV can source/sink in excess of $650 \mathrm{~mA} / 1000 \mathrm{~mA}$ peak cur-
rent. Therefore, select a MOSFET that yields acceptable conduction and switching losses.

Error Amplifier

The MAX5068 includes an internal error amplifier that can regulate the output voltage in the case of a nonisolated power supply (Figure 1). Calculate the output voltage using the following equation:

$$
V_{\text {OUT }}=\left(1+\frac{R 8}{R 9}\right) \times V_{\text {REF }}
$$

where $\mathrm{V}_{\mathrm{REF}}=1.23 \mathrm{~V}$. The amplifier's noninverting input internally connects to a digital soft-start reference voltage. This forces the output voltage to come up in an orderly and well-defined manner under all load conditions.

Slope Compensation (MAX5068C/D/E/F)

The MAX5068C/D/E/F use an internal-ramp generator for slope compensation. The internal-ramp signal resets at the beginning of each cycle and slews at the rate programmed by the external capacitor connected at SCOMP and the resistor at RT. Adjust the MAX5068 slew rate up to $90 \mathrm{mV} / \mu \mathrm{s}$ using the following equation:

$$
\mathrm{SR}=\frac{165 \times 10^{-6}}{\mathrm{R}_{\mathrm{RT}} \times \mathrm{C}_{\mathrm{SCOMP}}}(\mathrm{mV} / \mu \mathrm{s})
$$

where RRT is the external resistor at RT that sets the oscillator frequency and CSCOMP is the capacitor at SCOMP.

PWM Comparator

The PWM comparator uses the instantaneous current, the error amplifier, and the slope compensation to determine when to switch NDRV off. In normal operation, the N -channel MOSFET turns off when:

$$
\text { IPRIMARY } \times \text { RCS > VEA - VOFFSET - VSCOMP }
$$

where IPRIMARY is the current through the N-channel MOSFET, VEA is the output voltage of the internal amplifier, VOFFSET is the 1.6 V internal DC offset and VSCOMP is the ramp function starting at zero and slewing at the programmed slew rate (SR). When using the MAX5068 in a forward-converter configuration, the following conditions must be met to avoid current-loop subharmonic oscillations:

$$
\frac{N_{S}}{N_{P}} \times \frac{K \times R C S \times V_{O U T}}{L}=S R
$$

where $K=0.75$ and $N s$ and $N p$ are the number of turns on the secondary and primary side of the transformer, respectively. L is the secondary filter inductor. When

High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator

optimally compensated, the current loop responds to input-voltage transients within one cycle.

Current Limit

The current-sense resistor (Rcs), connected between the source of the MOSFET and ground, sets the current limit. The CS input has a voltage trip level (VCS) of 314 mV . Use the following equation to calculate the value of Rcs:

$$
\mathrm{R}_{\mathrm{CS}}=\frac{\mathrm{V}_{\mathrm{CS}}}{\mathrm{I}_{\mathrm{PRI}}}
$$

where IpRI is the peak current in the primary that flows through the MOSFET at full load.
When the voltage produced by this current (through the current-sense resistor) exceeds the current-limit comparator threshold, the MOSFET driver (NDRV) quickly terminates the current on-cycle. In most cases, a small RC filter is required to filter out the leading-edge spike on the sense waveform. Set the corner frequency to a few MHz above the switching frequency.

Applications Information

Layout Recommendations
Keep all PC board traces carrying switching currents as short as possible, and minimize current loops.
For universal AC input design, follow all applicable safety regulations. Offline power supplies may require UL, VDE, and other similar agency approvals. Contact these agencies for the latest layout and component rules.
Typically, there are two sources of noise emission in a switching power supply: high di/dt loops and high dv/dt surfaces. For example, traces that carry the drain current often form high di/dt loops. Similarly, the heatsink of the MOSFET presents a dv/dt source, thus minimize the surface area of the heatsink as much as possible.
To achieve best performance and to avoid ground loops, use a solid ground-plane connection.

High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator

Typical Operating Circuit

Selector Guide

PART NUMBER	MAX DUTY CYCLE	BOOTSTRAP UVLO	STARTUP VOLTAGE (V)	PROGRAMMABLE UVLO HYSTERESIS	OSCILLATOR SYNC	SLOPE COMPENSATION
MAX5068A	50%	Yes	23.6	Yes	Yes	No
MAX5068B	50%	No	10.8	Yes	Yes	No
MAX5068C	75%	Yes	23.6	No	Yes	Yes
MAX5068D	75%	Yes	23.6	Yes	No	Yes
MAX5068E	75%	No	10.8	No	Yes	Yes
MAX5068F	75%	No	10.8	Yes	No	Yes

High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator

Functional Diagram

High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator

Chip Information
 TRANSISTOR COUNT: 4,266

PROCESS: BiCMOS

High-Frequency, Current-Mode PWM Controller with Accurate Programmable Oscillator

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
LV5065VB-TLM-H LV5066V-TLM-H 633888R AZ7500EP-E1 NCP1012AP133G NCP1217P133G NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP1587GDR2G NCP6153MNTWG NCP81005MNTWG NCP81101BMNTXG NCP81205MNTXG HV9123NG-G-M934 IR35207MTRPBF ISL6367HIRZ CAT874-80ULGT3 SJ6522AG SJE6600 TLE63893GV50XUMA1 SG3845DM NCP1216P133G NCP1236DD65R2G NCP1247BD100R2G NCP1250BP65G NCP4202MNR2G NCP4204MNTXG NCP6132AMNR2G NCP81141MNTXG NCP81142MNTXG NCP81172MNTXG NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UC3845ADM UBA2051C IR35201MTRPBF MAX8778ETJ+ MAX17500AAUB+T MAX17411GTM+T MAX16933ATIR/V+ NCP1010AP130G NCP1063AD100R2G NCP1216AP133G NCP1217AP100G NCP1230P133G NCP1247AD065R2G MAX1715EEI+T

