General Description

The MAX5078A/MAX5078B high-speed MOSFET drivers source and sink up to 4A peak current. These devices feature a fast 20ns propagation delay and 20ns rise and fall times while driving a 5000pF capacitive load. Propagation delay time is minimized and matched between the inverting and noninverting inputs. High sourcing/sinking peak currents, low propagation delay, and thermally enhanced packages make the MAX5078A/ MAX5078B ideal for high-frequency and high-power circuits.
The MAX5078A/MAX5078B operate from a 4 V to 15 V single power supply and consume $40 \mu \mathrm{~A}$ (typ) of supply current when not switching. These devices have an internal logic circuitry that prevents shoot-through during output state changes to minimize the operating current at a high switching frequency. The logic inputs are protected against voltage spikes up to +18 V , regardless of the VDD voltage. The MAX5078A has CMOS input logic levels while the MAX5078B has TTL-compatible input logic levels.
The MAX5078A/MAX5078B feature both inverting and noninverting inputs for greater flexibility in controlling the MOSFET. They are available in a $6-\mathrm{pin}$ TDFN (3mm x 3 mm) package and operate over the automotive temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

	Applications
Power MOSFET Switching	Motor Control
Switch-Mode Power Supplies	Power-Supply Modules
DC-DC Converters	

Applications

Power MOSFET Switching
Switch-Mode Power Supplies
DC-DC Converters
-4V to 15V Single Power Supply

- 4A Peak Source/Sink Drive Current
- 20ns (typ) Propagation Delay
- Matching Delay Between Inverting and Noninverting Inputs
- VDD / 2 CMOS (MAX5078A)/TTL (MAX5078B) Logic Inputs
- $0.1 \times \mathrm{V}_{\mathrm{DD}}$ (CMOS) and 0.3V (TTL) Logic-Input Hysteresis
- Up to +18V Logic Inputs (Regardless of VDD Voltage)
- Low Input Capacitance: 2.5pF (typ)
- 40 A (typ) Quiescent Current
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating Temperature Range
- 6-Pin TDFN Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX5078AATT +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 TDFN-EP*
MAX5078AATT/N +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 TDFN-EP*
MAX5078BATT +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 TDFN-EP*
MAX5078BATT $/ \mathrm{N}+$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 TDFN-EP*

*EP = Exposed pad.
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
N denotes an automotive qualified part.
Note: Devices are also available in a tape-and-reel package. Specify tape and reel by adding "T" to the part number when ordering.

Selector Guide

PART	PIN-PACKAGE	LOGIC INPUT
MAX5078AATT	6 TDFN-EP	VDD / 2 CMOS
MAX5078BATT	6 TDFN-EP	TTL

Pin Configuration
TOP VIEW

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

MAX5078

4A, 20ns, MOSFET Driver

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND.)

VDD.	-0.3V to +18V
$\mathrm{IN}+$, IN-	. -0.3 V to +18 V
OUT	.-0.3V to (VDD + 0.3V)
OUT Sho 10 ms
Continuo	< PDMAX)200mA

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 6-Pin TDFN-EP (derate $18.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)........ 1454 mW
Operating Temperature Range $40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range-65 ${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature .. $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)................................. $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)....................................... 260°

Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature ... $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)...................................... $300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)... $+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

Junction-to-Ambient Thermal Resistance ($\theta \mathrm{JA}$).
$42^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance (θ_{JC}). $.9^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=4 \mathrm{~V}\right.$ to $15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\mathrm{DD}}=4 \mathrm{~V}$ to $15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Output-Voltage High		IOUT $=100 \mathrm{~mA}$	$V_{D D}=4.5 \mathrm{~V}$	$\begin{gathered} V_{D D}- \\ 0.55 \end{gathered}$			V
			$V_{D D}=15 \mathrm{~V}$	$\begin{aligned} & \text { VDD - } \\ & 0.275 \end{aligned}$			
LOGIC INPUT (Note 3)							
Logic 1 Input Voltage	V_{IH}	MAX5078A		$\begin{aligned} & 0.7 x \\ & V_{D D} \end{aligned}$			V
		MAX5078B (Note 4)		2.1			
Logic 0 Input Voltage	VIL	MAX5078A				$\begin{aligned} & 0.3 x \\ & V_{D D} \end{aligned}$	V
		MAX5078B		0.8			
Logic-Input Hysteresis	VHYS	MAX5078A			$\begin{aligned} & 0.1 x \\ & V_{D D} \end{aligned}$		V
		MAX5078B		0.3			
Logic-Input-Current Leakage		$\mathrm{V}_{\text {IN+ }}=\mathrm{V}_{\text {IN- }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {DD }}$		-1	+0.1	+1	$\mu \mathrm{A}$
Input Capacitance	CIN				2.5		pF
SWITCHING CHARACTERISTICS FOR VDD $=15 \mathrm{~V}$ (Figure 1)							
OUT Rise Time	tR	$C_{L}=1000 \mathrm{pF}$			4		ns
		$C_{L}=5000 \mathrm{pF}$		18			
		$C L=10,000 p \mathrm{~F}$		32			
OUT Fall Time	t_{F}	$C_{L}=1000 \mathrm{pF}$		4			ns
		$C_{L}=5000 \mathrm{pF}$		15			
		$C_{L}=10,000 \mathrm{pF}$		26			
Turn-On Delay Time	tD-ON	$C_{L}=10,000 \mathrm{pF}$ (Note 2)		10	20	34	ns
Turn-Off Delay Time	tD-OFF	$C L=10,000 \mathrm{pF}$ (Note 2)		10	20	34	ns
SWITCHING CHARACTERISTICS FOR $\mathrm{V}_{\text {DD }}=4.5 \mathrm{~V}$ (Figure 1)							
OUT Rise Time	tR	$C_{L}=1000 \mathrm{pF}$		7			ns
		$C_{L}=5000 \mathrm{pF}$		37			
		$C L=10,000 \mathrm{pF}$		85			
OUT Fall Time	t_{F}	$C_{L}=1000 \mathrm{pF}$		7			ns
		$C_{L}=5000 \mathrm{pF}$		30			
		$C_{L}=10,000 \mathrm{pF}$		75			
Turn-On Delay Time	tD-ON	$C_{L}=10,000 p F$ (Note 2)		18	35	70	ns
Turn-Off Delay Time	tD-OFF	$C_{L}=10,000 \mathrm{pF}$ (Note 2)		18	35	70	ns

MAX5078

4A, 20ns, MOSFET Driver

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\mathrm{DD}}=4 \mathrm{~V}$ to $15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MATCHING CHARACTERISTICS						
Mismatch Propagation Delays from Inverting and Noninverting Inputs to Output	\triangle ton-OFF	$V_{D D}=15 \mathrm{~V}, C_{L}=10,000 \mathrm{pF}$		2		ns
		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10,000 \mathrm{pF}$		4		

Note 1: All devices are 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ are guaranteed by design.
Note 2: Limits are guaranteed by design, not production tested.
Note 3: The logic-input thresholds are tested at $\mathrm{V}_{\mathrm{DD}}=4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$.
Note 4: TTL compatible with reduced noise immunity.

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Typical Operating Characteristics (continued)

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SUPPLY CURRENT vs. LOGIC-INPUT VOLTAGE (INPUT HIGH-TO-LOW)

DELAY MISMATCH BETWEEN IN+ AND IN- TO OUT vs. TEMPERATURE

INPUT THRESHOLD VOLTAGE vs. SUPPLY VOLTAGE

SUPPLY CURRENT vs. LOGIC-INPUT VOLTAGE (INPUT LOW-TO-HIGH)

DELAY MISMATCH BETWEEN IN+ AND IN- TO OUT vs. TEMPERATURE

SUPPLY CURRENT vs. LOGIC-INPUT VOLTAGE (INPUT LOW-TO-HIGH)

SUPPLY CURRENT vs. LOGIC-INPUT VOLTAGE (INPUT HIGH-TO-LOW)

LOGIC-INPUT VOLTAGE vs. OUTPUT VOLTAGE
($\mathrm{V}_{\mathrm{DD}}=4 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=5000 \mathrm{pF}$)

Typical Operating Characteristics (continued)

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

LOGIC-INPUT VOLTAGE vs. OUTPUT VOLTAGE
($\mathrm{V}_{\mathrm{DD}}=\mathbf{4 V}, \mathrm{C}_{\mathrm{L}}=\mathbf{1 0 , 0 0 0 p F}$)

LOGIC-INPUT VOLTAGE vs. OUTPUT VOLTAGE

LOGIC-INPUT VOLTAGE vs. OUTPUT VOLTAGE
($\mathrm{V}_{\mathrm{DD}}=4 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=5000 \mathrm{pF}$)

20ns/div

LOGIC-INPUT VOLTAGE vs. OUTPUT VOLTAGE

20ns/div

LOGIC-INPUT VOLTAGE vs. OUTPUT VOLTAGE
($\left.V_{D D}=15 V, C_{L}=10,000 p F\right)$

40ns/div

MAX5078 4A, 20ns, MOSFET Driver

Typical Operating Characteristics (continued)

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

VDD vs. OUTPUT VOLTAGE

Pin Description

PIN	NAME	
1	IN-	Inverting Logic-Input Terminal. Connect to GND when not used.
2,3	GND	Ground
4	VDD	Power Supply. Bypass to GND with one or more 0.1 μ F ceramic capacitors.
5	OUT	Driver Output. Sources or sinks current to turn the external MOSFET on or off.
6	IN+	Noninverting Logic-Input Terminal. Connect to VDD when not used.
-	EP	Exposed Pad. Internally connected to GND. Do not use the exposed pad as the only electrical ground connection.

Detailed Description

VDD Undervoltage Lockout (UVLO)

The MAX5078A/MAX5078B have internal undervoltage lockout (UVLO) for VDD. When VDD is below the UVLO threshold, OUT is pulled low independent of the state of the inputs. The undervoltage lockout is typically 3.5 V with 200 mV typical hysteresis to avoid chattering. When VDD rises above the UVLO threshold, the output goes high or low depending upon the logic-input levels. Bypass VDD using a low-ESR ceramic capacitor for proper operation (see the Applications Information section).

Logic Inputs

The MAX5078A has CMOS Iogic inputs while the MAX5078B has TTL-compatible logic inputs. The logic inputs are protected against the voltage spikes up to 18 V , regardless of the VDD voltage. The TTL and CMOS logic inputs have 300 mV and $0.1 \times$ VDD hysteresis, respectively, to avoid double pulsing during transition. The low 2.5 pF input capacitance reduces loading and increases switching speed.
The logic inputs are high impedance and must not be left floating. If the inputs are left open, OUT can go to an undefined state as soon as VDD rises above the UVLO threshold. Therefore, the PWM output from the controller must assume proper state when powering up the device.
The MAX5078A/MAX5078B have two logic inputs, providing greater flexibility in controlling the MOSFET. Use IN+ for noninverting logic and IN - for inverting logic operation. Connect IN+ to VDD and IN- to GND, if not used. Alternatively, the unused input can be used as an ON/OFF function. Use IN+ for active-low shutdown logic and IN - for active-high shutdown logic (see Figure 3). See Table 1 for all possible input combinations.

Driver Output

The MAX5078A/MAX5078B have low RDS(ON) p-channel and n-channel devices (totem pole) in the output stage for the fast turn-on/turn-off, high-gate-charge switching MOSFETs. The peak source or sink current is typically 4A. The output voltage (VOUT) is approximately equal to $V_{D D}$ when in high state and is ground when in low state. The driver $\mathrm{RDS}_{\mathrm{D}}(\mathrm{ON})$ is lower at higher VDD resulting in higher source-/sink-current capability and faster switching speeds. The propagation delays from the noninverting and inverting logic inputs to OUT are matched to 2ns typically. The break-before-make logic avoids any crossconduction between the internal p - and n-channel devices, and eliminates shoot-through, thus reducing the quiescent supply current.

Applications Information

RLC Series Circuit

The driver's RDS(ON) (RON), internal bond/lead inductance (LP), trace inductance (LS), gate inductance (LG), and gate capacitance (CG) form a series RLC circuit with a second-order characteristic equation. The series RLC circuit has an undamped natural frequency $\left(\omega_{0}\right)$ and a damping ratio (ζ) where:

$$
\begin{aligned}
& \omega_{0}=\frac{1}{\sqrt{\left(L_{P}+L_{S}+L_{G}\right) \times C_{G}}} \\
& \xi=\frac{R_{O N}}{2 \times \sqrt{\frac{\left(L_{P}+L_{S}+L_{G}\right)}{C_{G}}}}
\end{aligned}
$$

The damping ratio needs to be greater than 0.5 (ideally 1) to avoid ringing. Add a small resistor (RGATE) in series with the gate when driving a very low gatecharge MOSFET, or when the driver is placed away from the MOSFET.

RISING MISMATCH $=\mathrm{t}_{\mathrm{D}-\mathrm{ON} 2}-\mathrm{t}_{\mathrm{D}-\mathrm{ON} 1}$ FALLING MISMATCH $=\mathrm{t}_{\mathrm{D}-0 \mathrm{FF} 2}-\mathrm{t}_{\mathrm{D}}-0 \mathrm{FF} 1$

Figure 1. Timing Diagram
Use the following equation to calculate the series resistor:

$$
R_{G A T E} \geq \sqrt{\frac{\left(L_{P}+L_{S}+L_{G}\right)}{C_{G}}}-R_{O N}
$$

Lp can be approximated as 2 nH for the TDFN package. Ls is on the order of $20 \mathrm{nH} / \mathrm{in}$. Verify LG with the MOSFET vendor.

Supply Bypassing and Grounding

Pay extra attention to bypassing and grounding the MAX5078A/MAX5078B. Peak supply and output currents may exceed 4A when driving large external capacitive loads. Supply voltage drops and ground shifts create negative feedback for inverters and may degrade the delay and transition times. Ground shifts due to poor device grounding may also disturb other circuits sharing the same AC ground return path. Any series inductance in the V_{DD}, OUT, and/or GND paths can cause oscillations due to the very high di/dt when switching the MAX5078A/MAX5078B with any capacitive load. Place one or more $0.1 \mu \mathrm{~F}$ ceramic capacitors in parallel as close to the device as possible to bypass $V_{D D}$ to GND. Use a ground plane to minimize ground return resistance and series inductance. Place the external MOSFET as close as possible to the MAX5078A/MAX5078B to further minimize board inductance and AC path impedance.

Power Dissipation

Power dissipation of the MAX5078A/MAX5078B consists of three components: caused by the quiescent current, capacitive charge/discharge of internal nodes, and the output current (either capacitive or resistive load). Maintain the sum of these components below the maximum power dissipation limit.

Figure 2. MAX5054 Simplified Diagram (1 Driver)
The current required to charge and discharge the internal nodes is frequency dependent (see the IDD-SW Supply Current vs. Supply Voltage graph in the Typical Operating Characteristics). The power dissipation (PQ) due to the quiescent switching supply current (IDD-SW) can be calculated as:

$$
\mathrm{PQ}_{\mathrm{Q}}=\mathrm{V}_{\mathrm{DD}} \times \mathrm{IDD-SW}
$$

For capacitive loads, use the following equation to estimate the power dissipation:

$$
\text { PCLOAD }=\text { CLOAD } \times\left(V_{D D}\right)^{2} \times f s w
$$

where CLOAD is the capacitive load, VDD is the supply voltage, and fsw is the switching frequency.
Calculate the total power dissipation (PT_{T}) as follows:

$$
\mathrm{PT}_{\mathrm{T}}=\mathrm{PQ}+\mathrm{PCLOAD}
$$

Use the following equations to estimate the MAX5078A/ MA5078B total power dissipation when driving a groundreferenced resistive load:

$$
\begin{gathered}
\text { PT }=\mathrm{PQ}+\text { PrLOAD } \\
\text { PRLOAD }=\mathrm{D} \times \operatorname{RON}(\mathrm{MAX}) \times \mathrm{ILOAD}^{2}
\end{gathered}
$$

where D is the fraction of the period the MAX5078A/ MA5078B's output pulls high, RON(MAX) is the maximum on-resistance of the device with the output high, and ILOAD is the output load current of the MAX5078A/ MAX5078B.

Layout Information

The MAX5078A/MAX5078B MOSFET drivers source and sink large currents to create very fast rising and falling edges at the gate of the switching MOSFET. The high di/dt can cause unacceptable ringing if the trace lengths and impedances are not well controlled.

Table 1. MAX5078 Truth Table

IN+	IN-	OUT
Low	Low	Low
Low	High	Low
High	Low	High
High	High	Low

Use the following PC board layout guidelines when designing with the MAX5078A/MAX5078B:

- Place one or more $0.1 \mu \mathrm{~F}$ decoupling ceramic capacitors from VDD to GND as close to the device as possible. Connect VDD and GND to large copper areas. Place one bulk capacitor of $10 \mu \mathrm{~F}$ (min) on the PC board with a low resistance path to the VDD input and GND of the MAX5078A/MAX5078B.
- Two AC current loops form between the device and the gate of the driven MOSFET. The MOSFET looks like a large capacitance from gate to source when the gate pulls low. The active current loop is from the MOSFET gate to OUT of the MAX5078A/MAX5078B, to GND of the MAX5078A/MAX5078B, and to the source of the MOSFET. When the gate of the MOSFET pulls high, the active current is from the VDD terminal of the decoupling capacitor, to $V_{D D}$ of the MAX5078A/MAX5078B, to OUT of the MAX5078A/ MAX5078B, to the MOSFET gate, to the MOSFET source, and to the negative terminal of the decoupling capacitor. Both charging current and discharging current loops are important. Minimize the physical distance and the impedance in these AC current paths.
- Keep the device as close to the MOSFET as possible.
- In a multilayer PC board, the inner layers should consist of a GND plane containing the discharging and charging current loops.
- Pay extra attention to the ground loop and use a low-impedance source when using a TTL logicinput device. Fast fall time at OUT may corrupt the input during transition.

Exposed Pad
The TDFN-EP package has an exposed pad on the bottom of its package. This pad is internally connected to GND. For the best thermal conductivity, solder the exposed pad to the ground plane in order to dissipate 1.9 W . Do not use the ground-connected pad as the only electrical ground connection or ground return. Use GND (pins 2 and 3) as the primary electrical ground connection.

Figure 3. Unused Input as an ON/OFF Function

Additional Application Circuits

Figure 4. Noninverting Application

Figure 5. Boost Converter

Figure 6. MAX5078A/MAX5078B In High-Power Synchronous Buck Converter

Figure 7. Forward Converter with Secondary-Side Synchronous Rectification

MAX5078
 4A, 20ns, MOSFET Driver

Chip Information
PROCESS: CMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or " - " in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
6 TDFN-EP	$T 633+2$	$\underline{21-0137}$	$\underline{90-0058}$

MAX5078 4A, 20ns, MOSFET Driver

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
2	$9 / 12$	Added automotive qualified parts to Ordering Information	1

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
89076GBEST 00053P0231 $56956 \underline{57.404 .7355 .5} \underline{\text { LT4936 } 57.904 .0755 .05882900001 \text { 00600P0005 00-9050-LRPP 00-9090-RDPP }}$ 5951900000 01-1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 02071000000207400000 $01312 \underline{0134220000} \underline{60713816}$ M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131-220-21149P 6131-260-2358P 6131-265-11149P

