+2.7V to +5.5V, Low-Power, Quad, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

General Description

The MAX5100 parallel-input, voltage-output, quad 8-bit digital-to-analog converter (DAC) operates from a single +2.7 V to +5.5 V supply and comes in a space-saving 20-pin TSSOP package. Internal precision buffers swing Rail-to-Rail ${ }^{\circledR}$, and the reference input range includes both ground and the positive rail. All four DACs share a common reference input.
The MAX5100 provides double-buffered logic inputs: four 8-bit buffer registers followed by four 8-bit DAC registers. This keeps the DAC outputs from changing during the write operation. An asynchronous control pin, $\overline{\text { LDAC, }}$, allows for simultaneous updating of the DAC registers.
The MAX5100 features a shutdown mode that reduces current to 1 nA , as well as a power-on reset mode that resets all registers to code 00 hex on power-up.

Applications

Digital Gain and Offset Adjustments
Programmable Attenuators
Portable Instruments
Power-Amp Bias Control
+2.7V to +5.5V Single-Supply Operation
Ultra-Low Supply Current
0.4mA while Operating
1nA in Shutdown Mode
Ultra-Small 20-Pin TSSOP Package
Ground to VDD Reference Input Range

- Output Buffer Amplifiers Swing Rail-to-Rail
- Double-Buffered Registers for Synchronous Updating
- Power-On Reset Sets All Registers to Zero

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE	INL (LSB)
MAX5100AEUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP	± 1
MAX5100BEUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP	± 2

Pin Configuration

+2.7V to +5.5V, Low-Power, Quad, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

ABSOLUTE MAXIMUM RATINGS

$V_{D D}$ to GND...............................	
$\mathrm{D}_{-}, \mathrm{A}_{-}, \overline{\mathrm{WR}}, \mathrm{SHDN}, \overline{\text { LDAC }}$ to GND-0.3V to +6 V	
REF to GND ..-0.3V to (VDD +0.3 V)	
OUT_ to GND ...-0.3V to V $\mathrm{V}_{\text {D }}$	
Maximum Current into Any Pin $\pm 50 \mathrm{~mA}$	
Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
20-Pin TSSOP (derat	

Operating Temperature Range MAX5100_EUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Junction Temperatur	$+150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering,+300

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=V_{R E F}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{REF}}$ $=+3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
STATIC ACCURACY							
Resolution						8	Bits
Integral Nonlinearity (Note 1)	INL	MAX5100A				± 1	LSB
		MAX5100B				± 2	
Differential Nonlinearity (Note 1)	DNL	Guaranteed monotonic				± 1	LSB
Zero-Code Error	ZCE	Code $=00$ hex				± 20	mV
Zero-Code-Error Supply Rejection		Code $=00$ hex, $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V				10	mV
Zero-Code Temperature Coefficient		Code $=00$ hex			± 10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Gain Error (Note 2)		Code = FO hex				± 1	\%
Gain-Error Temperature Coefficient		Code $=$ F0 hex			± 0.001		LSB/ ${ }^{\circ} \mathrm{C}$
Power-Supply Rejection		Code $=$ FF hex	$\begin{aligned} & V_{D D}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V} \end{aligned}$			1	LSB
			$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{REF}}=4.096 \mathrm{~V} \end{aligned}$			1	
REFERENCE INPUT							
Input Voltage Range				0		VDD	V
Input Resistance				320	460	600	k Ω
Input Capacitance					15		pF
DAC OUTPUTS							
Output Voltage Range		$\mathrm{R}_{\mathrm{L}}=\infty$		0		$V_{\text {REF }}$	V
DIGITAL INPUTS							
Input High Voltage	V_{IH}	$V_{D D}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V}$		2			V
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ to 5.5 V		3			
Input Low Voltage	$\mathrm{V}_{\text {IL }}$					0.8	V
Input Current	IIN	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ or G				± 1.0	$\mu \mathrm{A}$
Input Capacitance	$\mathrm{CIN}^{\text {N}}$				10		pF

+2.7V to +5.5V, Low-Power, Quad, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=V_{R E F}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{REF}}$ $=+3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DYNAMIC PERFORMANCE							
Output Voltage Slew Rate		From code 00 to code F0 hex		0.6			V/us
Output Settling Time (Note 3)		To 1/2LSB, from code 10 to code F0 hex		6			$\mu \mathrm{s}$
Channel-to-Channel Isolation (Note 4)		Code 00 to code FF hex		500			$n \vee s$
Digital Feedthrough (Note 5)		Code 00 to code FF hex		0.5			$n \vee$ s
Digital-to-Analog Glitch Impulse		Code 80 hex to code 7F hex		90			nVs
Signal-to-Noise plus Distortion Ratio	SINAD	$\begin{aligned} & V_{R E F(D C)}=1.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V}, \\ & \text { code }=\mathrm{FF} \text { hex } \end{aligned}$	$\begin{aligned} & \text { REF }=2.5 \mathrm{Vp}-\mathrm{p} \text { at } \\ & 1 \mathrm{kHz} \end{aligned}$	70			dB
			$\begin{aligned} & \text { REF }=2.5 \mathrm{Vp}-\mathrm{p} \text { at } \\ & 10 \mathrm{kHz} \end{aligned}$	60			
Multiplying Bandwidth		$\begin{aligned} & \mathrm{REF}=0.5 \mathrm{Vp}-\mathrm{p}, \mathrm{~V}_{\mathrm{REF}(\mathrm{DC})}=1.5 \mathrm{~V}, \\ & \mathrm{~V} \mathrm{DD}=3 \mathrm{~V},-3 \mathrm{~dB} \text { bandwidth } \end{aligned}$		650			kHz
Wideband Amplifier Noise					60		$\mu \mathrm{V}_{\text {RMS }}$
Shutdown Recovery Time	tSDR	To $\pm 1 / 2 \mathrm{LSB}$ of final value of $\mathrm{V}_{\text {OUT }}$		13			$\mu \mathrm{s}$
Time to Shutdown	tSDN	$\mathrm{I}_{\mathrm{DD}}<5 \mu \mathrm{~A}$		20			$\mu \mathrm{s}$
POWER SUPPLIES							
Power-Supply Voltage	$V_{\text {DD }}$			2.7		5.5	V
Supply Current (Note 6)	IDD				370	700	$\mu \mathrm{A}$
Shutdown Current					0.001	1	$\mu \mathrm{A}$
DIGITAL TIMING (Figure 1) (Note 7)							
Address to $\overline{\mathrm{WR}}$ Setup	$t_{\text {AS }}$			5			ns
Address to $\overline{\mathrm{WR}}$ Hold	$t_{\text {AH }}$			0			ns
Data to WR Setup	tDS			25			ns
Data to $\overline{W R}$ Hold	tDH			0			ns
$\overline{\text { WR Pulse Width }}$	twR			20			ns
LDAC Pulse Width (Note 8)	tLD			20			ns

Note 1: Reduced digital code range (code 00 hex to code FO hex) due to swing limitations when the output amplifier is loaded.
Note 2: Gain error is: [100 ($\mathrm{V}_{\mathrm{FO} \text {,meas }}$ - ZCE - $\mathrm{V}_{\mathrm{FO} \text {,ideal }}$ / $\mathrm{V}_{\mathrm{REF}}$]. Where $\mathrm{V}_{\mathrm{FO} \text {, meas }}$ is the DAC output voltage with input code FO hex, and V_{FO},ideal is the ideal DAC output voltage with input code FO hex (i.e., $\mathrm{V}_{\text {REF }} \cdot 240 / 256$).
Note 3: Output settling time is measured from the 50% point of the falling edge of $\overline{W R}$ to $\pm 1 / 2 L S B$ of VOUT's final value.
Note 4: Channel-to-channel isolation is defined as the glitch energy at a DAC output in response to a full-scale step change on any other DAC output. The measured channel has a fixed code of 80 hex.
Note 5: Digital feedthrough is defined as the glitch energy at any DAC output in response to a full-scale step change on all eight data inputs with $\overline{W R}$ at $V_{D D}$.
Note 6: $R_{L}=\infty$, digital inputs at GND or $V_{D D}$.
Note 7: Timing measurement reference level is $\left(\mathrm{V}_{\mathrm{IH}}+\mathrm{V}_{\mathrm{IL}}\right) / 2$.
Note 8: If $\overline{L D A C}$ is activated prior to $\overline{W R ' s}$ rising edge, it must stay low for tLD (or longer) after $\overline{W R}$ goes high.

+2.7V to +5.5V, Low-Power, Quad, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

Figure 1. Timing Diagram
Typical Operating Characteristics
$\left(V_{D D}=V_{\text {REF }}=+3 V, R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}\right.$, code $=F F$ hex, $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

+2.7V to +5.5V, Low-Power, Quad, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

Typical Operating Characteristics (continued)

$\left(V_{D D}=V_{R E F}=+3 V, R_{L}=10 k \Omega, C_{L}=100 \mathrm{pF}\right.$, code $=F F$ hex, $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

+2.7V to +5.5V, Low-Power, Quad, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

PIN	NAME	FUNCTION
1	OUTB	DAC B Voltage Output
2	OUTA	DAC A Voltage Output
3	VDD	Positive Supply Voltage. Bypass VDD to GND using a 0.1 μ F capacitor.
4	REF	Reference Voltage Input
5	SHDN	Shutdown. Connect SHDN to GND for normal operation.
6	$\overline{\text { WR }}$	Write Input (active low). Use $\overline{\text { WR to load data into the DAC input latch selected by A0 and A1. }}$
$7-14$	D7-D0	Data Inputs 7-0
15	$\overline{\text { LDAC }}$	Load DAC Input (active low). Drive the asynchronous $\overline{\text { LDAC }}$ input low to transfer the contents of all input latches to their respective DAC latch.
16	A1	DAC Address Select Bit (MSB)
17	AO	DAC Address Select Bit (LSB)
18	GND	Ground
19	OUTD	DAC D Voltage Output
20	OUTC	DAC C Voltage Output

Detailed Description

Digital-to-Analog Section

The MAX5100 uses a matrix decoding architecture for the DACs. The external reference voltage is divided down by a resistor string placed in a matrix fashion. Row and column decoders select the appropriate tab from the resistor string to provide the needed analog voltages. The resistor network converts the 8-bit digital input into an equivalent analog output voltage in proportion to the applied reference voltage input. The resistor string presents a code-independent input impedance to the reference and guarantees a monotonic output.
The device can be used in multiplying applications. The voltages are buffered by rail-to-rail op amps connected in a follower configuration to provide a rail-to-rail output. The functional block diagram for the MAX5100 is shown in Figure 2.

Low-Power Shutdown Mode

The MAX5100 features a shutdown mode that reduces current consumption to 1 nA . A high voltage on the shutdown pin shuts down the DACs and the output amplifiers. In shutdown mode, the output amplifiers enter a high-impedance state. When bringing the
device out of shutdown, allow 13μ s for the output to stabilize.

Output Buffer Amplifiers
The DAC outputs are internally buffered by precision amplifiers with a typical slew rate of $0.6 \mathrm{~V} / \mu \mathrm{s}$. The typical settling time to $\pm 1 / 2 \mathrm{LSB}$ at the output is $6 \mu \mathrm{~s}$ when loaded with $10 \mathrm{k} \Omega$ in parallel with 100 pF .

Reference Input

The MAX5100 provides a code-independent input impedance on the REF input. The input impedance is typically $460 \mathrm{k} \Omega$ in parallel with 15 pF , and the reference input voltage range is 0 to VDD. The reference input accepts positive DC signals as well as AC signals with peak values between 0 and $V_{D D}$. The voltage at REF sets the full-scale output voltage for the DAC. The output voltage (VOUT) for any DAC is represented by a digitally programmable voltage source as follows:

$$
\text { VOUT }=\left(N_{B} \cdot V_{\text {REF }}\right) / 256
$$

where N_{B} is the numeric value of the DAC binary input code.

Digital Inputs and Interface Logic

 In the MAX5100, address lines A0 and A1 select the DAC that receives data from D0-D7, as shown in Table 1.
+2.7V to +5.5V, Low-Power, Quad, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

Figure 2. Functional Diagram

Table 1. MAX5100 Address Table (Partial)

LDAC	$\overline{\text { WR }}$	A1	A0	LATCH STATE
H	H	X	X	Input and DAC data latched
H	L	L	L	DAC A input latch transparent
L	H	X	X	All 4 DACs' DAC latches transparent
L	L	L	L	DAC A input registers transpar- ent and all 4 DACs' DAC latches transparent
H	L	L	H	DAC B input latch transparent
H	L	H	L	DAC C input latch transparent
H	L	H	H	DAC D input latch transparent

$H=$ High state, $L=$ Low state, $X=$ Don't care
When $\overline{W R}$ is low, the addressed DAC's input latch is transparent. Data is latched when $\overline{W R}$ is high.
The MAX5100 LDAC feature allows simultaneous updating of all four DACs. $\overline{\text { LDAC }}$ low latches the data in the data registers to the DAC registers. If simultaneous updating is not required, tie LDAC low to keep the DAC latches transparent. If $\overline{\mathrm{WR}}$ and $\overline{\mathrm{LDAC}}$ are low simultaneously, avoid output glitches by ensuring that data is valid before the two signals go low. When the device powers up (i.e., VDD ramps up), all latches are internally preset with code 00 hex.

Applications Information

External Reference

The reference source resistance must be considerably less than the reference input resistance. To keep within 1 LSB error in an 8-bit system, Rs must be less than RREF / 256. Hence, maintain a value of $R S<1 k \Omega$ to ensure 8-bit accuracy. If VREF is DC only, bypass REF to GND with a $0.1 \mu \mathrm{~F}$ capacitor. Values greater than this improve noise rejection.

Power Sequencing
The voltage applied to REF should not exceed VDD at any time. If proper power sequencing is not possible, connect an external Schottky diode between REF and VDD to ensure compliance with the absolute maximum ratings.

Power-Supply Bypassing and Ground Management

Digital or AC transient signals on GND can create noise at the analog output. Return GND to the highest-quality ground available. Bypass VDD with a $0.1 \mu \mathrm{~F}$ capacitor, located as close to VDD and GND as possible.
Careful PC board ground layout minimizes crosstalk between the DAC outputs and digital inputs.

Chip Information
TRANSISTOR COUNT: 6848

+2.7V to +5.5V, Low-Power, Quad, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital to Analog Converters - DAC category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
5962-8876601LA PM7545FPCZ AD5311BRMZ-REEL7 AD664AJ AD7534JPZ TCC-103A-RT 057536E 5962-89657023A 702423BB TCC-202A-RT AD664BE TCC-303A-RT TCC-206A-RT AD5770RBCBZ-RL7 DAC8229FSZ-REEL AD5673RBCPZ-2 MCP48FVB2420E/ST MCP48FVB28-E/MQ MCP48FEB18-20E/ST MCP48FEB18-E/MQ MCP48FEB24-E/MQ MCP48FEB28T-20E/ST MCP47FVB04T-E/MQ MCP48FEB28T-E/MQ MCP48FVB28T-20E/ST MCP47FVB28T-20E/ST MCP47FEB24T-E/MQ MCP48FVB18T20E/ST MCP47FEB14T-E/MQ MCP47FEB08T-E/MQ MCP48FVB08T-20E/ST MCP47FEB04T-E/MQ MCP47FVB04T-20E/ST AD7524JRZ-REEL LTC1664CGN LTC1664IGN LTC7545ACSW MCP47DA1T-A1E/OT MCP4921-E/MC UC3910D DAC39J84IAAV DAC8218SPAG DAC8562TDGSR MAX545BCPD+ DAC7641YB/250 DAC7611PB DAC0800LCM TLV5638CDR TLC5615IDR DAC900TPWRQ1

