General Description

The MAX5128 nonvolatile, single, linear-taper, digital potentiometer performs the function of a mechanical potentiometer, but replaces the mechanics with a simple 2-wire digital interface. The MAX5128 performs the same function as a discrete potentiometer or variable resistor and features 128 taps and $22 \mathrm{k} \Omega$ end-to-end resistance. The MAX5128 also features an ultra-small, $2 \mathrm{~mm} \times 2 \mathrm{~mm} \mu \mathrm{DFN}$ package and low $0.5 \mu \mathrm{~A}$ (typ) standby supply current, making this device ideal for portable applications. The MAX5128 operates from a +2.7 V to +5.25 V power supply. An integrated nonvolatile memory recalls the programmed wiper position of the digital potentiometer. A simple 2-wire up/down interface programs the wiper position. The digital potentiometer provides a low $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ratiometric temperature coefficient and is specified over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications
Vcom Adjustment for LCD Panels
Backlight Adjustment
LED Bias Adjustment
Power-Supply Modules
Fiber-Module Bias Setting
Bias Setting for Radios
Portable Consumer Electronics
\qquad

- Ultra-Small, $2 \mathrm{~mm} \times 2 \mathrm{~mm}$, 8-Pin μ DFN Package
- Power-On Recall of Wiper Position from Nonvolatile Memory
- 22k Ω End-to-End Resistance
- 128 Tap Positions
- 5ppm/ ${ }^{\circ} \mathrm{C}$ Ratiometric Temperature Coefficient
- $1.5 \mu \mathrm{~A}$ (max) Standby Supply Current
- +2.7V to +5.25V Single Supply Operation
- 80,000 Wiper Store Cycles
- 50-Year Wiper Data Retention

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK	PKG CODE
MAX5128ELA +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{DFN}$	AAF	L822-1

+Denotes a lead-free package.

128-Tap, Nonvolatile, Linear-Taper Digital Potentiometer in 2mm x 2mm μ DFN Package

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature $+150^{\circ} \mathrm{C}$ Storage Temperature Range $60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}\right.$ to $+5.25 \mathrm{~V}, \mathrm{H}=\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. . (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC PERFORMANCE (voltage-divider mode)						
Resolution	N		7			Bits
Integral Nonlinearity	INL	(Note 2)			± 1.0	LSB
Differential Nonlinearity	DNL	(Note 2)			± 1.0	LSB
End-to-End Resistance Temperature Coefficient	TCR			50		ppm/ ${ }^{\circ} \mathrm{C}$
Ratiometric Resistance Temperature Coefficient				5		ppm/ ${ }^{\circ} \mathrm{C}$
Full-Scale Error	FSE		-3		0	LSB
Zero-Scale Error	ZSE		0		+2	LSB
DC PERFORMANCE (variable-resistor mode)						
Integral Nonlinearity	INL	(Note 3)			± 1.75	LSB
Differential Nonlinearity	DNL	(Note 3)			± 1	LSB
DC PERFORMANCE (resistor characteristics)						
Wiper Resistance	Rw	(Note 4)		0.6	0.8	$\mathrm{k} \Omega$
Wiper Capacitance	Cw			20		pF
End-to-End Resistance	RHL		16	22	27	$\mathrm{k} \Omega$
DIGITAL INPUTS (UP, DN)						
Input-High Voltage (Note 5)	V_{IH}	$3.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{cc}} \leq 5.25 \mathrm{~V}$	2.4			V
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Cc}}<3.4 \mathrm{~V}$	$\begin{aligned} & 0.7 x \\ & V_{C C} \end{aligned}$			
Input-Low Voltage	VIL	(Note 5)			0.8	V
Input Leakage Current	In				± 1	$\mu \mathrm{A}$
Input Capacitance	CIN			5		pF
DYNAMIC CHARACTERISTICS						
Wiper -3dB Bandwidth	$\mathrm{f}_{3 \mathrm{~dB}}$	(Note 6)		400		kHz
THD Plus Noise	THD+N	$\mathrm{V}_{\mathrm{H}}=0.3 \mathrm{~V}_{\mathrm{RMS}} \mathrm{f}=1 \mathrm{kHz}$, wiper set to midscale		0.02		\%

128-Tap, Nonvolatile, Linear-Taper Digital Potentiometer in 2mm x 2mm μ DFN Package

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}\right.$ to $+5.25 \mathrm{~V}, \mathrm{H}=\mathrm{V} \mathrm{CC}, \mathrm{L}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V} \mathrm{CC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
NONVOLATILE MEMORY RELIABILITY						
Data Retention		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		50		Years
Endurance		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		80,000		Stores
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		50,000		
POWER SUPPLY						
Supply Voltage	VCC		2.70		5.25	V
Average Programming Current	IPG	During nonvolatile write only; digital inputs $=$ VCC or GND		220	400	$\mu \mathrm{A}$
Peak Programming Current	IPK	During nonvolatile write only; digital inputs $=\mathrm{V}_{\mathrm{CC}}$ or GND		4		mA
Standby Current	Icc	Digital inputs $=\mathrm{V}_{\text {CC }}$ or $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.5	1.5	$\mu \mathrm{A}$

TIMING CHARACTERISTICS

$\left(V_{C C}=+2.7 \mathrm{~V}\right.$ to $+5.25 \mathrm{~V}, \mathrm{H}=\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. . (See Figures 1, 2, 3, and 4).

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ANALOG SECTION						
Wiper Settling Time	ts	(Note 7)		500		ns
DIGITAL SECTION						
UP or DN Pulse-Width High	tpWH		80			ns
UP or DN Pulse-Width Low	tPWL		80			ns
UP or DN Glitch Immunity	tIMMU		20			ns
UP Fall to DN Rise Setup or DN Fall to UP Rise Setup	tMS1		80			ns
Before Entering NVM-Write Mode, UP Fall to UP Rise	tMS2		80			ns
UP Rise to DN Rise Setup when Entering NVM-Write	tws		80			ns
UP Fall to DN Fall Hold or DN Fall to UP Fall Hold during NVMWrite	twh		0			ns

128-Tap, Nonvolatile, Linear-Taper Digital Potentiometer in 2mm x 2mm μ DFN Package

TIMING CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}\right.$ to $+5.25 \mathrm{~V}, \mathrm{H}=\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V} \mathrm{CC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (See Figures 1, 2, 3, and 4).

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
NVM-Write Mode Pulse-Width High	twp		80			ns
Write NV Register Busy Time	tBUSY				14	ms
Power-Up Settling Time	$t_{\text {ACC }}$	(Note 8)		2		$\mu \mathrm{s}$

Note 1: All devices are production tested at $T_{A}=+25^{\circ} \mathrm{C}$ and are guaranteed by design for $\mathrm{T}_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Note 2: The DNL and INL are measured with the potentiometer configured as a voltage-divider with $\mathrm{H}=\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{L}=\mathrm{GND}$. The wiper terminal is unloaded and measured with a high input-impedance voltmeter.
Note 3: The DNL and INL are measured with the potentiometer configured as a variable resistor. H is unconnected and $\mathrm{L}=\mathrm{GND}$ For the +5 V condition, the wiper terminal is driven with a source current of $200 \mu \mathrm{~A}$ and for the +2.7 V condition, the wiper terminal is driven with a source current of $100 \mu \mathrm{~A}$.
Note 4: The wiper resistance is measured using the source currents given in Note 3
Note 5: The device draws higher supply current when the digital inputs are driven with voltages between ($\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$) and (GND + 0.5 V). See Supply Current vs. Digital Input Voltage in the Typical Operating Characteristics

Note 6: Wiper at midscale with a 10 pF load, $L=G N D$, an $A C$ source is applied to H, and the output is measured as 3 dB lower than the DC W/H value in dB .
Note 7: Wiper-settling time is the worst-case 0 to 50% rise time measured between consecutive wiper positions. $\mathrm{H}=\mathrm{V}_{\mathrm{Cc}}, \mathrm{L}=\mathrm{GND}$, and the wiper terminal is unloaded and measured with a 10 pF oscilloscope probe. See the Tap-to-Tap Switching Transient in the Typical Operating Characteristics section.
Note 8: Power-up settling time is measured from the time $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to the wiper settling to 1 LSB of the final value.

128-Tap, Nonvolatile, Linear-Taper Digital Potentiometer in 2mm x 2mm μ DFN Package

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

DIFFERENTIAL NONLINEARITY vs. CODE (VOLTAGE-DIVIDER)

INTEGRAL NONLINEARITY vs. CODE (VARIABLE RESISTOR)

INTEGRAL NONLINEARITY vs. CODE (VOLTAGE-DIVIDER)

DIFFERENTIAL NONLINEARITY vs. CODE (VOLTAGE-DIVIDER)

INTEGRAL NONLINEARITY vs. CODE (VARIABLE RESISTOR)

INTEGRAL NONLINEARITY vs. CODE (VOLTAGE-DIVIDER)

DIFFERENTIAL NONLINEARITY vs. CODE (VOLTAGE-DIVIDER)

INTEGRAL NONLINEARITY vs. CODE (VARIABLE RESISTOR)

128-Tap, Nonvolatile, Linear-Taper Digital Potentiometer in 2mm x 2mm μ DFN Package

Typical Operating Characteristics (continued)
 $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

128-Tap, Nonvolatile, Linear-Taper Digital Potentiometer in 2mm x 2mm μ DFN Package

128-Tap, Nonvolatile, Linear-Taper Digital Potentiometer in 2mm x 2mm μ DFN Package

Pin Description

PIN	NAME	FUNCTION
1	VCC	Power Supply. Bypass VCC with a 0.1μ F capacitor to GND as close to the device as possible. For proper operation, limit the supply voltage slew rate to $\geq 10 \mu \mathrm{~s}$.
2	H	High Terminal. The voltage at H can be higher than or lower than the voltage at L. Current can flow into or out of H.
3	W	Wiper Terminal
4	L	Low Terminal. The voltage at L can be higher than or lower than the voltage at H. Current can flow into or out of L.
5	GND	Ground
6	DN	Down Input
7	UP	Up Input
8	N.C.	No Connection. Not internally connected.

Figure 1. Digital-Interface Timing Diagram

Detailed Description

The MAX5128 nonvolatile, single, linear-taper, digital potentiometer performs the function of a mechanical potentiometer or variable resistor, but replaces the mechanics with a simple 2-wire digital interface. This device features 128 taps and $22 \mathrm{k} \Omega$ end-to-end resistance with a $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ratiometric temperature coefficient. The MAX5128 operates from a +2.7 V to +5.25 V power supply and consumes only $0.5 \mu \mathrm{~A}$ (typ) of standby supply current. The MAX5128 includes an integrated nonvolatile memory that recalls the stored wiper position of the digital potentiometer. A simple 2-wire up/down interface programs the wiper positions.

Analog Circuitry

The MAX5128 consists of a resistor array with 127 resistive elements; 128 tap points along the resistor string between H and L are accessible to the wiper, W. Select the wiper tap point by programming the potentiometer through the 2-wire (UP, DN) interface.
The MAX5128 features power-on reset circuitry that loads the wiper position from the nonvolatile memory at power-up.
The nonvolatile memory is programmed to midscale at the factory.

128-Tap, Nonvolatile, Linear-Taper Digital Potentiometer in 2mm x 2mm μ DFN Package

Figure 2. Digital-Interface Timing Diagram with $t_{B U S Y}$

Figure 3. Digital-Interface Command Diagram

Digital Interface

The MAX5128 features a 2-wire interface consisting of two logic inputs (UP and DN). Logic inputs UP and DN control the wiper position and program the position to the nonvolatile memory. Transition UP from high to low with DN low to increment the wiper position. Transition DN from high to low with UP low to decrement the wiper position (see Figures 1, 2, and 3). When the wiper decrements, it decreases the resistance between W and L (and it increases the resistance between H and W).
To program the nonvolatile memory, force UP high, then force DN high, and then transition either input (UP/DN) from high to low (see Figure 3).
The wiper performs a make-before-break transition, ensuring that an open circuit during a transition from one resistor tap to another does not occur. The wiper does not wrap around when it reaches either end of the resistor array (max/min). Additional transition com-
mands in the direction of the end point do not change the tap position.
The logic inputs also feature pulse glitch immunity (20ns) to protect the wiper from transitioning due to glitches (see Figure 4).

Write NV Register

The internal EEPROM consists of a 7-bit nonvolatile memory that retains the value written to it even after power-down. To program the nonvolatile memory, force UP high, then force DN high, and then transition either input (UP/DN) from high to low. A nonvolatile write requires a busy time of 14 ms (max). During the busy time, any nonvolatile write requests are ignored as well as requests to increment or decrement the wiper position. Upon power-up, the wiper returns to the position stored in the nonvolatile register. The MAX5128 features a factory-default wiper position of midscale.

128-Tap, Nonvolatile, Linear-Taper Digital Potentiometer in 2mm x 2mm μ DFN Package

Figure 4. Glitch-Immunity Timing Diagram

Standby Mode

The MAX5128 operates in standby mode while the serial interface is inactive. Programming the MAX5128 increases the average operating current to $400 \mu \mathrm{~A}$ (max). When in standby mode, the static supply current reduces to less than $0.5 \mu \mathrm{~A}$ (typ).

Power-Up
Upon power-up, the MAX5128 updates the wiper position with the data stored in the nonvolatile memory. This initialization period takes $2 \mu \mathrm{~s}$ (typ). For proper operation, limit the supply voltage slew rate to $\geq 10 \mu$ s.

Applications Information

Use the MAX5128 for applications requiring digitally controlled adjustable resistance or voltage, such as LCD contrast control (where voltage biasing adjusts the display contrast), or DC-DC converters with adjustable outputs. The $22 \mathrm{k} \Omega$ end-to-end resistance is divided into 128 tap points of 172Ω each. Use the MAX5128 in a voltage-divider or variable-resistor configuration.

Vсом Generator
Figure 5 shows an application using the MAX4238 and the MAX5128 to generate the VCOM voltage for a LCD panel. Adjusting the resistor value of the MAX5128 changes the $\mathrm{V}_{\mathrm{COM}}$ voltage. Adjusting the $\mathrm{VCOM}_{\mathrm{CO}}$ voltage changes the contrast for the LCD panel.

DC-DC Converter Applications

Figures 6 and 7 show two applications using the MAX5128 to adjust the output voltage of a DC-DC converter. Figure 6 shows the MAX5128 in the grounded potentiometer configuration. Figure 7 shows the MAX5128 in a floating potentiometer configuration. The grounded potentiometer configuration forces the output voltage range of the DC-DC converter to fall within the supply voltage range of the MAX5128. Use the floating potentiometer configuration to allow the DC-DC converter's output to exceed the supply voltage range of the MAX5128. The floating potentiometer configuration increases the output voltage range and increases the precision of the output voltage adjustment range.

LED Bias Adjustment

Figure 8 shows a LED bias adjustment application using a MAX5128 to set the current of the LEDs that the MAX1574 drives. Use the MAX5128 for an adjustable LED current drive of 10 mA to 60 mA .

Chip Information
PROCESS: BiCMOS

128-Tap, Nonvolatile, Linear-Taper Digital Potentiometer in 2mm x 2mm μ DFN Package

Figure 5. VCOM Generator Circuit for LCD Panels

Figure 6. DC-DC Converter Using a Grounded Potentiometer

128-Tap, Nonvolatile, Linear-Taper Digital Potentiometer in 2mm x 2mm μ DFN Package

Figure 7. DC-DC Converter Using a Floating Potentiometer

Pin Configuration

Figure 8. LED Bias Adjustment Using the MAX5128

128-Tap, Nonvolatile, Linear-Taper Digital Potentiometer in 2mm x 2mm μ DFN Package

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

128-Tap, Nonvolatile, Linear-Taper Digital Potentiometer in 2mm x 2mm μ DFN Package

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

COMMON DIMENSIONS			
SYMBOL	MIN.	NOM.	MAX.
A	0.70	0.75	0.80
A1	0.15	0.20	0.25
A2	0.020	0.025	0.035
D	1.95	2.00	2.05
E	1.95	2.00	2.05
L	0.30	0.40	0.50
L1	0.10 REF.		

PACKAGE VARIATIONS				
PKG. CODE	N	e	b	$(\mathrm{N} / 2-1) \times \mathrm{e}$
L622-1	6	0.65 BSC	0.30 ± 0.05	1.30 REF.
L822-1	8	0.50 BSC	0.25 ± 0.05	1.50 REF.
L1022-1	10	0.40 BSC	0.20 ± 0.03	1.60 REF.

NOTES:

1. ALL DIMENSIONS ARE $\operatorname{IN} \mathrm{mm}$. ANGLES IN DEGREES.
2. COPLANARITY SHALL NOT EXCEED 0.08 mm .
3. WARPAGE SHALL NOT EXCEED 0.10 mm .
4. PACKAGE LENGTH/PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC(S).
5. " N " IS THE TOTAL NUMBER OF LEADS.
6. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.

M MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.

Revision History

Pages changed at Rev 1: 1, 9, 10, 13
Pages changed at Rev 2: 1, 9-14
\qquad

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Potentiometer ICs category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
604-00010 CAT5111VI-10-GT3 CAT5110TBI-10GT3 CAT5111LI-10-G X9C103S CAT5110TBI-50GT3 CAT5112ZI-50-GT3
CAT5111YI-10-GT3 MCP4351-502E/ML MCP4641-502E/ST MCP4651T-503E/ML MCP4162-103E/SN MCP4451-103E/ML MCP4451-
502E/ST MCP4532T-103E/MF MCP4631-503E/ST MCP4661-502E/ST CAT5113VI-00-GT3 MCP4021-103E/MS DS1855E-010+
MAX5160LEUA+T MCP4231T-503E/ML MCP4142-104E/MF AD5260BRUZ200-RL7 CAT5113LI-50-G CAT5114LI-00-G
AD5116BCPZ10-500R7 AD5116BCPZ80-500R7 AD5122ABRUZ100 AD5122BCPZ10-RL7 AD5142ABRUZ100 AD5143BCPZ10-RL7
AD5253BRUZ10 AD5253BRUZ50 AD5144TRUZ10-EP AD5160BRJZ10-RL7 AD5162BRMZ100 AD5170BRMZ2.5-RL7
AD5162WBRMZ100-RL7 AD5165BUJZ100-R7 AD5170BRMZ10 AD5170BRMZ10-RL7 AD5170BRMZ2.5 AD5170BRMZ50
$\underline{\text { AD5171BRJZ100-R2 }} \underline{\text { AD5171BRJZ10-R2 }}$ AD5171BRJZ5-R7 AD5171BRJZ10-R7 AD5171BRJZ5-R2 AD5172BRMZ10

