

General Description

The MAX5134 evaluation kit (EV kit) provides a proven design to evaluate the MAX5134 quad, 16-bit, low-power digital-to-analog converter (DAC). The EV kit also includes Windows[®] 2000/XP/Vista[®]-compatible software that provides a simple graphical user interface (GUI) for exercising the features of the MAX5134.

The MAX5134 EV kit PCB comes with a MAX5134AGTG+ installed. Contact the factory for free samples of the pin-compatible MAX5135GTG+ (quad, 12-bit DAC), MAX5136AGTG+ (dual, 16-bit DAC), and MAX5137GTG+ (dual, 12-bit DAC) to evaluate these devices.

_Features

- Windows 2000/XP/Vista (32-Bit)-Compatible Software
- ♦ Supports Standard SPI[™] Interface
- USB-PC Connection (Cable Included)
- USB Powered
- ♦ 8-Pin DAC Output Signal Header
- Proven PCB Layout
- Lead-Free and RoHS Compliant
- Fully Assembled and Tested

Ordering Information

PART	ТҮРЕ
MAX5134EVKIT+	EV Kit

+Denotes lead-free and RoHS compliant.

Component List

DESIGNATION	QTY	DESCRIPTION
C26	1	39pF ±5%, 50V C0G ceramic capacitor (0402) Murata GRM1555C1H390G
D1	1	Green LED (0603)
FB1	1	0Ω ±5% resistor (0603)
H1	0	Not installed, header
H2	1	Dual-row (2 x 4) 8-pin header
H3	1	Dual-row (2 x 6) 12-pin header
JUA–JUE	0	Not installed
JU1–JU5, JU7, JU8, JU9	8	3-pin headers
JU6	1	5-pin header
P1	1	USB type-B right-angle female receptacle
R1, R8	2	$0\Omega \pm 5\%$ resistors (0603)
R2	1	220Ω ±5% resistor (0603)
R3	1	$10k\Omega \pm 5\%$ resistor (0603)
R4	1	$2.2k\Omega \pm 5\%$ resistor (0603)
R5	1	$1.5k\Omega \pm 5\%$ resistor (0603)
R6, R7	2	$27\Omega \pm 5\%$ resistors (0603)

DESIGNATION	QTY	DESCRIPTION				
C1, C3–C10, C17, C21, C23	12	0.1µF ±10%, 16V X7R ceramic capacitors (0603) TDK C1608X7R1C104K				
C2, C13, C15, C22, C24 5		10μF ±20%, 6.3V X5R ceramic capacitors (0805) TDK C2012X5R0J106M				
C11, C12	2	10pF ±5%, 50V C0G ceramic capacitors (0603) TDK C1608C0G1H100J				
C14, C16	2	1µF ±20%, 6.3V X5R ceramic capacitors (0603) TDK C1608X5R0J105M				
C18, C19	2	22pF ±5%, 50V C0G ceramic capacitors (0603) TDK C1608C0G1H220J				
C20	1	3300pF ±10%, 50V X7R ceramic capacitor (0603) TDK C1608X7R1H332K				
C25	0	Not installed, ceramic capacitor (0603)				

Windows and Windows Vista are registered trademarks of Microsoft Corp. SPI is a trademark of Motorola, Inc.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

DESIGNATION	QTY	DESCRIPTION
R16	0	Not installed, resistor (0402)
U1	1	Quad, 16-bit DAC (16 TQFN-EP*) Maxim MAX5134AGTG+
U2	1	Low-power microcontroller (68 QFN-EP*) Maxim MAXQ2000-RAX+
U3	1	93C46 type 3-wire EEPROM 16-bit architecture (8 SO)
U4	1	UART-to-USB converter (32 TQFP)
U5	1	3.3V regulator (5 SC70) Maxim MAX8511EXK33+T (Top Mark: AEI)

Component List (continued)

DESIGNATION	QTY	DESCRIPTION
U6	1	2.5V regulator (5 SC70) Maxim MAX8511EXK25+T (Top Mark: ADV)
Y1	1	16MHz crystal
Y2	1	6MHz crystal
—	9	Shunts
—	1	USB high-speed A-to-B cable
_	1	PCB: MAX5134 Evaluation Kit+

*EP = Exposed pad.

Component Suppliers

SUPPLIER	PHONE	WEBSITE	
Murata Electronics North America, Inc.	770-436-1300	www.murata-northamerica.com	
TDK Corp.	847-803-6100	www.component.tdk.com	

Note: Indicate that you are using the MAX5134 when contacting these component suppliers.

MAX5134 EV Kit Files

FILE	DESCRIPTION
INSTALL.EXE	Installs the EV kit files on your computer
MAX5134.EXE	Application program
FTD2XX.INF	USB device driver file
UNINST.INI	Uninstalls the EV kit software
USB_Driver_Help.PDF	USB driver installation help file

__Quick Start

Required Equipment

Before beginning, the following equipment is needed.

- MAX5134 EV kit (USB cable included)
- A user-supplied Windows 2000/XP/Vista-compatible PC with a spare USB port
- Two digital voltmeters (DVMs)
- USB powered (use optional external power supply for enhanced performance)

Note: In the following sections, software-related items are identified by bolding. Text in **bold** refers to items directly from the EV kit software. Text in **bold and underlined** refers to items from the Windows operating system.

Procedure

The MAX5134 EV kit is fully assembled and tested. Follow the steps below to verify board operation:

- Visit <u>www.maximintegrated.com/evkitsoftware</u> to download the latest version of the EV kit software, 5134Rxx.ZIP. Save the EV kit software to a temporary folder and uncompress the ZIP file.
- Install the EV kit software on your computer by running the INSTALL.EXE program inside the temporary folder. The program files are copied and icons are created in the Windows <u>Start | Programs</u> menu.
- 3) Verify that all jumpers (JU1–JU9) are in their default positions, as shown in Table 1.
- 4) Connect the USB cable from the PC to the EV kit board. A <u>New Hardware Found</u> window pops up when installing the USB driver for the first time. If you do not see a window that is similar to the one described above after 30 seconds, remove the USB cable from the board and reconnect it. Administrator privileges are required to install the USB device driver on Windows.
- 5) Follow the directions of the <u>Add New Hardware</u> <u>Wizard</u> to install the USB device driver. Choose the <u>Search for the best driver for your device</u> option. Specify the location of the device driver to be <u>C:\Program Files\MAX5134</u> (default installation directory) using the <u>Browse</u> button. During device driver installation, Windows may show a warning message indicating that the device driver Maxim uses does not contain a digital signature. This is not an error condition and it is safe to proceed with installation. Refer to the USB_Driver_Help.PDF doc-

ument included with the software for additional information.

- 6) Start the MAX5134 EV kit software by opening its icon in the **Start I Programs** menu.
- 7) When the **Power Up State Of DAC Outputs** window appears, verify that the JU6 shunt is in the proper location on the board and press the corresponding radio button. Next, the EV kit software main window appears, as shown in Figure 1.
- 8) To measure the OUT0 voltage, connect the first DVM between H2-1 (OUT0) and H2-2 (GND).
- 9) To measure the OUT1 voltage, connect the second DVM between H2-3 (OUT1) and H2-4 (GND).
- 10) Verify that the voltage on both DVMs is approximately 1.22V.
- 11) In the **Shift to Input and Output** group box, check the **DAC A** and **DAC B** checkboxes.
- 12) Enter **0x68EB** into the **D15 D0 (Shift Register Data Bits)** edit box.
- 13) In the **Shift to Input and Output** group box, press the **Load Selected DAC(s)** button.
- 14) Verify that the voltage shown on both DVMs is approximately 1V.

_Detailed Description of Software

The main window of the evaluation software (Figure 1) displays the voltage and code for all DAC input and output registers. In addition, the main window has two tabs. The **Load DACs** tab sheet controls all of the DAC loading features of the MAX5134. The **Operating Modes** tab sheet (Figure 2) controls all of the DAC modes of the MAX5134. The **Load Setting(s)** button must be pressed to write the corresponding mode settings to the DAC(s).

Software Reset

Press the **Reset All Registers** button to reset the MAX5134's registers and GUI to the power-on reset (POR) state. This can be done at any time and is highly recommended after using the advanced user interface.

Advanced User Interface

A manual serial interface can be used by advanced users by clicking **Options I Interface (Advanced Users)**.

For SPI, click on the **3-wire interface** tab shown in Figure 3. Enter data in to the **Data bytes to be written:** edit box and press the **Send Now** button.

e <u>O</u> pti .oad DAC	ons <u>R</u> esolu		<u>l</u> elp					/// /	IXI <i>/</i> /
			low and th	en press th	e appropriate butti	on to load th	e corresponding	DAC registers.	
				D15 - D	0 (Shift Register I	Data Bits)			
		Allow	ed format:	hex or deci	mal 0x0000 i.	e. 0x68EB o	r 26859 for OUT	_ = 1V	
Shift to	CA Load S CB L CC	oad Seler	ut Registe	rs for select	ed DAC(s)	nput to Outpu DAC A DAC B DAC C DAC D	Load Input to) Output Registers elected DAC(s)	for selected DAC(s)
	CA			Load	Input and Output I	Registers fro	m the Shift Regi	ster	
	СВ				Load Selecte	d DAC(s)			
)UTA)UTB)UTC)UTD dware: Cc	0x8000 1 0x8000 1 0x8000 1 0x8000 1 0x8000 1	ter /oltage .22000 .22000 .22000 .22000	Output R Code 0x8000 0x8000 0x8000 0x8000	egister Voltage 1.22000 1.22000 1.22000 1.22000	Shutdown Mode Normal Normal Normal Normal	e Ready (Enabled	Dutput Enable	Set Vref 2.440	Reset All Registe

Figure 1. MAX5134 EV Kit Software Main Window (Load DACs Tab)

MAX5134 Evaluati ile Options Reso Load DACs Operating	lution <u>H</u>	elp			<i>//</i> / /	
Enter the appropriate	DAC setting	gs and then press the	e Load Setting(s) but	ton		
Power Control						
📄 Shutdown DA		Checked = Sh	utdown Setting			
🔲 Shutdown DA	сс	Unchecked =	Normal Setting			
🗖 Shutdown DA	CD					
🔽 Ready Output	t Enable	Ready Output	Enable Checked = I	Enable		
- L	oad Setting	(s) to selected DAC(s) and Ready			
	Load Settir	ng(s)				
Input Reg Code	ister Voltage	Output Register Code Voltage	Shutdown Mode	Ready Output Enable	Set Vref	Reset All Registers
OUTA 0x8000	1.22000	0x8000 1.22000	Normal	Enabled	2.440	
	1.22000	0x8000 1.22000 0x8000 1.22000	Normal Normal		2.440	무 ~
	1.22000	0x8000 1.22000	Normal			<u> </u>
rdware: Connected						

Figure 2. MAX5134 EV Kit Software Main Window (Operating Modes Tab)

Advanced User Interface Options Help Connection 3-wire interface Connection Second and from master to slave (MOSI) (DIN) K12 Data from master to slave (MOSI) (DIN) K11 Data from slave to master (MISO) (DOUT) K9 Chip-select (CS) for data framing ✓ Use standard connections for high-speed SPI Send and Receive Data Data bytes to be written: Dx55, 0xAA Send Now repeat 1 Data bytes received: 1	Configuration Send & receive MSB first CPOL=1 (clock idles high) CPHA=1 (sample 2nd edge) MOSI Data Inverted Logic MISO Data Inverted Logic CS is active high, idle low 8.0 × 1 MHz Get Speed Set Speed
0x55, 0xAA Send Now repeat 1	
Maxim MINIQUSB V01.05.39 > USB:0 @ 460800 bau	ud Speed query //

Figure 3. Advanced SPI User Interface Window (3-Wire Interface Tab)

_Detailed Description of Hardware

The MAX5134 EV kit provides a proven layout for the MAX5134. An on-board analog output signal header (H2), an on-board digital input/output signal header (H3), and jumpers to disconnect the on-board micro-controller are all included on the EV kit.

Reference

At power-up, the MAX5134 EV kit defaults to using the internal 2.440V reference.

To use AVDD as the reference, place a shunt on jumper JU9 in the 2-3 position. For off-board external references, connect a user-supplied reference voltage to REFIN and remove the shunt on jumper JU9. Type in the reference voltage value in the **Set Vref** edit box and press the **Set Vref** button. The MAX5134 EV kit software uses the value in the **Set Vref** edit box to calculate the input and output register voltage values and does not affect any commands to the part.

User-Supplied SPI Interface

To use the MAX5134 EV kit with a user-supplied SPI interface, first move the shunts of JU1–JU5 to the 2-3 position and JU6 to the 1-3 position. Next, move the shunt of JU7 to the 2-3 position. Then apply an external 2.7V to 5.25V power supply to DVDD. Lastly, connect CS, SCLK, DIN, and GND signals to the corresponding pins of header H3.

User-Supplied Power Supplies

The MAX5134 EV kit is powered completely from the USB port by default. Before connecting a user-supplied power supply > 3.6V on DVDD, the on-board microcontroller must be disconnected. To disconnect the microcontroller, move the shunts of JU1–JU5 to the 2-3 position and JU6 to the 1-3 position. Next, move the shunts of JU7 and JU8 to the 2-3 position. Then apply an external 2.7V to 5.25V power supply to the corresponding DVDD and AVDD pads. For optimum performance, use separate supplies. Lastly, see the *User-Supplied SPI Interface* section for interface connections if applicable.

JUMPER	SHUNT POSITION	DESCRIPTION
JU1	1-2*	The MAX5134 $\overline{\text{CS}}$ signal is connected to the on-board microcontroller.
JUT	2-3	The MAX5134 $\overline{\text{CS}}$ signal is connected to the on-board header H3.
JU2	1-2*	The MAX5134 SCLK signal is connected to the on-board microcontroller.
JU2	2-3	The MAX5134 SCLK signal is connected to the on-board header H3.
JU3	1-2*	The MAX5134 DIN signal is connected to the on-board microcontroller.
003	2-3	The MAX5134 DIN signal is connected to the on-board header H3.
JU4	1-2	Factory Use Only. The MAX5134 EV kit software and MAXQ2000 microcontroller do not read the MAX5134 $\overline{\text{READY}}$ signal.
	2-3*	The MAX5134 READY signal is connected to the on-board header H3.
11.15	1-2*	The MAX5134 LDAC signal is connected to the on-board microcontroller.
JU5	1-3	The MAX5134 LDAC signal is connected to the on-board header H3.
	1-2	Factory Use Only. The MAX5134 EV kit software and MAXQ2000 microcontroller do not drive the MAX5134 M/ \overline{Z} signal.
JU6	1-3	The MAX5134 M/ \overline{Z} signal is connected to GND. DAC outputs are set to 0V after power-up or power-on reset (POR).
	1-4	The MAX5134 M/\overline{Z} signal is connected to H3-11 of header H3.
	1-5*	The MAX5134 M/ \overline{Z} signal is connected to AVDD. DAC outputs are set to midscale after power-up or power-on reset (POR).
	1-2*	DVDD is connected to the on-board regulated 3.3V supply.
JU7	2-3	Connect an external 2.7V to 3.6V supply to the DVDD pad. The on-board microcontroller must be disconnected before connecting an external supply to DVDD > 3.6V. See the <i>User-Supplied Power Supplies</i> section for more information.
11.10	1-2*	AVDD is connected to the on-board regulated 3.3V supply.
JU8	2-3	Connect an external 2.7V to 5.25V supply to the AVDD pad.
	1-2*	The MAX5134 REFI pin is connected to the internal 2.440V reference. REFI is connected to REFO.
JU9	2-3	The MAX5134 reference is equal to AVDD.
	Open	Connect an external reference voltage on the REFIN pad in the range of 2V to AVDD.

Table 1. MAX5134 EV Kit Jumper Descriptions (JU1–JU9)

*Default position.

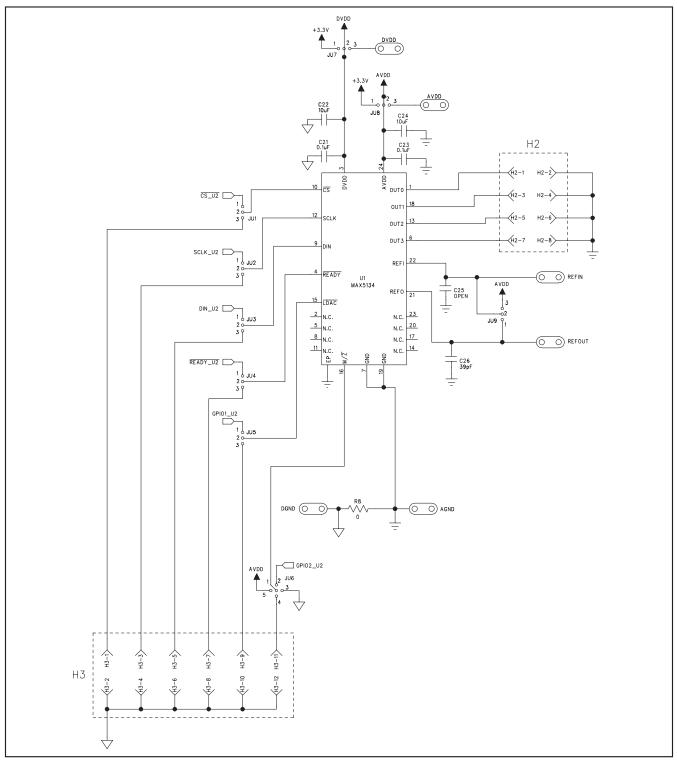


Figure 4a. MAX5134 EV Kit Schematic (Sheet 1 of 2)

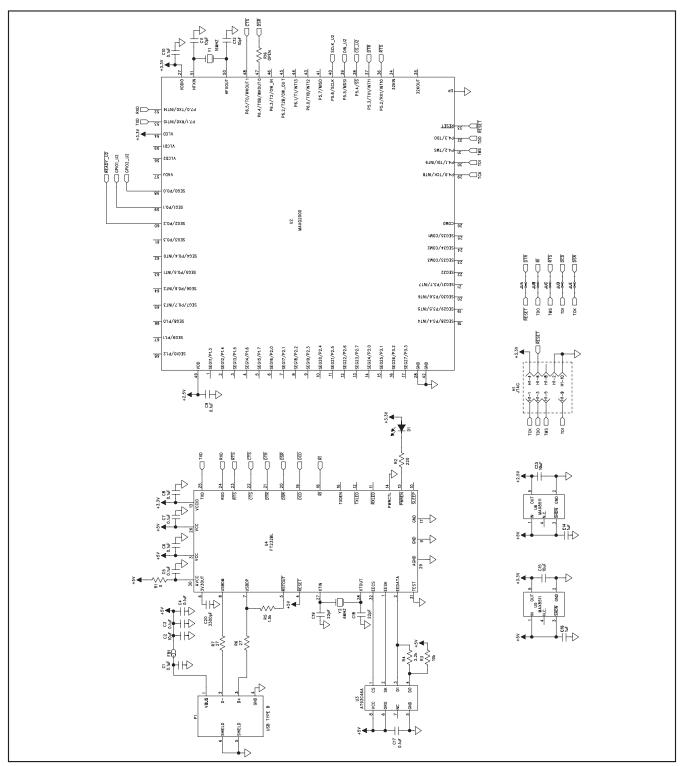


Figure 4b. MAX5134 EV Kit Schematic (Sheet 2 of 2)

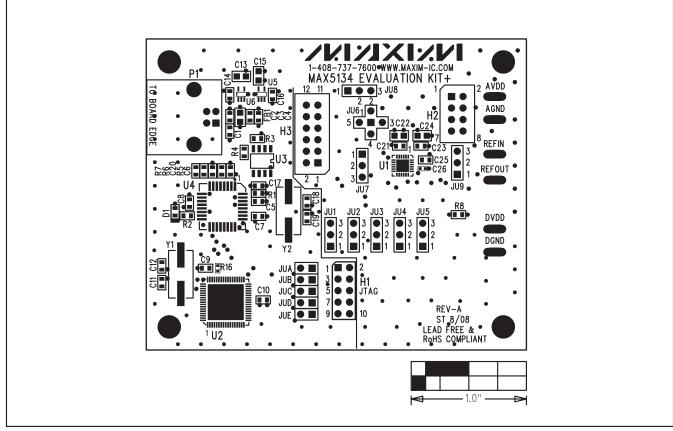


Figure 5. MAX5134 EV Kit Component Placement Guide—Component Side

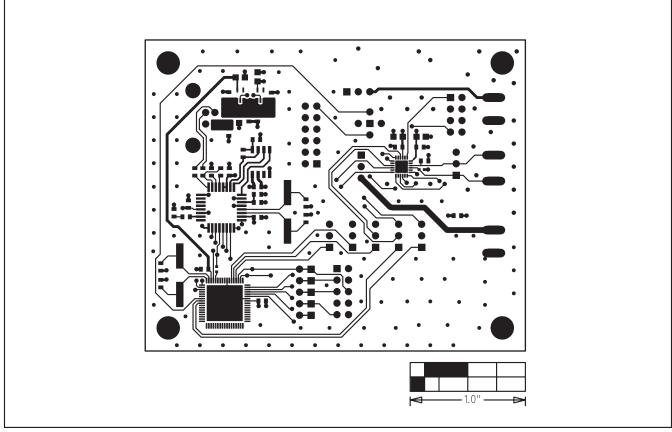


Figure 6. MAX5134 EV Kit PCB Layout—Component Side

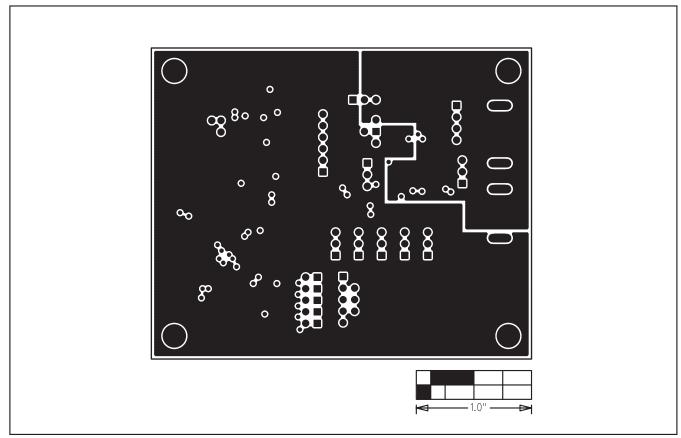


Figure 7. MAX5134 EV Kit PCB Layout—Inner Layer 2 (GND)

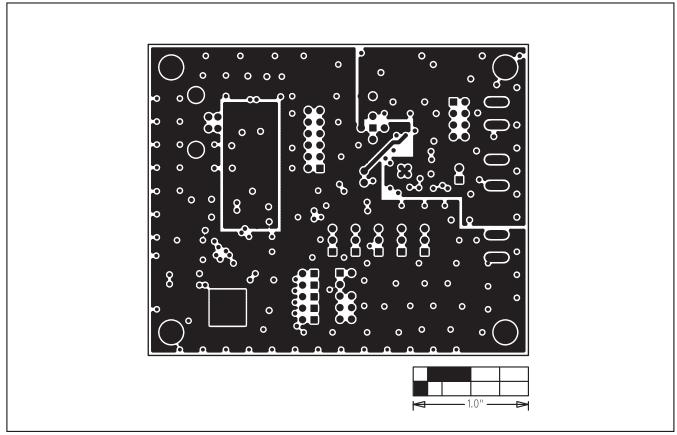


Figure 8. MAX5134 EV Kit PCB Layout—Inner Layer 3 (VDD)

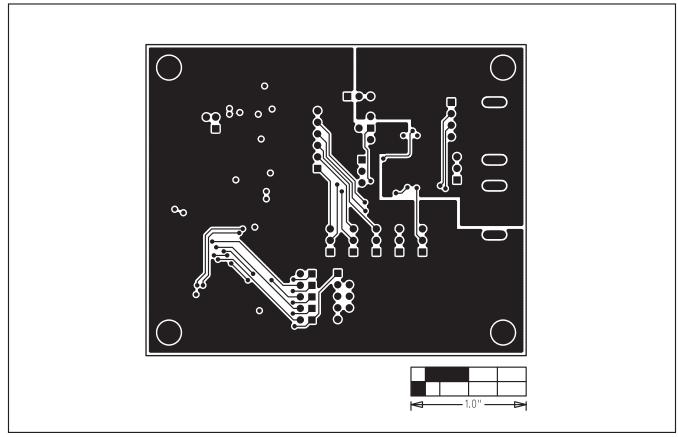


Figure 9. MAX5134 EV Kit PCB Layout—Solder Side

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

14

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Data Conversion IC Development Tools category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :

EVAL-AD7265EDZ EVAL-AD7719EBZ EVAL-AD7767-1EDZ EVAL-AD7995EBZ AD9211-200EBZ AD9251-20EBZ AD9251-65EBZ AD9613-170EBZ AD9629-20EBZ AD9716-DPG2-EBZ AD9737A-EBZ AD9993-EBZ DAC8555EVM EVAL-AD5061EBZ EVAL-AD5062EBZ EVAL-AD5443-DBRDZ EVAL-AD5570SDZ EVAL-AD7992EBZ EVAL-AD7994EBZ AD9119-MIX-EBZ AD9233-125EBZ AD9629-80EBZ AD9650-80EBZ AD9767-EBZ DAC8531EVM LM96080EB/NOPB EVAL-AD5445SDZ EVAL-AD5660EBZ EVAL-AD7685SDZ EVAL-AD7687SDZ MAX5318PMB# MAX1246EVL11-QSOP MAX117EVKIT-DIP DC2365A-C DC2795A-B DC2795A-A DAC088S085EB/NOPB SIM8909-EVB-KIT 82635ASRCDVKHV 961443 DC1466B-B EVAL-AD5413SDZ ADC12D1600RB/NOPB 1083 RFPDK FOR CMT2X5X TS7003DB TSC2014EVM-PDK MOD-USB3G KDC5514EVALZ 650201392G ISL28005FH-100EVAL1Z