General Description

The MAX5392 dual, 256-tap, volatile, low-voltage, linear taper digital potentiometer offers three end-to-end resistance values of $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, and $100 \mathrm{k} \Omega$. Operating from a single +1.7 V to +5.5 V power supply, the device provides a low $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ end-to-end temperature coefficient. The device features an I2C interface.
The small package size, low supply operating voltage, low supply current, and automotive temperature range of the MAX5392 makes the device uniquely suited for the portable consumer market, battery-backup industrial applications, and the automotive market.
The MAX5392 is specified over the automotive $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range and is available in a 16 -pin TSSOP package.

Applications

Low-Voltage Battery Applications
Portable Electronics
Mechanical Potentiometer Replacement
Offset and Gain Control
Adjustable Voltage References/Linear Regulators Automotive Electronics

Features

- Dual, 256-Tap Linear Taper Positions
- Single +1.7V to +5.5V Supply Operation
- Low $12 \mu \mathrm{~A}$ Quiescent Supply Current
- $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ End-to-End Resistance Values
- ${ }^{2}$ C-Compatible Interface
- Wiper Set to Midscale on Power-Up
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating Temperature Range

Ordering Information

PART	PIN-PACKAGE	END-TO-END RESISTANCE (k $\Omega)$
MAX5392LAUE +	16 TSSOP	10
MAX5392MAUE +	16 TSSOP	50
MAX5392NAUE +	16 TSSOP	100

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range.
+Denotes a lead(Pb)-free/RoHS-compliant package.

Functional Diagram

Dual, 256-Tap, Volatile, Low-Voltage, Linear Taper Digital Potentiometer

ABSOLUTE MAXIMUM RATINGS

VDD to GND ...-0.3V to +6V	
H_{-}, W_{-}, L_{-}to GND-0.3V to the lower of	
All Other Pins to GND ..-0.3V to +6V	
Continuous Current in to $\mathrm{H}_{-}, \mathrm{W}_{-}$, and L_{-}	
MAX5392L	$\pm 5 \mathrm{~mA}$
MAX5392M	$\pm 2 \mathrm{~mA}$
MAX5392N	$\pm 1 \mathrm{~mA}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=+1.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{VH}_{-}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{L_{-}}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{TMIN}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+1.8 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Resolution	N			256			Tap
DC PERFORMANCE (Voltage Divider Mode)							
Integral Nonlinearity	INL	(Note 2)		-0.5		+0.5	LSB
Differential Nonlinearity	DNL	(Note 2)		-0.5		+0.5	LSB
Dual Code Matching		Register $\mathrm{A}=$ Register B		-0.5		+0.5	LSB
Ratiometric Resistor Tempco		$\left(\Delta \mathrm{VW} / \mathrm{V}_{\mathrm{W}}\right) / \Delta \mathrm{T}$, no load			5		ppm/ ${ }^{\circ} \mathrm{C}$
Full-Scale Error		Code $=$ FFh	MAX5392L	-3	-2.2		LSB
			MAX5392M	-1	-0.6		
			MAX5392N	-0.5	-0.3		
Zero-Scale Error		Code $=00 \mathrm{~h}$	MAX5392L		2.2	3	LSB
			MAX5392M		0.6	1.0	
			MAX5392N		0.3	0.5	
DC PERFORMANCE (Variable Resistor Mode)							
Integral Nonlinearity	R-INL	MAX5392L (Note 3)		-1.5		+1.5	LSB
		MAX5392M (Note 3)		-0.75		+0.75	
		MAX5392N (Note 3)		-0.5		+0.5	
Differential Nonlinearity	R-DNL	(Note 3)		-0.5		+0.5	LSB
DC PERFORMANCE (Resistor Characteristics)							
Wiper Resistance	RwL	(Note 4)				200	Ω
Terminal Capacitance	$\mathrm{CH}_{-}, \mathrm{CL}_{-}$	Measured to GND			10		pF
Wiper Capacitance	CW-	Measured to GND			50		pF
End-to-End Resistor Tempco	TCR	No load			35		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
End-to-End Resistor Tolerance	$\Delta \mathrm{RHL}$	Wiper not connected		-25		+25	\%

Dual, 256-Tap, Volatile, Low-Voltage, Linear Taper Digital Potentiometer

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+1.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{H_{-}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}_{-}}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+1.8 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

Dual, 256-Tap, Volatile, Low-Voltage, Linear Taper Digital Potentiometer

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+1.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{H_{-}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}_{-}}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+1.8 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX
UNITS					
Data Setup Time	tSU:DAT		100		ns
Data Hold Time	tHD:DAT		0	$\mu \mathrm{~s}$	
SDA, SCL Rise Time	tR			0.3	$\mu \mathrm{~s}$
SDA, SCL Fall	tF		0.6	$\mu \mathrm{~s}$	
Setup Time for STOP Condition	tSU:STO		1.3	$\mu \mathrm{~s}$	
Bus Free Time Between STOP and START Condition	tBUF	Minimum power-up rate $=0.2 \mathrm{~V} / \mathrm{us}$	$\mu \mathrm{s}$		
Pulse Suppressed Spike Width	tSP			50	ns
Capacitive Load for Each Bus	CB	(Note 9)		400	pF

Note 1: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature limits are guaranteed by design and characterization.
Note 2: $D N L$ and $I N L$ are measured with the potentiometer configured as a voltage-divider (Figure 1) with $H_{-}=V_{D D}$ and $L_{-}=G N D$. The wiper terminal is unloaded and measured with a high-input-impedance voltmeter.
Note 3: R-DNL and R-INL are measured with the potentiometer configured as a variable resistor (Figure 1). DNL and INL are measured with the potentiometer configured as a variable resistor. H_{-}is unconnected and $L_{-}=G N D$. For $V_{D D}=+5 \mathrm{~V}$, the wiper terminal is driven with a source current of $400 \mu \mathrm{~A}$ for the $10 \mathrm{k} \Omega$ configuration, $80 \mu \mathrm{~A}$ for the $50 \mathrm{k} \Omega$ configuration, and $40 \mu \mathrm{~A}$ for the $100 \mathrm{k} \Omega$ configuration. For $V_{D D}=+1.7 \mathrm{~V}$, the wiper terminal is driven with a source current of $150 \mu \mathrm{~A}$ for the $10 \mathrm{k} \Omega$ configuration, $30 \mu \mathrm{~A}$ for the $50 \mathrm{k} \Omega$ configuration, and $15 \mu \mathrm{~A}$ for the $100 \mathrm{k} \Omega$ configuration.
Note 4: The wiper resistance is the worst value measured by injecting the currents given in Note 3 to W_{-}with $L_{-}=$GND. $R W_{-}=\left(V_{W}-V_{H}\right) / W_{-}$
Note 5: Drive HA with a $\overline{1 k H z} \overline{G N D}$ to $V_{D D}$ amplitude tone. $L A=L B=G N D$. No load. WB is at midscale with a 10 pF load. Measure WB.
Note 6: The wiper-settling time is the worst-case 0 to 50% rise time, measured between tap 0 and tap 127. $H_{-}=V_{D D}, L_{-}=G N D$, and the wiper terminal is loaded with 10 pF capacitance to ground.
Note 7: Digital timing is guaranteed by design and characterization, not production tested.
Note 8: The SCL clock period includes rise and fall times ($\mathrm{tR}=\mathrm{tF}$). All digital input signals are specified with $\mathrm{tR}=\mathrm{tF}=2 \mathrm{~ns}$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\mathrm{IH}}\right) / 2$.
Note 9: An appropriate bus pullup resistance must be selected depending on board capacitance. For $\mathrm{I}^{2} \mathrm{C}$-bus specification information from NXP Semiconductor (formerly Philips Semiconductor), refer to the UM10204: I ${ }^{2}$ C-Bus Specification and User Manual.

Figure 1. Voltage-Divider and Variable Resistor Configurations

Dual, 256-Tap, Volatile, Low-Voltage, Linear Taper Digital Potentiometer

Typical Operating Characteristics
$\left(V_{D D}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Dual, 256-Tap, Volatile, Low-Voltage, Linear Taper Digital Potentiometer

$\overline{\left(V_{D D}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text {, unless otherwise noted. } .\right) ~}$

Dual, 256-Tap, Volatile, Low-Voltage, Linear Taper Digital Potentiometer

Typical Operating Characteristics (continued)

$\left(V_{D D}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

VOLTAGE-DIVIDER INL
vs. TAP POSITION ($50 \mathrm{k} \Omega$)

TAP-TO-TAP SWITCHING TRANSIENT (CODE 127 TO 128) 10k Ω

TAP-TO-TAP SWITCHING TRANSIENT
(CODE 127 TO 128) 100k Ω

VOLTAGE-DIVIDER INL
vs. TAP POSITION (100k Ω)

TAP-TO-TAP SWITCHING TRANSIENT (CODE 127 TO 128) 50k Ω

POWER-ON TRANSIENT (50k Ω)

Dual, 256-Tap, Volatile, Low-Voltage, Linear Taper Digital Potentiometer

CHARGE-PUMP FEEDTHROUGH
AT W_ vs. CByp

CHARGE-PUMP FEEDTHROUGH AT W_ vs. FREQUENCY

Dual, 256-Tap, Volatile, Low-Voltage, Linear Taper Digital Potentiometer

Pin Configuration

TOP VIEW

Pin Description

PIN	NAME	FUNCTION
1	HA	Resistor A High Terminal. The voltage at HA can be higher or lower than the voltage at LA. Current can flow into or out of HA.
2	WA	Resistor A Wiper Terminal
3	LA	Resistor A Low Terminal. The voltage at LA can be higher or lower than the voltage at HA. Current can flow into or out of LA.
4	HB	Resistor B High Terminal. The voltage at HB can be higher or lower than the voltage at LB. Current can flow into or out of HB.
5	WB	Resistor B Wiper Terminal
6	LB	Resistor B Low Terminal. The voltage at LB can be higher or lower than the voltage at HB. Current can flow into or out of LB.
7	BYP	Internal Power-Supply Bypass. For additional charge-pump filtering, bypass to GND with a capaci- tor close to the device.
8	I.C.	Internally Connected. Connect to GND.
9	GND	Ground
10	A2	Address Input 2. Connect to VDD or GND.
11	A1	Address Input 1. Connect to VDD or GND.
12	A0	Address Input 0. Connect to VDD or GND.
13	SDA	I²C-Compatible Serial-Data Input/Output. A pullup resistor is required.
14	SCL	I2C-Compatible Serial-Clock Input. A pullup resistor is required.
15	N.C.	No Connection. Not internally connected.
16	VDD	Power-Supply Input. Bypass VDD to GND with a 0.14F capacitor close to the device.

Dual, 256-Tap, Volatile, Low-Voltage, Linear Taper Digital Potentiometer

___Detailed Description
The MAX5392 dual, 256-tap, volatile, low-voltage linear taper digital potentiometer offers three end-to-end resistance values of $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, and $100 \mathrm{k} \Omega$. The potentiometer consists of 255 fixed resistors in series between terminals H_{-}and L_{-}. The potentiometer wiper, W_{-}, is programmable to access any one of the 256 tap points on the resistor string.
The potentiometers are programmable independently of each other. The MAX5392 features an I2C interface.

Charge Pump

TThe MAX5392 contains an internal charge pump that guarantees the maximum wiper resistance, RWL, to be less than 200Ω for supply voltages down to 1.7 V . Pins H_{-}, W_{-}, and L_{-}are still required to be less than VDD + 0.3 V . A bypass input, BYP, is provided to allow additional filtering of the charge-pump output, further reducing clock feedthrough that can occur on H_{-}, W_{-}, or L_{-}. The nominal clock rate of the charge pump is 600 kHz . BYP should remain resistively unloaded as any additional load would increase clock feedthrough. See the Charge-Pump Feedthrough at W_ vs. CBYP graph in the Typical Operating Characteristics for CBYP sizing guidelines with respect to clock feedthrough to the wiper. The value of CBYP does affect the startup time of the charge
pump; however, CBYP does not impact the ability to communicate with the device, nor is there a minimum CBYP requirement. The maximum wiper impedance specification is not guaranteed until the charge pump is fully settled. See the BYP Ramp Time vs. CBYP graph in the Typical Operating Characteristics for CByp impact on charge-pump settling time.

I2C Digital Interface
The I2C interface contains a shift register that decodes the command and address bytes, routing the data to the appropriate control registers. Data written to a control register immediately updates the wiper position. The wipers A and B power up in midposition, $D[7: 0]=80 \mathrm{~h}$.

Serial Addressing

The MAX5392 operates as a slave device that receives data through an ${ }^{2}{ }^{2} \mathrm{C} / \mathrm{SMB}^{2}{ }^{T \mathrm{M}}$-compatible 2 -wire serial interface. The interface uses a serial-data access line (SDA) and a serial-clock line (SCL) to achieve bidirectional communication between master(s) and slave(s). A master, typically a microcontroller, initiates all data transfers to the port and generates the SCL clock that synchronizes the data transfer. See Figure 2. Connect a pullup resistor, typically $4.7 \mathrm{k} \Omega$, between each of the SDA and SCL lines to a voltage between VDD and 5.5 V .

Figure 2. ${ }^{2}$ C Serial-Interface Timing Diagram

Dual, 256-Tap, Volatile, Low-Voltage, Linear Taper Digital Potentiometer

Each transmission consists of a START (S) condition sent by a master, followed by a 7-bit slave address plus a NOP/W bit. See Figures 3, 4, and 7.

START and STOP Conditions

SCL and SDA remain high when the interface is inactive. A master controller signals the beginning of a transmission with a START condition by transitioning SDA from high to low while SCL is high. The master controller issues a STOP condition by transitioning the SDA from low to high while SCL is high, after finishing communicating with the slave. The bus is then free for another transmission. See Figure 2.

Bit Transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable while SCL is high. See Figure 5.

Acknowledge
The acknowledge bit is a clocked 9th bit that the recipient uses to handshake receipt of each byte of data. See Figure 6. Each byte transferred requires a total of 9 bits. The master controller generates the 9th clock pulse, and the recipient pulls down SDA during the acknowledge clock pulse, so the SDA line remains stable low during the high period of the clock pulse.

Figure 3. START and STOP Conditions

Figure 4. Slave Address

Figure 5. Bit Transfer

Dual, 256-Tap, Volatile, Low-Voltage, Linear Taper Digital Potentiometer

Figure 6. Acknowledge

Figure 7. Command and Single Data Byte Received

Slave Address

The MAX5392 includes a 7-bit slave address (Figure 4). The 8th bit following the 7th bit of the slave address is the NOP $\overline{/ W}$ bit. Set the NOP/ \bar{W} bit low for a write command and high for a no-operation command. The device does not support readback.
The device provides three address inputs (A0, A1, and A2), allowing up to eight devices to share a common bus (Table 1). The first 4 bits (MSBs) of the factory-set slave addresses are always 0101. A2, A1, and A0 set the next 3 bits of the slave address. Connect each address input to VDD or GND. Each device must have a unique address to share a common bus.

Message Format for Writing

Write to the devices by transmitting the device's slave address with NOP/ \bar{W} (8th bit) set to zero, followed by at least 2 bytes of information. The first byte of informa-
tion is the command byte. The second byte is the data byte. The data byte goes into the internal register of the device as selected by the command byte (Figure 7 and Table 2).
Table 1. Slave Addresses

ADDRESS INPUTS			SLAVE ADDRESS
A2	A1	A0	
GND	GND	GND	0101000
GND	GND	VDD	0101001
GND	VDD	GND	0101010
GND	VDD	VDD	0101011
VDD	GND	GND	0101100
VDD	GND	VDD	0101101
VDD	VDD	GND	0101110
VDD	VDD	VDD	0101111

Dual, 256-Tap, Volatile, Low-Voltage, Linear Taper Digital Potentiometer

Table 2. $I^{2} \mathrm{C}$ Command Byte Summary

Command Byte

Use the command byte to select the destination of the wiper data. See Table 2.

Command Descriptions

REG A: The data byte writes to register A and the wiper of potentiometer A moves to the appropriate position. $D[7: 0]$ indicates the position of the wiper. $D[7: 0]=00 h$ moves the wiper to the position closest to LA. D[7:0] = FFh moves the wiper closest to HA. $\mathrm{D}[7: 0]$ is 80 h following power-on.
REG B: The data byte writes to register B and the wiper of potentiometer B moves to the appropriate position. $D[7: 0]$ indicates the position of the wiper. $D[7: 0]=00 \mathrm{~h}$ moves the wiper to the position closest to LB. D[7:0] = FFh moves the wiper to the position closest to HB. D[7:0] is 80h following power-on.
REG A and B: The data byte writes to registers A and B and the wipers of potentiometers A and B move to the appropriate position. $\mathrm{D}[7: 0]$ indicates the position of the wiper. $D[7: 0]=00 \mathrm{~h}$ moves the wipers to the position closest to $L_{\text {_ }}$. D[7:0] = FFh moves the wipers to the position closest to H_{-}. $\mathrm{D}[7: 0]$ is $80 h$ following power-on.

Figure 8. Variable Gain Noninverting Amplifier

Applications Information

Variable Gain Amplifier

Figure 8 shows a potentiometer adjusting the gain of a noninverting amplifier. Figure 9 shows a potentiometer adjusting the gain of an inverting amplifier.

Adjustable Dual Regulator
Figure 10 shows an adjustable dual linear regulator using a dual potentiometer as two variable resistors.

Figure 9. Variable Gain Inverting Amplifier

Figure 10. Adjustable Dual Linear Regulator

Dual, 256-Tap, Volatile, Low-Voltage, Linear Taper Digital Potentiometer

Adjustable Voltage Reference

Figure 11 shows an adjustable voltage reference circuit using a potentiometer as a voltage-divider.
Variable Gain Current to Voltage Converter
Figure 12 shows a variable gain current to voltage converter using a potentiometer as a variable resistor.

LCD Bias Control

Figure 13 shows a positive LCD bias control circuit using a potentiometer as a voltage-divider.
Figure 14 shows a positive LCD bias control circuit using a potentiometer as a variable resistor.

Figure 11. Adjustable Voltage Reference

Figure 12. Variable Gain I-to-V Converter

Programmable Filter
Figure 15 shows a programmable filter using a dual potentiometer.

Offset Voltage Adjustment Circuit
Figure 16 shows an offset voltage adjustment circuit using a dual potentiometer.

Chip Information
PROCESS: BiCMOS

Figure 13. Positive LCD Bias Control Using a Voltage Divider

Figure 14. Positive LCD Bias Control Using a Variable Resistor

Dual, 256-Tap, Volatile, Low-Voltage, Linear Taper Digital Potentiometer

Figure 15. Programmable Filter

Figure 16. Offset Voltage Adjustment Circuit

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
16 TSSOP	U16+2	$\underline{21-0066}$	$\underline{90-0117}$

Dual, 256-Tap, Volatile, Low-Voltage, Linear Taper Digital Potentiometer

REVISION NUMBER REVISION DATE DESCRIPTION			PAGES CHANGED	
0	$1 / 10$	Initial release	Added Soldering Temperature in Absolute Maximum Ratings; corrected code in Conditions of -3dB Bandwidth specification in Electrical Characteristics	-
1	$4 / 10$	2,3		
2	$11 / 10$	Changed Electrical Characteristics heading and corrected Figures 9, 12, $14,15,16$	$2,3,4,13,14,15$	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Potentiometer ICs category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :
604-00010 CAT5111VI-10-GT3 CAT5110TBI-10GT3 CAT5111LI-10-G X9C103S CAT5110TBI-50GT3 CAT5112ZI-50-GT3 CAT5111YI-10-GT3 MCP4351-502E/ML MCP4641-502E/ST MCP4651T-503E/ML MCP4162-103E/SN MCP4451-103E/ML MCP4451502E/ST MCP4532T-103E/MF MCP4631-503E/ST MCP4661-502E/ST CAT5113VI-00-GT3 MCP4641T-502E/ML MCP4021-103E/MS DS1855E-010+ MAX5160LEUA+T MCP4231T-503E/ML MCP4142-104E/MF AD5260BRUZ200-RL7 CAT5113LI-50-G CAT5114LI-00$\underline{G} \underline{A D 5116 B C P Z 10-500 R 7}$ AD5116BCPZ80-500R7 AD5122ABRUZ100 AD5122BCPZ10-RL7 AD5142ABRUZ100 AD5143BCPZ10-RL7 AD5253BRUZ10 AD5253BRUZ50 AD5144TRUZ10-EP AD5160BRJZ10-RL7 AD5162BRMZ100 AD5170BRMZ2.5-RL7 AD5162WBRMZ100-RL7 AD5165BUJZ100-R7 AD5170BRMZ10 AD5170BRMZ10-RL7 AD5170BRMZ2.5 AD5170BRMZ50 $\underline{\text { AD5171BRJZ100-R2 AD5171BRJZ10-R2 AD5171BRJZ5-R7 AD5171BRJZ10-R7 AD5171BRJZ5-R2 }}$

