Stereo Audio Taper Potentiometers with Pushbutton Interface

MAX5456/MAX5457

Applications

SmartWiper is a trademark of Maxim Integrated Products, Inc.

Abstract

\section*{General Description}

The MAX5456/MAX5457 dual, logarithmic taper digital potentiometers feature a simple pushbutton interface that controls volume and balance in audio applications. Each potentiometer has 32 tap points and replaces mechanical potentiometers. Refer to the MAX5408MAX5411 data sheet for SPI versions of the MAX5456/ MAX5457.

Use the MAX5456/MAX5457 digital inputs with momentary contact single-pole/single-throw (SPST) pushbutton switches. Each input includes internal debounce circuitry and a $50 \mathrm{k} \Omega$ pullup resistor. The MAX5456/MAX5457 advance the wiper setting once per button push. Maxim's proprietary SmartWiper ${ }^{\text {TM }}$ control eliminates the need for a microcomputer to increase the wiper transition rate. Holding the control input low for more than 1 s advances the wiper at a rate of 4 Hz for 4 s and 16 Hz per second thereafter. The MAX5456/MAX5457 provide temperature coefficients of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ end-to-end and $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ratiometric and a nominal resistance of $10 \mathrm{k} \Omega$ per potentiometer. An integrated click/pop suppression feature minimizes the audible noise generated by wiper transitions. The typical total harmonic distortion plus noise (THD+N) for these devices is 0.01\%. The MAX5457 features a 3-button interface with a $\overline{M O D E}$ input that toggles between volume- and balancecontrol modes. An LED output indicates volume or balance mode. The MAX5456 features a 4-button interface with separate inputs for up and down volume controls and left and right balance controls. The MAX5456/MAX5457 is available in a 16-pin QSOP packages and specified over the extended $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$) temperature range.

[^0]
- SmartWiper Control Provides Accelerated Wiper Motion

- Debounced Pushbutton Interface with Internal Pullup Resistors
- Logarithmic Taper with 2dB Steps Between Taps
- Single +2.7 V to +5.5 V or Dual $\pm 2.7 \mathrm{~V}$ Supply Operation
- Low 0.5uA Standby Supply Current
- Clickless Switching
- 10k Ω End-to-End Fixed Resistance Value
- Mute Function to -90dB (typ)
- Power-On Reset to -12dB Wiper Position
- 32 Tap Positions for Each Wiper
- Small 16-Pin QSOP Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX5456EEE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP
MAX5457EEE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP

+Denotes a lead(Pb)-free/RoHS-compliant package
Note: For leaded version, contact factory.

Pin Configurations

TOP VIEW

Pin Configurations are continued at end of data sheet.

MAX5456/MAX5457

Stereo Audio Taper Potentiometers with Pushbutton Interface

ABSOLUTE MAXIMUM RATINGS

(MAX5456) $\overline{\text { SHDN }}, \overline{M U T E}, \overline{\text { VOLUP, }} \overline{\text { VOLDN, }}$
BAL_to GND...................................-0.3V to (VLOGIC +0.3 V) (MAX5457) $\overline{\text { SHDN }}, \overline{M U T E}, \overline{U P / B A L 1}, \overline{D N / B A L O}, \overline{M O D E}$, MODE_IND to GND
-0.3V to (VLOGIC +0.3 V)

VDD to GND ..-0.3V to +6 V

V LOGIC to GND..-0.3V to +6 V
VLOGIC to VSS..-0.3V to +6 V
VSS to GND...-3.0V to +0.3 V

Peak Current into H_{-}, L_{-}, and	A
Average Current into H_{-}, L_{-}, and W	$\pm 500 \mu \mathrm{~A}$
Input and Output Latchup Immunity	$\pm 200 \mathrm{~mA}$
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=$ 16-Pin QSOP (derate $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)........ 666.7 mW
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature Range	$-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s).	$+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)	$+260^{\circ} \mathrm{C}$

Average Current into H_{-}, L_{-}, and $W_{-} \ldots \ldots . ~ 500 \mu A ~$
Input and Output Latchup Immunity............................... $\pm 200 \mathrm{~mA}$ Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)

Operating Temperature Range
$\omega^{\ldots \ldots \ldots \ldots+150^{\circ} \mathrm{C}}$
Storage Temperature Range $60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Temperature (reflow) .. $+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {LOGIC }}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}_{-}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}_{-}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
End-to-End Resistance	R	Figures 1, 2	10	13	$\mathrm{k} \Omega$
Maximum Bandwidth	fCutoff	From H_ to W_, CLOAD $=10 \mathrm{pF}$	100		kHz
Absolute Ratio Tolerance		No load at the output of the wiper, $\mathrm{W}_{-}=-6 \mathrm{~dB}$	± 0.25		dB
Tap-to-Tap Tolerance			± 0.1		dB
Total Harmonic Distortion Plus Noise	THD+N	$\begin{aligned} & V_{D D}=5 V, V_{H_{-}}=\left(V_{D D} / 2\right)+1 V_{R M S}, \\ & f=1 \mathrm{kHz}, \operatorname{tap}=-6 d B, V_{L_{-}}=V_{D D} / 2, R_{L}=\infty \end{aligned}$	0.01		\%
		$\begin{aligned} & V_{D D}=3 V, V_{S S}=0 V, V_{L_{-}}=1.5 \mathrm{~V}, \\ & V_{H-}=1.5 \mathrm{~V}+1 V_{R M S}, f=1 \mathrm{kHz}, R_{L}=10 \mathrm{k} \Omega \text { to } \\ & \left(\mathrm{V}_{\mathrm{DD}} / 2\right), C_{L}=5 \mathrm{pF}, \operatorname{tap}=-6 \mathrm{~dB} \end{aligned}$	0.23		
Channel-to-Channel Isolation			-100		dB
Interchannel Matching		$\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz , tap $=-6 \mathrm{~dB}$	± 0.5		dB
Mute Attenuation			-90		dB
Power-Supply Rejection Ratio	PSRR		-80		dB
Wiper Resistance	RW		1000	1700	Ω
Wiper Capacitance	Cw		10		pF
H Terminal Capacitance	CH		5		pF
L Terminal Capacitance	CL		7		pF
End-to-End Resistance Temperature Coefficient			50		ppm/ ${ }^{\circ} \mathrm{C}$
Ratiometric Resistance Temperature Coefficient			5		ppm $/{ }^{\circ} \mathrm{C}$
Output Noise	e_{n}	20Hz to 20kHz	0.95		$\mu \mathrm{V}_{\text {RMS }}$
PUSHBUTTON CONTACT INPUTS ($\overline{\text { UP/BAL1, }} \overline{\mathrm{DN}} / \overline{\mathrm{BALO}}, \overline{\text { MUTE, }} \overline{\mathrm{VOLUP}}$, $\overline{\mathrm{VOLDN}}, \overline{\mathrm{BALO}}, \overline{\mathrm{BAL}}, \overline{\mathrm{MODE}})$					
Internal Pullup Resistor	Rpullup		3250	65	$\mathrm{k} \Omega$
Single Pulse-Width Input	tIPW	Figure 5	22.5		ms
Repetitive Input Pulse High Time	tHPW	Figure 5	40		ms
Timeout Period	tws	Click/pop suppression inactive	32		ms

MAX5456/MAX5457

Stereo Audio Taper Potentiometers with Pushbutton Interface

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {LOGIC }}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{H_{-}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}_{-}}=\mathrm{V}_{S S}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
First Autoincrement Point				1		s
First Autoincrement Rate				4		Hz
Second Autoincrement Point				4		s
Second Autoincrement Rate				16		Hz
DIGITAL INPUTS (VLOGIC > 4.5V)						
Input High Voltage	V_{IH}		2.4			V
Input Low Voltage	VIL				0.8	V
Input Leakage Current		Inputs floating			± 1	$\mu \mathrm{A}$
Input Capacitance				5		pF
DIGITAL INPUTS (VLOGIC < 4.5V)						
Input High Voltage	V_{IH}		$\begin{gathered} 0.7 x \\ \text { VLOGIC } \end{gathered}$			V
Input Low Voltage	VIL				$\begin{gathered} 0.3 \times \\ \text { VLOGIC } \end{gathered}$	V
Input Leakage Current		Inputs floating			± 1	$\mu \mathrm{A}$
Input Capacitance				5		pF
POWER SUPPLIES						
Supply Voltage	$V_{\text {DD }}$		2.7		5.5	V
Negative Power Supply	VSS		-2.7		0	V
Supply-Voltage Difference		$V_{D D}-V_{S S}$			5.5	V
Active Supply Current	IDD	(Note 2)			100	$\mu \mathrm{A}$
Standby Supply Current	IstBy	$\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~V}$ LOGIC $=2.7 \mathrm{~V}$ (Note 3$)$		2	10	$\mu \mathrm{A}$
		V LOGIC $=\mathrm{V}_{\text {DD }}=+2.7 \mathrm{~V}, \mathrm{~V}$ SS $=-2.7 \mathrm{~V}($ Note 3)		0.5	1	
Shutdown Supply Current	ISHDN	(Note 4)			1	$\mu \mathrm{A}$
Power-Up Time	tpu			10		ms
Logic Standby Voltage	VLOGIC		2.7		VDD	V
Logic Active Supply Current	ILOGIC	(Note 2)			160	$\mu \mathrm{A}$
Logic Standby Supply Current	ILOGICSTBY	(Note 3)		0.5	1	$\mu \mathrm{A}$
Logic Shutdown Current	ILOGICSHDN	(Note 4)			1	$\mu \mathrm{A}$
DIGITAL OUTPUT, MODE_IND						
Output Low Voltage	VOL	$V_{\text {LOGIC }}=2.7 \mathrm{~V}, \mathrm{ISINK}=10 \mathrm{~mA}$			0.4	V
		VLOGIC $=5.5 \mathrm{~V}$, $\mathrm{ISINK}=10 \mathrm{~mA}$			0.2	
Output Leakage Current				0.1	10	$\mu \mathrm{A}$
Output Capacitance				3		pF
Maximum Sink Current				150		mA

Note 1: Parameters are 100% production tested at $+85^{\circ} \mathrm{C}$ and limits through temperature are guaranteed by design.
Note 2: Supply current measured with the supply on and a button pushed.
Note 3: Supply current measured with the power on, no button pushed, and the wiper position fixed.
Note 4: This is the measured current with SHDN low and MODE_IND unconnected.

MAX5456/MAX5457

Stereo Audio Taper Potentiometers with Pushbutton Interface

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {LOGIC }}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}_{-}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

Stereo Audio Taper Potentiometers with Pushbutton Interface

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {LOGIC }}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

Pin Description

PIN		NAME	FUNCTION
MAX5457	MAX5456		
3	-	$\overline{\text { MODE }}$	Volume/Balance Control. Each transition from high to low toggles between volume and balance modes. MODE is pulled high internally with a $50 \mathrm{k} \Omega$ resistor to VLOGIC. On power-up, the MAX5457 is in volume-control mode.
4	-	MODE_IND	Volume-Contro//Balance-Control Mode Indicator Open-Drain Output. Connect to an LED through a resistor to VLOGIC. When the LED is on, the MAX5457 is in balancecontrol mode. When the LED is off, the MAX5457 is in volume-control mode. See the Mode Indicator, MODE_IND section for more detail.
5	5	H0	Potentiometer 0 High Terminal. H0 and LO terminals can be reversed.
6	6	L0	Potentiometer 0 Low Terminal. LO and HO terminals can be reversed.
7	7	wo	Potentiometer 0 Wiper Terminal
8	8	$\overline{\text { SHDN }}$	Active-Low Shutdown Input. In shutdown mode, the MAX5456/MAX5457 store the last wiper settings. The wipers move to the L end of the resistor string, and the H end of the resistor string disconnects from the signal input. Terminating shutdown mode restores the wipers to their previous settings.
9	9	MUTE	Mute Input. When MUTE is low, the wiper goes to the highest attenuation setting (see Table 1). MUTE is internally pulled up with $50 \mathrm{k} \Omega$ to $V_{\text {LOGIC }}$.
10	10	W1	Potentiometer 1 Wiper Terminal
11	11	L1	Potentiometer 1 Low Terminal. L1 and H 1 terminals can be reversed.
12	12	H1	Potentiometer 1 High Terminal. H1 and L1 terminals can be reversed.
13	13	Vss	Negative Power Supply. Bypass with 0.1 F f to ground.
14	14	GND	Ground
15	15	VLogic	Digital Logic Power Supply. Bypass with $0.1 \mu \mathrm{~F}$ to ground.
16	16	$V_{\text {DD }}$	Analog Power Supply. Bypass with 0.14F to ground.
1	-	$\overline{\mathrm{DN}}$ / $\overline{\text { ALLO }}$	Downward Volume/Channel 0 Balance-Control Input. In volume mode, pressing $\overline{\mathrm{DN}} / \overline{\mathrm{BALO}}$ moves both wipers towards the L terminals. In balance mode, pressing $\overline{\mathrm{DN}} / \overline{\mathrm{BALO}}$ moves the balance towards channel $0 . \overline{\mathrm{DN}} / \overline{\mathrm{BALO}}$ is internally pulled up with $50 \mathrm{~K} \Omega$ to V LOGic.
2	-	$\overline{\text { UP/BAL1 }}$	Upward Volume/Channel 1 Balance-Control Input. In volume mode, pressing UP/BAL1 moves both wipers towards the H terminals. In balance mode, pressing UP/BAL1 moves the balance towards channel 1. $\overline{\mathrm{UP}} / \overline{\mathrm{BAL1}}$ is internally pulled up with $50 \mathrm{k} \Omega$ to VLogic.
-	3	$\overline{\text { BAL }}$	Channel 1 Balance-Control Input. Pressing $\overline{\text { BAL1 }}$ moves the balance towards channel 1. $\overline{\text { BAL1 }}$ is internally pulled up with $50 \mathrm{k} \Omega$ to V LOGIC.
-	4	$\overline{\text { BALO }}$	Channel 0 Balance-Control Input. Pressing $\overline{\mathrm{BALO}}$ moves the balance towards channel $0 . \overline{\text { BALO }}$ is internally pulled up with $50 \mathrm{k} \Omega$ to VLOGIC.
-	1	VOLDN	Downward Volume-Control Input. Pressing VOLDN moves both wipers towards the L terminals. $\overline{\text { VOLDN }}$ is internally pulled up with $50 \mathrm{k} \Omega$ to VLOGIC.
-	2	VOLUP	Upward Volume-Control Input. Pressing VOLUP moves both wipers towards the H terminals. VOLUP is internally pulled up with $50 \mathrm{k} \Omega$ to VLOGIC.

Stereo Audio Taper Potentiometers with Pushbutton Interface

Detailed Description

The MAX5456/MAX5457 dual, logarithmic taper digital potentiometers feature a simple pushbutton interface that controls volume and balance in audio applications. Each potentiometer has 32 tap points and replaces mechanical potentiometers (see the Functional Diagrams).

Up and Down Interface

The MAX5456/MAX5457 interface with momentary contact SPST switches. All switch inputs are internally debounced and pulled up to VLOGIC through 50k Ω resistors. The wiper setting advances once per button press up to 1s. Maxim's SmartWiper control circuitry allows the wiper to advance at a rate of 4 Hz when an input is held low from 1 s up to 4 s , and at a rate of 16 Hz if the contact is maintained for greater than 4 s (see Table 2). The SmartWiper control eliminates the need for a microcomputer to increase the wiper transition rate.
The MAX5456 features independent control inputs for volume and balance control while the MAX5457 MODE input toggles between volume and balance control. Each transition of MODE from high to low toggles the MAX5457 between volume-control and balance-control modes. MODE is internally pulled high with a $50 \mathrm{k} \Omega$ resistor to VLOGIC.

Volume Control
In volume-control mode, the MAX5456/MAX5457s' wipers move simultaneously, maintaining the balance separation between each wiper (Figure 3a).
When either wiper reaches the maximum tap position (position closest to H_{-}), further commands to increase the volume are ignored. Balance separation is maintained in the maximum volume configuration (Figure 3b).
When either wiper reaches the minimum tap position (position closest to L_), further commands to decrease the volume adjust the other wiper until it also reaches the minimum tap position (Figure 3c).
Increasing the volume from this minimum position restores the original balance separation of the wipers (Figure 3d).
When both wipers are in the 31 st tap position (-62 dB attenuation), further commands to VOLDN place the wipers in the mute position (see Table 1). VOLUP or MUTE pulses return wipers to position 31.

Figure 1. Potentiometer Model (Active)

Figure 2. Potentiometer Model (Shutdown)

MAX5456/MAX5457

Stereo Audio Taper Potentiometers with Pushbutton Interface

Figure 3. Volume-Control Operation
Table 1. Wiper Position and Attenuation

POSITION	ATTENUATION (dB)
0	0
1	2
2	4
\vdots	\vdots
6 (POR)	12
\vdots	\vdots
30	60
31	62
32 (mute)	>90

MAX5456/MAX5457

Stereo Audio Taper Potentiometers with Pushbutton Interface

Balance Control

In balance-control mode, the MAX5456/MAX5457 adjust the balance between channel 0 and channel 1 while maintaining the set volume. For example, if the volume of channel 0 equals the volume of channel 1, forcing the balance towards channel 1 increases the attenuation of channel 0 (Figure 4a). If channel 1 is at a higher attenuation than channel 0 , adjusting the balance to channel 1 moves channel 1's wiper up to the same wiper position as channel 0 before attenuating channel 0 (Figure 4b).
To control the wiper quickly with a logic signal, maintain pulses at least 22.5 ms wide and separated by at least 40 ms .

Table 2. Wiper Action vs. Pushbutton Contact Duration

CONTACT DURATION	WIPER ACTION
$\mathrm{t}<22.5 \mathrm{~ms}$	No motion (debouncing).
$22.5 \mathrm{~ms}<\mathrm{t} \leq 1 \mathrm{~s}$	Wiper changes position once.
$1 \mathrm{~s}<\mathrm{t} \leq 4 \mathrm{~s}$	Wiper changes position at a rate of 4 Hz.
$\mathrm{t}>4 \mathrm{~s}$	Wiper changes position at a rate of 16 Hz.

Figure 4. Balance-Control Operation

MAX5456/MAX5457

Stereo Audio Taper Potentiometers with Pushbutton Interface

Click/Pop Suppression

The click/pop suppression feature reduces the audible noise (clicks and pops) that result from wiper transitions. The MAX5456/MAX5457 minimize this noise by allowing the wiper position changes only when $\mathrm{VH}_{-}=\mathrm{V}_{\mathrm{L}}$. Thus, the wiper changes position only when the voltage at $L_{\text {_ }}$ is the same as the voltage at the corresponding H_. Each wiper has its own suppression and timeout circuitry (see Figure 5a). The MAX5456/MAX5457 change wiper position after 32 ms or when $\mathrm{V}_{H_{-}}=\mathrm{V}_{\mathrm{L}}$, whichever occurs first (see Figure 5b).

The suppression circuitry monitors left and right channels separately. In volume-control mode, when the first wiper changes position, the second wiper has 32 ms to change or it will be forced to change.

Power-On Reset
The power-on comparators monitor VDD - VSS and VLOGIC - GND. A power-on reset is initiated when either of the supplies is brought back to normal operating voltage. The power-on-reset feature sets both wipers to -12 dB . Power-on reset places the MAX5457 in volumecontrol mode.

Figure 5a. Wiper Transition Timing Diagram

MAX5456/MAX5457
 Stereo Audio Taper Potentiometers with Pushbutton Interface

Shutdown, $\overline{\text { SHDN }}$
Upon entering shutdown mode, the MAX5456/MAX5457 store the last wiper settings. The wipers move to the L_{-} end of the resistor string, and the H_{-}end of the resistor string disconnects from the signal input. Terminating shutdown mode restores the wipers to their previous settings (see Figure 2). Shutdown does not affect the state of MODE_IND.

Mute Function, $\overline{\text { MUTE }}$
The MAX5456/MAX5457 feature a mute function. Successive pulses on MUTE toggle its setting. Activating the mute
function forces both wipers to maximum attenuation (90 dB typ). Deactivating the mute function returns the wipers to their previous settings. Pressing VOLUP also deactivates mute, setting the wipers to their previous positions. MUTE is internally pulled high with a $50 \mathrm{k} \Omega$ resistor to VLOGIC. When both wipers are in the 31st tap position (-62dB attenuation), further commands to VOLDN place the wipers in the mute position (see Table 1). VOLUP or MUTE pulses return the wipers to position 31.

Figure 5b. Wiper Transition Timing Diagram

MAX5456/MAX5457

Stereo Audio Taper Potentiometers with Pushbutton Interface

Mode Control, $\overline{\text { MODE }}$

The MAX5457 MODE input toggles between volumeand balance-control modes. Force MODE low to toggle between volume-control and balance-control modes. For example, driving MODE low once while in volumecontrol mode, switches the MAX5457 to balance-control mode. Driving mode low once again, switches the MAX5457 back to volume-control mode. $\overline{\text { MODE }}$ is internally pulled high with a $50 \mathrm{k} \Omega$ resistor to VLOGIC. The MAX5457 powers up in volume-control mode.

Mode Indicator, MODE_IND
MODE_IND is the volume-control and balance-control mode indicator with an open-drain output. Connect MODE_IND to an LED through a pullup resistor to VLOGIC. When the LED is on, the MAX5457 is in balancecontrol mode. When the LED is off, the MAX5457 is in volume-control mode. See the Mode Control, MODE section for more detail on switching between modes. Shutdown does not affect the state of MODE_IND.

Multiple Button Pushes

The MAX5456/MAX5457 do not respond to simultaneous button pushes. Pushing more than one button at the same time stops the wipers in their present states. Only a single button push configures the device. Additionally, a 40 ms blocking period affects all other inputs when releasing any input forced low. The MAX5456/MAX5457 do not respond to any logic input until the blocking period ends. If multiple wiper-control buttons are pressed, all wiper-control connections must be released before the part will respond to further commands.

Applications Information

Stereo Volume/Balance Control
Figure 6 shows a volume/balance application using the MAX5457. The op amp is connected in a follower (noninverting gain) configuration to isolate the potentiometer's wiper impedance from the load and provide drive capability. Connect the W_ of the MAX5457 to the positive input of a noninverting gain amp. The pushbutton potentiometers attenuate the input signals. Use the MODE input to switch between volume-control and bal-ance-control modes.

MAX5456/MAX5457
 Stereo Audio Taper Potentiometers with Pushbutton Interface

Figure 6. Volume/Balance Control

MAX5456/MAX5457

Stereo Audio Taper Potentiometers with Pushbutton Interface

Typical Application Circuit (Single Supply)

Typical Application Circuit (Dual Supplies)

MAX5456/MAX5457
Stereo Audio Taper Potentiometers with Pushbutton Interface

Functional Diagrams

MAX5456/MAX5457

Stereo Audio Taper Potentiometers with Pushbutton Interface

Functional Diagrams (continued)

MAX5456/MAX5457
 Stereo Audio Taper Potentiometers with Pushbutton Interface

Pin Configurations (continued)
Chip Information

PROCESS: CMOS
__ Package Information
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or " - " in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	$\begin{gathered} \hline \text { PACKAGE } \\ \text { CODE } \end{gathered}$	OUTLINE NO.	$\begin{array}{c\|} \hline \text { LAND } \\ \text { PATTERN NO. } \\ \hline \end{array}$
16 QSOP	E16+1	21-0055	90-0167

MAX5456/MAX5457
 Stereo Audio Taper Potentiometers
 with Pushbutton Interface

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$11 / 04$	Initial release	-
2	$8 / 12$	Update Ordering Information, Absolute Maximum Ratings, Pin Description, Pin Configuration. Removed Selector Guide and added Package Information table and Revision History.	$1,2,6,14$,
$18-20$			

maxim
integrated

[^1]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Potentiometer ICs category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :
604-00010 CAT5111VI-10-GT3 CAT5110TBI-10GT3 CAT5111LI-10-G X9C103S CAT5110TBI-50GT3 CAT5112ZI-50-GT3 CAT5111YI-10-GT3 MCP4351-502E/ML MCP4641-502E/ST MCP4651T-503E/ML MCP4162-103E/SN MCP4451-103E/ML MCP4451502E/ST MCP4532T-103E/MF MCP4631-503E/ST MCP4661-502E/ST CAT5113VI-00-GT3 MCP4641T-502E/ML MCP4021-103E/MS DS1855E-010+ MAX5160LEUA+T MCP4231T-503E/ML MCP4142-104E/MF AD5260BRUZ200-RL7 CAT5113LI-50-G CAT5114LI-00$\underline{G} \underline{A D 5116 B C P Z 10-500 R 7}$ AD5116BCPZ80-500R7 AD5122ABRUZ100 AD5122BCPZ10-RL7 AD5142ABRUZ100 AD5143BCPZ10-RL7 AD5253BRUZ10 AD5253BRUZ50 AD5144TRUZ10-EP AD5160BRJZ10-RL7 AD5162BRMZ100 AD5170BRMZ2.5-RL7 AD5162WBRMZ100-RL7 AD5165BUJZ100-R7 AD5170BRMZ10 AD5170BRMZ10-RL7 AD5170BRMZ2.5 AD5170BRMZ50 $\underline{\text { AD5171BRJZ100-R2 AD5171BRJZ10-R2 AD5171BRJZ5-R7 AD5171BRJZ10-R7 AD5171BRJZ5-R2 }}$

[^0]: Stereo Volume Control
 Fading and Balancing Stereo Signals
 Stereo Blending and Mixing

 ## Typical Application Circuits and Selector Guide appear at
 end of data sheet.

[^1]: Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

