

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

General Description

The MAX5703/MAX5704/MAX5705 single-channel, low-power, 8-/10-/12-bit, voltage-output digital-to-analog converters (DACs) include output buffers and an internal reference that is selectable to be 2.048V, 2.500V, or 4.096V. The MAX5703/MAX5704/MAX5705 accept a wide supply voltage range of 2.7V to 5.5V with extremely low power (< 1mW) consumption to accommodate most low-voltage applications. A precision external reference input allows rail-to-rail operation and presents a $100\mathrm{k}\Omega$ (typ) load to an external reference.

The MAX5703/MAX5704/MAX5705 have a 50MHz, 3-wire SPI/QSPI™/MICROWIRE®/DSP-compatible serial interface. The DAC output is buffered and has a low supply current of 155µA (typical at 3V) and a low offset error of ±0.5mV (typical). On power-up, the MAX5703/MAX5704/MAX5705 reset the DAC outputs to zero, providing additional safety for applications that drive valves or other transducers which need to be off on power-up. The internal reference is initially powered down to allow use of an external reference.

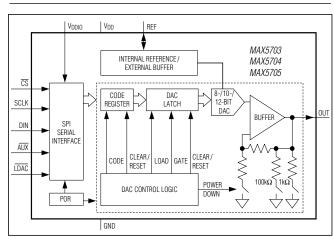
The MAX5703/MAX5704/MAX5705 include a user-configurable active-low asynchronous input, \overline{AUX} for additional flexibility. This input can be programmed to asynchronously clear (\overline{CLR}) or temporarily gate (\overline{GATE}) the DAC output to a user-programmable value. A dedicated active-low asynchronous \overline{LDAC} input is also included. This allows simultaneous output updates of multiple devices.

The MAX5703/MAX5704/MAX5705 are available in 10-pin TDFN/µMAX® packages and are specified over the -40°C to +125°C temperature range.

Applications

Programmable Voltage and Current Sources
Gain and Offset Adjustment
Automatic Tuning and Optical Control
Power Amplifier Control and Biasing
Process Control and Servo Loops
Portable Instrumentation
Data Acquisition

QSPI is a trademark of Motorola, Inc. MICROWIRE is a registered trademark of National Semiconductor Corp.


μΜΑΧ is a registered trademark of Maxim Integrated Products, Inc.

Benefits and Features

- ♦ Single High-Accuracy DAC Channel
 - ♦ 12-Bit Accuracy Without Adjustments

 - **♦ Monotonic Over All Operating Conditions**
- ◆ Three Precision Selectable Internal References
 ⇒ 2.048V, 2.500V, or 4.096V
- ♦ Internal Output Buffer
 - ♦ Rail-to-Rail Operation with External Reference
 - ♦ 6.3µs Settling Time
 - \diamondsuit Output Directly Drives 2k $\!\Omega$ Loads
- ♦ Small, 10-Pin, 2mm x 3mm TDFN and 3mm x 5mm µMAX Packages
- ♦ Wide 2.7V to 5.5V Supply Range
- ♦ Flexible 1.8V to 5.5V V_{DDIO}
- ♦ 50MHz, 3-Wire, SPI/QSPI/MICROWIRE/DSP-Compatible Serial Interface
- ♦ Power-On-Reset to Zero-Scale DAC Output
- ♦ <u>User-Configurable</u> Asynchronous I/O Functions: <u>CLR</u>, <u>LDAC</u>, <u>GATE</u>
- ♦ Three Software-Selectable Power-Down Output Impedances: 1kΩ, 100kΩ, or High Impedance
- ♦ Low 155µA DAC Supply Current at 3V

Functional Diagram

Ordering Information appears at end of data sheet.

For related parts and recommended products to use with this part, refer to: www.maximintegated.com/MAX5703.related

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

ABSOLUTE MAXIMUM RATINGS

V _{DD} to GND	-0.3V to +6V
V _{DDIO} to GND	-0.3V to +6V
OUT, REF to GND0.3V to lower of (V _{DD} + 0.	
CS, SCLK, DIN, AUX, LDAC to GND	-0.3V to +6V
Continuous Power Dissipation ($T_A = +70$ °C)	
TDFN (derate 14.9mW/°C above +70°C)	1188.7mW
μMAX (derate 8.8mW/°C above +70°C)	707.3mW

Maximum Continuous Current into Any Pin	±50mA
Operating Temperature Range	-40°C to +125°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

TDFN

Junction-to-Ambient Thermal Resistance (θ_{JA})67.3°C/W μ MAX

Junction-to-Ambient Thermal Resistance (θ_{JA}).....113.1°C/W Junction-to-Ambient Thermal Resistance (θ_{JC})........36°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegated.com/thermal-tutorial.

ELECTRICAL CHARACTERISTICS

 $(V_{DD}=2.7V \text{ to } 5.5V, V_{DDIO}=1.8V \text{ to } 5.5V, V_{GND}=0V, C_L=200 pF, R_L=2k\Omega$, $T_A=-40^{\circ}C$ to +125°C, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC PERFORMANCE (Note 3)						
		MAX5703	8			
Resolution and Monotonicity	N	MAX5704	10			Bits
		MAX5705	12			
		MAX5703, 8 bits	-0.25	±0.05	+0.25	
Integral Nonlinearity (Note 4)	INL	MAX5704, 10 bits	-0.5	±0.2	+0.5	LSB
		MAX5705, 12 bits	-1	±0.5	+1	
		MAX5703, 8 bits	-0.25	±0.05	+0.25	
Differential Nonlinearity (Note 4)	DNL	MAX5704, 10 bits	-0.5	±0.1	+0.5	LSB
		MAX5705, 12 bits	-1	±0.2	+1	
Offset Error (Note 5)	OE		-5	±0.5	+5	mV
Offset Error Drift				±10		μV/°C
Gain Error (Note 5)	GE		-1.0	±0.1	+1.0	%FS
Gain Temperature Coefficient		With respect to V _{REF}		±2.5		ppm of FS/°C
Zero-Scale Error			0		+10	mV
Full-Scale Error		With respect to V _{REF}	-0.5		+0.5	%FS

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD}=2.7V \text{ to } 5.5V, V_{DDIO}=1.8V \text{ to } 5.5V, V_{GND}=0V, C_L=200pF, R_L=2k\Omega$, $T_A=-40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CON	IDITIONS	MIN	TYP	MAX	UNITS
DAC OUTPUT CHARACTERISTIC	cs						
		No load		0		V_{DD}	
Output Voltage Range (Note 6)		$2k\Omega$ load to GND		0		V _{DD} - 0.2	V
		$2k\Omega$ load to V_{DD}		0.2		V_{DD}	
Lond Dogulation		V V/2	$V_{DD} = 3V \pm 10\%,$ $II_{OUT}I \le 5mA$		300		μV/mA
Load Regulation		$V_{OUT} = V_{FS}/2$	$V_{DD} = 5V \pm 10\%,$ $II_{OUT}I \le 10mA$		300		μν/πιΑ
DO O to the form a day of		V /0	$V_{DD} = 3V \pm 10\%,$ $II_{OUT}I \le 5mA$		0.3		Ω
DC Output Impedance		$V_{OUT} = V_{FS}/2$	$V_{DD} = 5V \pm 10\%,$ $II_{OUT}I \le 10mA$		0.3		1 12
Capacitive Load Handling	CL				500		pF
Resistive Load Handling	RL			2			kΩ
			Sourcing (output short to GND)		30		
Short-Circuit Output Current		V _{DD} = 5.5V	Sinking (output shorted to V _{DD})		40		mA
DYNAMIC PERFORMANCE							
Voltage-Output Slew Rate	SR	Positive and negati	ve		2.0		V/µs
		1/4 scale to 3/4 scale	, to ≤ 1 LSB, MAX5703		2.8		
Voltage-Output Settling Time		1/4 scale to 3/4 scale	, to ≤ 1 LSB, MAX5704		5.2		μs
		1/4 scale to 3/4 scale	, to ≤ 1 LSB, MAX5705		6.3		
DAC Glitch Impulse		Major code transition	on		5.0		nV·s
Digital Feedthrough		Code = 0, all digita	I inputs from 0V to		0.5		nV·s
Dower He Time		Startup calibration	time (Note 7)		200		μs
Power-Up Time		From power-down	mode		60		μs
DC Power-Supply Rejection		$V_{DD} = 3V \pm 10\%$ or	5V ±10%		100		μV/V

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD}=2.7V \text{ to } 5.5V, V_{DDIO}=1.8V \text{ to } 5.5V, V_{GND}=0V, C_L=200 \text{pF}, R_L=2 \text{k}\Omega$, $T_A=-40^{\circ}\text{C}$ to +125°C, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONI	DITIONS	MIN	TYP	MAX	UNITS
		F	f = 1kHz		88		
		External reference	f = 10kHz		79		
		2.048V internal	f = 1kHz		108		
Output Voltage-Noise Density		reference	f = 10kHz		98		1
(DAC Output at Midscale)		2.5V internal	f = 1kHz		117		nV/√Hz
		reference	f = 10kHz		110		
		4.096V internal	f = 1kHz		152		1
		reference	f = 10kHz		145	-	
			f = 0.1Hz to 10Hz		10		
		External reference	f = 0.1Hz to $10kHz$		72		
			f = 0.1Hz to 300kHz		298		
		0.040)//	f = 0.1Hz to 10Hz		11		
		2.048V internal reference	f = 0.1Hz to $10kHz$		89		
Integrated Output Noise		reference	f = 0.1Hz to 300kHz		370		1
(DAC Output at Midscale)		0.5)//	f = 0.1Hz to 10Hz		12		μV _{P-P}
		2.5V internal	f = 0.1Hz to $10kHz$		99		1
		reference	f = 0.1Hz to 300kHz		355		
			f = 0.1Hz to 10Hz		13		1
		4.096V internal reference	f = 0.1Hz to $10kHz$		128		
		reference	f = 0.1Hz to 300kHz		400		1
		F	f = 1kHz		113		
		External reference	f = 10kHz		100		
		2.048V internal	f = 1kHz		172		
Output Voltage-Noise Density		reference	f = 10kHz		157		1
(DAC Output at Full Scale)		2.5V internal	f = 1kHz		195		nV/√Hz
		reference	f = 10kHz		180		
		4.096V internal	f = 1kHz		279		
		reference	f = 10kHz		258		
			f = 0.1Hz to 10Hz		12		
		External reference	f = 0.1Hz to 10kHz		88		
			f = 0.1Hz to 300kHz		280		
		0.040)//: .	f = 0.1Hz to 10Hz		14		
		2.048V internal reference	f = 0.1Hz to $10kHz$		135		
Integrated Output Noise		relefence	f = 0.1Hz to 300kHz		530]
(DAC Output at Full Scale)		0.5//:	f = 0.1Hz to 10Hz		15		μV _{P-P}
		2.5V internal reference	f = 0.1Hz to 10kHz		160		
		Telefelice	f = 0.1Hz to 300kHz		550		
		4.000)/: /	f = 0.1Hz to 10Hz		23		
		4.096V internal reference	f = 0.1Hz to $10kHz$		220		
		1010101100	f = 0.1Hz to 300kHz		610		

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = 2.7V \text{ to } 5.5V, V_{DDIO} = 1.8V \text{ to } 5.5V, V_{GND} = 0V, C_L = 200pF, R_L = 2k\Omega$, $T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CO	NDITIONS	MIN	TYP	MAX	UNITS
REFERENCE INPUT							
Reference Input Range	V _{REF}			1.24		V _{DD}	V
Reference Input Current	I _{REF}	$V_{REF} = V_{DD} = 5.5V$	1		55	75	μΑ
Reference Input Impedance	R _{REF}			75	100		kΩ
REFERENCE OUPUT							
		$V_{REF} = 2.048V, T_{A}$	= +25°C	2.043	2.048	2.053	
Reference Output Voltage	V _{REF}	V _{REF} = 2.5V, T _A =	+25°C	2.494	2.500	2.506	V
		$V_{REF} = 4.096V, T_{A}$	= +25°C	4.086	4.096	4.106	
			f = 1kHz		129		
		$V_{REF} = 2.048V$	f = 10kHz		122		
Reference Output Noise Density		V 2.500V	f = 1kHz		158		m\//a/\
Reference Output Noise Density		$V_{REF} = 2.500V$	f = 10kHz		151		nV/√Hz
		V 4.00CV	f = 1kHz		254		
		$V_{REF} = 4.096V$	f = 10kHz		237		
			f = 0.1Hz to 10Hz		12		
		$V_{REF} = 2.048V$	f = 0.1Hz to $10kHz$		110		
			f = 0.1Hz to 300kHz		390		
			f = 0.1Hz to 10Hz		15		
Integrated Reference Output Noise		$V_{REF} = 2.500V$	f = 0.1Hz to $10kHz$		129		μV _{P-P}
INOISE			f = 0.1Hz to 300kHz		430		
			f = 0.1Hz to 10Hz		20		
		$V_{REF} = 4.096V$	f = 0.1Hz to $10kHz$		205		
			f = 0.1Hz to 300kHz		525		
Reference Temperature		MAX5705A			±4	±12	
Coefficient (Note 8)		MAX5703/MAX570	4/MAX5705B		±10	±25	ppm/°C
Reference Drive Capacity		External load			25		kΩ
Reference Capacitive Load Handling					200		pF
Reference Load Regulation		I _{SOURCE} = 0 to 500	ΟμΑ		1.0		mV/mA
Reference Line Regulation					0.1		mV/V

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD}=2.7V \text{ to } 5.5V, V_{DDIO}=1.8V \text{ to } 5.5V, V_{GND}=0V, C_L=200pF, R_L=2k\Omega$, $T_A=-40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	COND	DITIONS	MIN	TYP	MAX	UNITS
POWER REQUIREMENTS							
Cupply Voltage	\/	$V_{REF} = 4.096V$		4.5		5.5	V
Supply Voltage	V _{DD}	All other options		2.7		5.5	V
I/O Supply Voltage	V _{DDIO}			1.8		5.5	V
		External reference	V _{REF} = 3V		135	190	
		External reference	V _{REF} = 5V		165	225	
		Internal reference,	$V_{REF} = 2.048V$		190	265	
Supply Current (DAC Output at		reference pin	$V_{REF} = 2.5V$		205	280	
Midscale) (Note 9)	I _{DD}	undriven	$V_{REF} = 4.096V$		250	340	μΑ
			V _{REF} = 2.048V		215	300	
		Internal reference, reference pin driven	V _{REF} = 2.5V		225	315	
		reference pin driven	V _{REF} = 4.096V		275	375	
			V _{REF} = 3V		155	210	
		External reference	V _{REF} = 5V		200	265	
		Internal reference,	V _{REF} = 2.048V		205	280	
Supply Current (DAC Output at		reference pin	V _{REF} = 2.5V		220	300	
Full Scale) (Note 9)	I _{DD}	undriven	V _{REF} = 4.096V		275	375	μΑ
			V _{REF} = 2.048V		225	310	
		Internal reference,	V _{REF} = 2.5V		240	330	
		reference pin driven	$V_{REF} = 4.096V$		300	410	
Power-Down Mode Supply			V _{REF} = 2.048V		90	135	
Current (DAC Powered Down,	I _{DD}	Internal reference,	V _{REF} = 2.5V		93	135	μΑ
Reference Remains Active) (Note 9)		reference pin driven	$V_{REF} = 4.096V$		100	150	·
Power-Down Mode Supply Current (Note 9)	I _{PD}	External reference, V			0.4	2	μΑ
Digital Supply Current (Note 9)	I _{DDIO}					1.0	μΑ
DIGITAL INPUT CHARACTERIST		LK, DIN, LDAC, AUX)					
		2.2V < V _{DDIO} < 5.5V		0.7 x V _{DDIO}			.,
Input High Voltage	V _{IH}	1.8V < V _{DDIO} < 2.2V		0.8 x V _{DDIO}			V
land the second land	.,,	2.2V < V _{DDIO} < 5.5V				0.3 x V _{DDIO}	
Input Low Voltage	V _{IL}	1.8V < V _{DDIO} < 2.2V				0.2 x V _{DDIO}	V

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD}=2.7V \text{ to } 5.5V, V_{DDIO}=1.8V \text{ to } 5.5V, V_{GND}=0V, C_L=200pF, R_L=2k\Omega$, $T_A=-40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
Hysteresis Voltage	V _H				0.15		V
Input Leakage Current (Note 9)	I _{IN}				±0.1	±1	μA
Input Capacitance	C _{IN}				3		рF
SPI TIMING CHARACTERISTICS	(CS, SCLK,	DIN, $\overline{\text{LDAC}}$, $\overline{\text{AUX}}$) (N	ote 10)				
COLK Francisco		$2.7V \le V_{DDIO} \le 5.5V$	/	0		50	N 41 1-
SCLK Frequency		$1.8V \le V_{DDIO} < 2.7V$	J	0		33	MHz
COLK David		$2.7V \le V_{DDIO} \le 5.5V$	/	20			
SCLK Period	tsclk	$1.8V \le V_{DDIO} < 2.7V$	J	30			ns
SCLK Pulse Width High	t _{CH}			8			ns
SCLK Pulse Width Low	t _{CL}			8			ns
CC Foll to CCL // Foll Cotup Time		To first SCLK	$2.7V \le V_{DDIO} \le 5.5V$	8			
S Fall to SCLK Fall Setup Time	t _{CSS0}	falling edge	$1.8V \le V_{DDIO} < 2.7V$	12			ns
CS Fall to SCLK Fall Hold Time	t _{CSH0}	Applies to inactive Spreceding the first S		0			ns
CS Rise to SCLK Fall Hold Time	t _{CSH1}	Applies to the 24th	SCLK falling edge	0			ns
CS Rise to SCLK Fall	t _{CSA}	Applies to the 24th aborted sequence	SCLK falling edge,	12			ns
SCLK Fall to CS Fall	tCSF	Applies to 24th SCL	K falling edge	100			ns
CS Pulse Width High	t _{CSPW}			20			ns
DIN to SCLK Fall Setup Time	t _{DS}			5			ns
DIN to SCLK Fall Hold Time	t _{DH}			4.5			ns
CLR Pulse Width Low	t _{CLPW}			20			ns
CLR Rise to CS Fall	tcsc	Required for comma	and to be executed	20			ns
LDAC Pulse Width Low	t _{LDPW}			20			ns
LDAC Fall to SCLK Fall Hold	t _{LDH}	Applies to 24th SCL	K falling edge	20			ns

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD}=2.7V \text{ to } 5.5V, V_{DDIO}=1.8V \text{ to } 5.5V, V_{GND}=0V, C_L=200 pF, R_L=2k\Omega$, $T_A=-40^{\circ}C$ to +125°C, unless otherwise noted.) (Note 2)

- **Note 2:** Electrical specifications are production tested at $T_A = +25^{\circ}C$. Specifications over the entire operating temperature range are guaranteed by design and characterization. Typical specifications are at $T_A = +25^{\circ}C$.
- Note 3: DC Performance is tested without load.
- Note 4: Linearity is tested with unloaded outputs to within 20mV of GND and VDD.
- **Note 5:** Gain and offset calculated from measurements made with $V_{REF} = V_{DD}$ at code 30 and 4065 for MAX5705, code 8 and 1016 for MAX5704, and code 2 and 254 for MAX5703.
- Note 6: Subject to zero and full-scale error limits and $V_{\mbox{\scriptsize REF}}$ settings.
- Note 7: On power-up, the device initiates an internal 200µs (typ) calibration sequence. All commands issued during this time will be ignored.
- Note 8: Specification is guaranteed by design and characterization.
- **Note 9:** Static logic inputs with $V_{IL} = V_{GND}$ and $V_{IH} = V_{DDIO}$.
- **Note 10:** All timing is tested with $V_{IL} = V_{GND}$ and $V_{IH} = V_{DDIO}$.

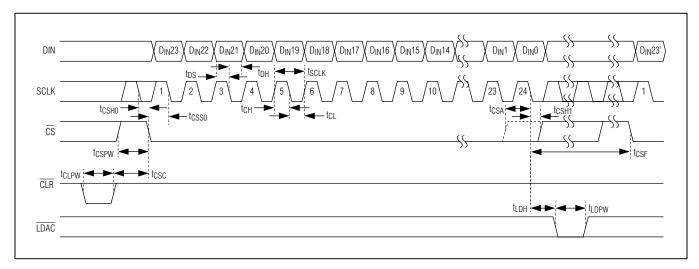
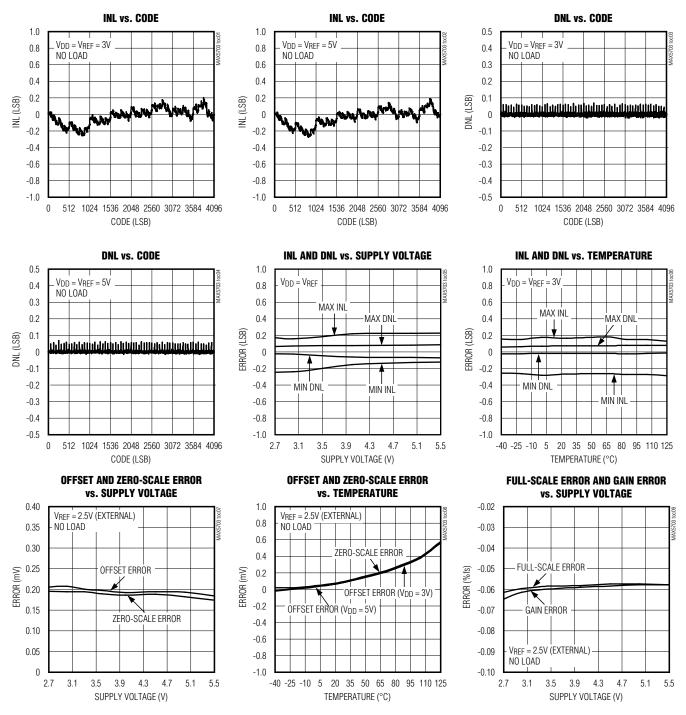
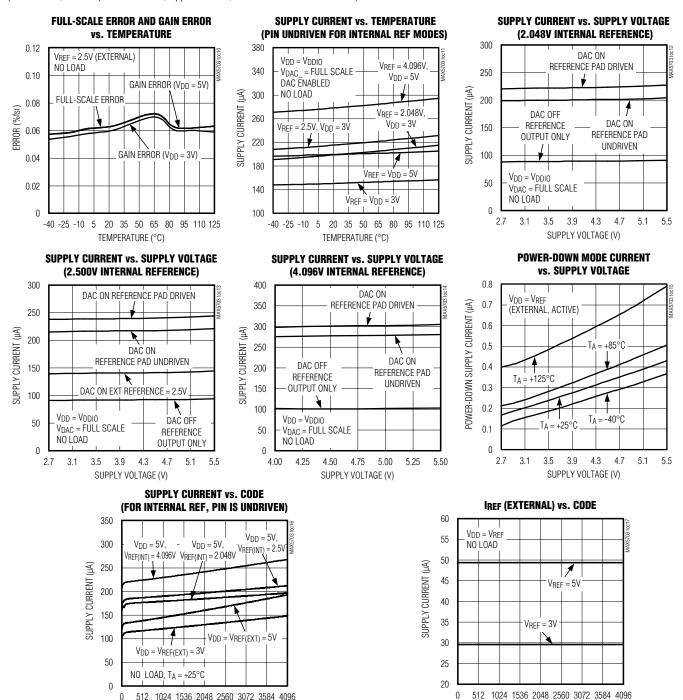



Figure 1. SPI Serial Interface Timing Diagram

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

Typical Operating Characteristics


(MAX5705, 12-bit performance, $T_A = +25^{\circ}C$, unless otherwise noted.)

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output **Voltage DACs with Internal Reference and SPI Interface**

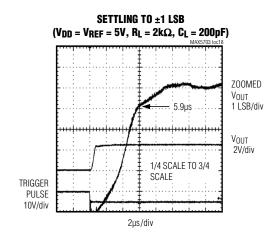
Typical Operating Characteristics (continued)

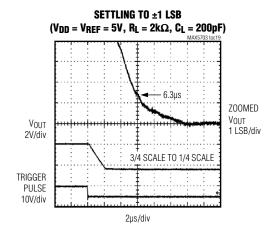
(MAX5705, 12-bit performance, $T_A = +25^{\circ}C$, unless otherwise noted.)

10 Maxim Integrated

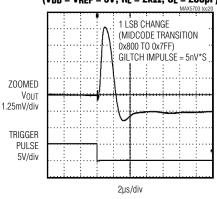
CODE (LSB)

512 1024 1536 2048 2560 3072 3584 4096

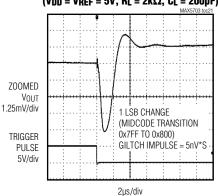

CODE (LSB)

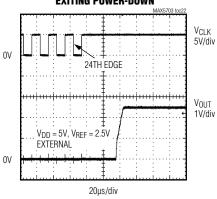

0

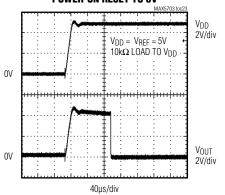
Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface


Typical Operating Characteristics (continued)

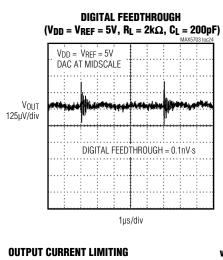
(MAX5705, 12-bit performance, $T_A = +25^{\circ}C$, unless otherwise noted.)

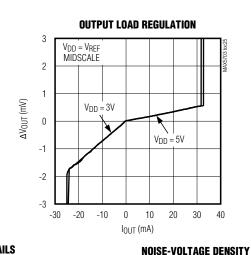


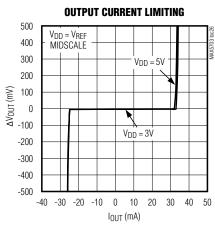

MAJOR CODE TRANSITION GLITCH ENERGY (VDD = VREF = 5V, RL = $2k\Omega$, CL = 200pF)

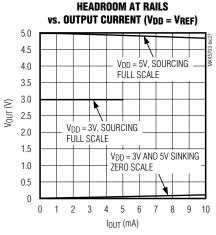


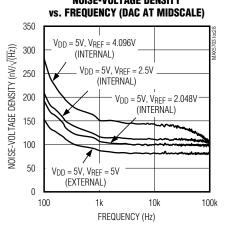
V_{OUT} vs. TIME TRANSIENT EXITING POWER-DOWN

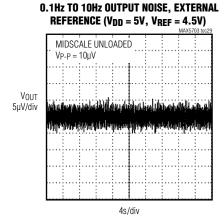

POWER-ON RESET TO OV

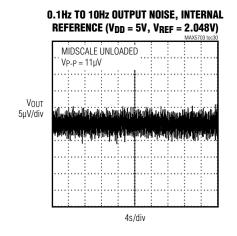



Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

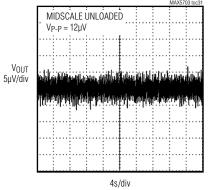

Typical Operating Characteristics (continued)


(MAX5705, 12-bit performance, $T_A = +25^{\circ}C$, unless otherwise noted.)





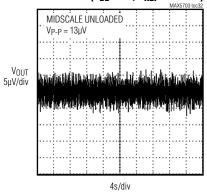


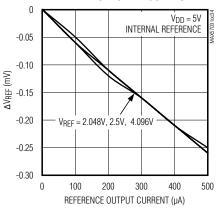


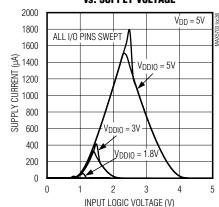
Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

Typical Operating Characteristics (continued)

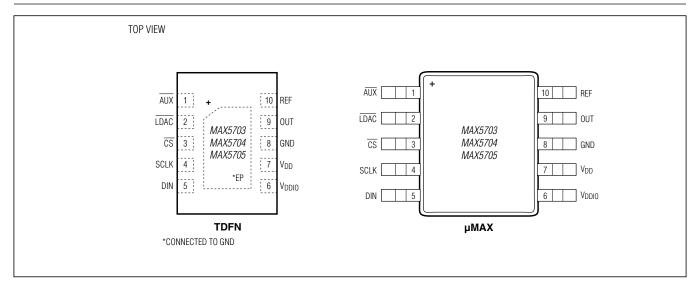
(MAX5705, 12-bit performance, $T_A = +25^{\circ}C$, unless otherwise noted.)


VREF DRIFT vs. TEMPERATURE


INTERNAL REFERENCE NOISE DENSITY vs. FREQUENCY


0.1Hz TO 10Hz OUTPUT NOISE, INTERNAL REFERENCE ($V_{DD}=5V,\,V_{REF}=4.096V$)

REFERENCE LOAD REGULATION



SUPPLY CURRENT vs. SUPPLY VOLTAGE

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

Pin Configurations

Pin Description

PIN	NAME	FUNCTION
1	AUX	Active-Low Auxilliary Asynchronous Input. User configurable, see Table 7. If not using the $\overline{\text{AUX}}$ functions, connect this input to V_{DDIO} .
2	LDAC	Dedicated Active-Low Asynchronous Load DAC
3	CS	SPI Chip-Select Input
4	SCLK	SPI Interface Clock Input
5	DIN	SPI Interface Data Input
6	V _{DDIO}	Digital Interface Power-Supply Input
7	V _{DD}	Supply Voltage Input. Bypass V _{DD} with a 0.1µF capacitor to GND.
8	GND	Ground
9	OUT	Buffered DAC Output
10	REF	Reference Voltage Input/Output
_	EP	Exposed Pad (TDFN Only). Connect to ground.

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

Detailed Description

The MAX5703/MAX5704/MAX5705 are single-channel, low-power, 8-/10-/12-bit voltage-output digital-to-analog converters (DACs) with an internal output buffer. The wide supply voltage range of 2.7V to 5.5V and low power consumption accommodate low-power and low-voltage applications. The devices present a $100k\Omega$ (typ) load to the external reference. The internal output buffer allows rail-to-rail operation. An internal voltage reference is available with software selectable options of 2.048V, 2.500V, or 4.096V. The devices feature a 50MHz, 3-wire SPI/QSPI/MICROWIRE/DSP-compatible serial interface to save board space and reduce complexity in isolated applications. The MAX5703/MAX5704/MAX5705 include a serial-in/parallel-out shift register, internal CODE and DAC registers, a power-on-reset (POR) circuit to initialize the DAC output to code zero, and control logic. A userconfigurable AUX pin is available to asynchronously clear or gate the device output independent of the serial interface.

DAC Output (OUT)

The MAX5703/MAX5704/MAX5705 include an internal buffer on the DAC output. The internal output buffer provides improved load regulation for the DAC output. The output buffer slews at 1V/µs (typ) and drives up to $2k\Omega$ in parallel with 500pF. The analog supply voltage (VDD) determines the maximum output voltage range of the devices as VDD powers the output buffer. Under no-load conditions, the output buffer drives from GND to VDD, subject to offset and gain errors. With a $2k\Omega$ load to GND, the output buffer drives from GND to within and 200mV of VDD. With a $2k\Omega$ load to VDD, the output buffer drives from VDD to within 200mV of GND.

The DAC ideal output voltage is defined by:

$$V_{OUT} = V_{REF} \times \frac{D}{2^N}$$

Where D = code loaded into the DAC register, $V_{REF} = \text{reference voltage}$, N = resolution.

Internal Register Structure

The user interface is separated from the DAC logic to minimize digital feedthrough. Within the serial interface is an input shift register, the contents of which can be routed to control registers or the DAC itself, as determined by the user command.

Within the device there is a CODE register followed by a DAC Latch register (see the *Functional Diagram*). The contents of the CODE register hold pending DAC output settings which can later be loaded into the DAC registers. The CODE register can be updated using both CODE and CODE_LOAD user commands. The contents of the DAC register hold the current DAC output settings. The DAC register can be updated directly from the serial interface using the CODE_LOAD commands or can upload the current contents of the CODE register using LOAD commands or the LDAC input.

The contents of both CODE and DAC registers are maintained during all software power-down states, so that when the DAC is returned to a normal operating mode, it returns to its previously stored output settings. Any CODE or LOAD commands issued during software power-down states continue to update the register contents. The SW_CLEAR command clears the contents of the CODE and DAC registers to the user-programmable default values. The SW_RESET command resets all configuration registers to their power-on default states, while resetting the CODE and DAC registers to zero scale.

Internal Reference

The MAX5703/MAX5704/MAX5705 include an internal precision voltage reference that is software selectable to be 2.048V, 2.500V, or 4.096V. When an internal reference is selected, that voltage is available on the REF pin for other external circuitry (see the <u>Typical Operating Circuits</u>) and can drive a 25k Ω load.

External Reference

The external reference input features a typical input impedance of $100k\Omega$ and accepts an input voltage from +1.24V to V_{DD} . Connect an external voltage supply between REF and GND to apply an external reference. The MAX5703/4/5 power up and reset to external reference mode. Visit www.maximintegated.com/products/references for a list of available external voltage-reference devices.

AUX Input

The MAX5703/MAX5704/MAX5705 provide an asynchronous \overline{AUX} (active-low) input. Use the CONFIG command to program the device to use the input in one of the following modes: \overline{CLR} (default), \overline{GATE} , or disabled. If not using the \overline{AUX} functions, connect this input to V_{DDIO} .

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

CLR Mode

In $\overline{\text{CLR}}$ mode, the $\overline{\text{AUX}}$ input performs an asynchronous level sensitive CLEAR operation when pulled low. If $\overline{\text{CLR}}$ is configured and asserted, all CODE and DAC data registers are cleared to their default/return values as defined by the configuration settings. Other user-configuration settings are not affected.

Some SPI interface commands are gated by $\overline{\text{CLR}}$ activity during the transfer sequence. If $\overline{\text{CLR}}$ is issued during a command write sequence, any gated commands within the sequence are ignored. Any non-gated commands appearing in the transfer sequence are executed. For the gating condition to be removed, drive $\overline{\text{CLR}}$ high, satisfying the topic of the commands.

GATE Mode

Use of the GATE mode provides a means of momentarily holding the DAC in a user-selectable default/return state, returning the DAC to the last programmed state upon removal. The MAX5703/MAX5704/MAX5705 also feature a software-accessible GATE command. While asserted in GATE mode, the AUX pin does not interfere with RETURN, CODE, or DAC register updates and related load activity.

LDAC Input

The MAX5703/MAX5704/MAX5705 provide a dedicated asynchronous LDAC (active-low) input. The LDAC input performs an asynchronous level sensitive LOAD operation when pulled low. Use of the LDAC input mode provides a means of updating multiple devices together as a group. Users wishing to control the DAC update instance independently of the I/O instruction should hold LDAC high during programming cycles. Once programming is complete, LDAC may be strobed and the new CODE register content is loaded into the DAC latch output. Users wishing to load new DAC data in direct response to I/O CODE register activity should connect LDAC permanently low; in this configuration, the MAX5703/ MAX5704/MAX5705 DAC output updates in response to each completed I/O CODE instruction update edge. A software LOAD command is also provided.

The $\overline{\text{LDAC}}$ operation does not interact with the user interface directly. However, in order to achieve the best possible glitch performance, timing with respect to the interface update edge should follow t_{LDH} specifications when issuing CODE commands.

V_{DDIO} Input

The MAX5703/MAX5704/MAX5705 feature a separate supply pin (V_{DDIO}) for the digital interface (1.8V to 5.5V). Connect V_{DDIO} to the I/O supply of the host processor.

SPI Serial Interface

The MAX5703/MAX5704/MAX5705 3-wire serial interface is compatible with MICROWIRE/SPI/QSPI and DSPs. The interface provides three inputs: SCLK, CS, and DIN. The chip-select input (CS, active-low) frames the data loaded through the serial data input (DIN). Following a CS input high-to-low transition, the data is shifted in synchronously and latched into the input register on each falling edge of the serial clock input (SCLK). Each serial operation word is 24-bits long. The DAC data is left justified as shown in Table 1. The serial input register transfers its contents to the destination registers after loading 24 bits of data on the 24th SCLK falling edge. To initiate a new SPI operation, drive \overline{CS} high and then low to begin the next operation sequence, being sure to meet all relevant timing requirements. During $\overline{\text{CS}}$ high periods, SCLK is ignored, allowing communication to other devices on the same bus. SPI operations consisting of more than 24 SCLK cycles are executed on the 24th SCLK falling edge, using the first three bytes of data available. SPI operations consisting of less than 24 SCLK cycles will not be executed. The content of the SPI operation consists of a command byte followed by a two byte data word.

Figure 1 shows the timing diagram for the complete 3-wire serial interface transmission. The DAC code settings (D) for the MAX5703/MAX5704/MAX5705 are accepted in an offset binary format (see Table 1). Otherwise, the expected data format for each command is listed in Table 2.

SPI User-Command Register Map

This section lists the user-accessible commands and registers for the MAX5703/MAX5704/MAX5705.

<u>Table 2</u> provides detailed information about the SPI Command Registers.

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

CODE Command

The CODE command (B[23:20] = 1000) updates the CODE register content for the DAC. Changes to the CODE register content based on this command will not affect the DAC output directly unless the $\overline{\text{LDAC}}$ input is in a low state. Otherwise, a subsequent hardware or software LOAD operation will be required to move this content to the active DAC latch. This command is gated when $\overline{\text{CLR}}$ is asserted, updates to this register are ignored while the register is being cleared. See Table 1 and Table 2.

LOAD Command

The LOAD command (B[23:20] = 1001) updates the DAC latch register content by uploading the current contents of the CODE register. This command is gated when $\overline{\text{CLR}}$ is asserted, updates to this register are ignored while the register is being cleared. See Table 2.

CODE_LOAD Command

The CODE_LOAD command (B[23:20] = 1010 and 1011) updates the CODE register contents as well as the DAC register content of the DAC. This command is gated when $\overline{\text{CLR}}$ is asserted, updates to these registers are ignored while the register is being cleared. See $\underline{\text{Table 1}}$ and $\underline{\text{Table 2}}$.

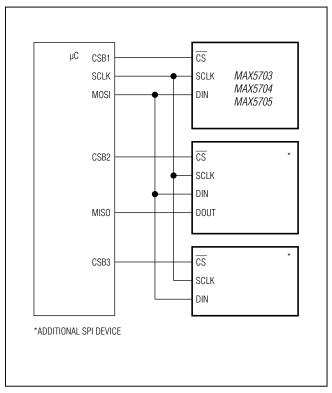


Figure 2. Typical SPI Application Circuit

Table 1. DAC Data Bit Positions

PART	B15	B14	B13	B12	B11	B10	В9	B8	B7	В6	B5	В4	В3	B2	B1	B0
MAX5703	D7	D6	D5	D4	D3	D2	D1	D0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X
MAX5704	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Χ	Χ	Χ	Χ	Χ	X
MAX5705	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Χ	Χ	Χ	X

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

DESCRIPTION		Writes data to the CODE register	Transfers data from the CODE registers to the DAC register	Simultaneously writes data to the CODE register while updating DAC register	Simultaneously writes data to the CODE register while updating DAC register	Updates the RETURN register contents for the DAC
8		×	×	×	×	×
20		×	×	×	×	×
B2		×	×	×	×	×
8		×	×	×	×	×
2		н н	×	3:0]	3:0]	#
B2		EGISTEI \[3:0]	×	ND DAC	ND DA(URN REGISTI DATA[3:0]
98		CODE REGISTER DATA[3:0]	×	CODE AND DAC REGISTER DATA[3:0]	CODE AND DAC REGISTER DATA[3:0]	RETURN REGISTER DATA[3:0]
87		0	×	B. B. C.	O Ä	#
88			×			
8			×			4
B10		E	×	GISTER	GISTER	4TA[11:
<u>F</u>		ODE REGISTE DATA[11:4]	×	ND DAC RE	ND DAC RE	STER D,
B12		CODE REGISTER DATA[11:4]	×	CODE AND DAC REGISTER DATA[11.4]	CODE AND DAC REGISTER DATA[11:4]	Z REGIS
B13		Ü	×	OODE .	OODE .	RETURN REGISTER DATA(11:4)
B14			×			
B15			×			
B16		×	×	×	×	×
B17		×	×	×	×	×
B18		×	×	×	×	×
B19		×	×	×	×	×
B20		0	+	0	+	-
B21		0	0	-	-	-
B22		0	0	0	0	-
B23	NDS	-	-	-	-	0
COMMAND	DAC COMMANDS	CODE	LOAD	CODE_LOAD	CODE_LOAD	RETURN

Table 2. SPI Commands Summary

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

COMIMAND	B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	12	B10	B3	88	B7	98	B5	B3	-	B2 B1	9B	DESCRIPTION	_
CONFIGURATION COMMANDS	NCON	MAND	ွှ						1	1	1	1	1	1	1	1	1	1	1	-	-	-	-		
REF	0	0	-	0	əvinQ oM = 0 niq əvinQ = f	flusted = 0 NO syswiA = 1	Ref N 00 = 01 = 10 = 11 =	Ref Mode 00 = EXT 01 = 2.5V 10 = 2.0V 11 = 4.1V	×	×	×	×	×	×	×	×	×	×	×	× ×		× ×	×	Sets the reference operating mode.	o.
SOFTWARE	0	0	-	-	×	00 00 11 11 Othe	Type: 000 = END 001 = GATE 100 = CLR 101 = RST Other = No Effect	ID TE R ST ST	×	×	×	×	×	×	×	×	×	×	×	× ×		× ×	×	Executes a software operation of the type chosen	are
POWER	0	-	0	0	×	×	×	×	×	×	×	×	×	×	×	×	Power Mode: 00 = DAC 01 = 1kΩ 10 = 100kΩ 11 = HiZ		×	× ×		× ×	×	Sets the Power mode	
CONFIG	0	-	0	-	×	×	×	×	×	×	×	×	×	×	×	×	×	×	AUX 011 = 110 = 111 = Other =	AUX Mode: 011 = GATE 110 = CLEAR 111 = NONE Other = No Effect		× ×	×	Updates the function of the $\overline{\mathrm{AUX}}$ input	tion
DEFAULT	0	-	-	0	×	×	×	×	×	×	×	×	×	×	×	×	Defaul 000 001 = 010 1100 = Other =	Default Values: 000 = POR 001 = ZERO 010 = MID 011 = FULL 100 = RETURN Other = No Effect		× ×		× ×	×	Sets the default value for the DAC	
NO OPERATION COMMANDS	COMI	MANDS	,																						
oly Contraction	0	0	0	0	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	× ×		× ×	×	These commands	S 5
NO Operation	-	-	-	-	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	× ×		× ×	×		5
Reserved Commands: Any commands not specifically listed above are reserved for Maxim internal use only,	mand	s: Any	commi	ands n	ot spec	ifically	listed (above a	are rese	rved fo	r Maxir	n interr	nal use	only.											

Table 2. SPI Commands Summary (continued)

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output **Voltage DACs with Internal Reference and SPI Interface**

REF Command

The REF (B[23:20] = 0010) command updates the global reference setting used for the DAC. Set B[17:16] = 00 to use an external reference for the DAC or set B[17:16] to 01, 10, or 11 to select either the 2.5V, 2.048V, or 4.096V internal reference, respectively.

If RF3 (B19) is set to zero (default) in the REF command, the REF I/O will not be driven by the internal reference circuit, saving current. If RF3 is set to one, the REF I/O will be driven by the internal reference circuit, consuming an additional 25µA (typ) of current when the reference is powered; when the reference is powered down, the REF I/O will be high-impedance.

If RF2 (B18) is set to zero (default) in the REF command, the reference will be powered down any time the DAC is powered down (in STANDBY mode). If RF2 (B18) is set to one, the reference will remain powered even if the DAC is powered down, allowing continued operation of external circuitry. In this mode, the 1µA shutdown state is not available. See Table 3.

SOFTWARE Commands

The SOFTWARE (B[23:20] = 0011) commands provide a means of issuing several flexible software actions. See Table 4.

The SOFTWARE Command Action Mode is selected by B[18:16]:

END (000): Used to end any active gate operation,

returning to normal operation (default).

GATE (001): DAC contents will be gated to their DEFAULT selected values until the gate

condition is removed.

All CODE and DAC contents will be cleared to their DEFAULT selected CLEAR (100):

values.

RESET (101): ΑII CODE, DAC, RETURN, and

configuration registers reset to their power-up defaults (including REF, POWER, and CONFIG settings),

simulating a power cycle reset.

OTHER: No effect.

Table 3. REF (0010) Command Format

B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	В9	В8	В7	В6	В5	B4	В3	B2	B1	В0
0	0	1	0	RF3	RF2	RF1	RF0	X	X	X	X	X	X	X	X	X	X	Х	X	X	Х	X	X
RE	F COI	MMAI	ND	0 = REF Not driven 1 = REF Driven	0 = Off in Standby 1 = On in Standby	Ref M 00 = 01 = 10 = 11 =	EXT 2.5V				Don't	Care							Don't	Care			
DEF	AULT	VAL	UES	0	0	0	0	Χ	Χ	Х	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	X	Χ	Χ	Χ
		СО	MMA	ND B,	YTE					DA	TA HI	GH B	/TE					DA	TA LC)W B	/TE		

Table 4. SOFTWARE (0011) Command Format

B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	В9	B8	В7	B6	B5	B4	В3	B2	B1	B0
0	0	1	1	Х	SW2	SW1	SW0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	SOFT\ COMM			Don't Care	00 00 10 10 0t	Mode: 00: EN 1: GA 00: CL 01: RS ther: N Effect	D TE R T lo				Don't	Care							Don't	Care			
DEF	AULT	VALI	UES	Χ	0	0	0	Χ	Χ	Χ	X	Χ	X	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
		CO	MMA	ND B,	YTE					DA	TA HI	GH B	YTE					DA	TA LC	DW B	/TE		

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

POWER Command

The MAX5703/MAX5704/MAX5705 feature a software-controlled POWER mode command (B[23:20] = 0100).

In power-down, the DAC output is disconnected from the buffer and is grounded with either one of the two selectable internal resistors or set to high impedance. See <u>Table 5</u> and <u>Table 6</u> for the selectable internal resistor values in power-down mode. In power-down

mode, the DAC register retains its value so that the output is restored when the device powers up. The serial interface remains active in power-down mode with all registers accessible.

In power-down mode, the internal reference can be powered down or it can be set to remain powered-on for external use. Also, in power-down mode, parts using the external reference do not load the REF pin. See Table 5.

Table 5. POWER (0100) Command Format

B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	В9	B8	B7	В6	B5	B4	В3	B2	B1	В0
0	1	0	0	Х	Х	Х	X	Х	Х	Х	Х	X	X	X	Х	PD1	PD0	X	Х	X	X	Х	Х
(POV COMN		D		Don'i	t Care)				Don't	Care				100 100	de:			Don't	Care		
DEF	AULT	VAL	.UES	Χ	Χ	Х	Х	Χ	Χ	Х	Х	Х	Χ	Χ	Х	0	0	Χ	Х	Х	Χ	Χ	Х
		CC	DMM/	and e	BYTE					DA	TA HI	GH B	YTE					DA	TA LO	OW BY	TE.		

Table 6. Selectable DAC Output Impedance in Power-Down Mode

PD1 (B7)	PD0 (B6)	OPERATING MODE
0	0	Normal operation
0	1	Power-down with internal $1k\Omega$ pulldown resistor to GND.
1	0	Power-down with internal 100k Ω pulldown resistor to GND.
1	1	Power-down with high-impedance output.

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

CONFIG Command

The CONFIG command (B[23:20] = 0101) updates the function of the \overline{AUX} input enabling its gate, load, or clear (default) operation mode. See Table 7.

AUX Config settings are written by B[5:3]:

GATE (011): AUX functions as a GATE. DAC code is

gated to DEFAULT value input when pin

is low.

CLEAR (110): AUX functions as a CLR input (default).

CODE and DAC content is cleared to

DEFAULT value if pin is low.

NONE (111): \overline{AUX} functions are disabled.

OTHER: AUX function is not altered.

Note: CONFIG should not be programmed with the \overline{AUX} pin asserted (low) or unexpected behavior could result.

DEFAULT Command

DEFAULT (0110): The DEFAULT command selects the default value for the DAC. These default values are used for all future clear and gate operations. The new default setting is determined by bits DF[2:0]. See Table 8.

Available default values are:

POR (000): DAC defaults to power-on reset value

(default).

ZERO (001): DAC defaults to zero scale.

MID (010): DAC defaults to midscale.

FULL (011): DAC defaults to full scale.

RETURN (100): DAC defaults to value specified by the

RETURN register

OTHER: No effect, the default setting remains

unchanged.

Note: The selected default values do not apply to resets initiated by SW_RESET commands or supply cycling, both of which return the DACs to the power-on reset state (zero scale).

Table 7. CONFIG (0101) Command Format

B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	В9	B8	B7	В6	B5	B4	В3	B2	В1	В0
0	1	0	1	X	X	Х	X	Х	X	Х	X	X	X	X	Х	Х	X	AB2	AB1	AB0	X	X	X
CON	FIG C	OMM	IAND		Don't	Care					Don't	Care				Do Ca		011 110 111 Oth	XB Mo = GA = CLE = NC ner = Effect	ATE EAR ONE No	Do	n't Ca	are
DEF	AULT	VAL	JES	X	Χ	X	Х	Х	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	1	1	0	Х	Χ	Χ
		СО	MMAI	ND B	YTE					DA	ΓΑ ΗΙ	GH B	YTE					DA	TA LC)W BY	TE.		

Table 8. DEFAULT (0110) Command Format

					•	•																	
B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	В9	B8	В7	B6	B5	B4	В3	B2	B1	В0
0	1	1	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	DF2	DF1	DF0	Х	Х	Х	Х	Х
	DEF#	AULT MAND			Don't	: Care					Don't	Care				00 00 01 100:	ult Va 00: PC 1: ZE 10: M 1: FU RET ther: I	RO ID ILL URN Vo		Do	on't Ca	are	
DEF	AULT	VAL	JES	Х	Х	Х	Х	Χ	Χ	Χ	Х	Χ	Х	Χ	Х	0	0	0	Χ	Χ	Χ	Χ	Χ
		CO	MMAI	ND B	YTE					DA	TA HI	GH B	YTE					DA	TA LO	DW B	YTE		

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

RETURN Command

The RETURN command (B[23:20] = 0111) updates the RETURN register content for the DAC. If the DEFAULT configuration register is set to RETURN mode, the DAC will be cleared or gated to the RETURN register value in the event of a SW or HW CLEAR or GATE condition. It is not necessary to program this register if the DEFAULT = RETURN mode will not be used. The data format for the RETURN register is identical to that used for CODE and LOAD operations. See Table 1 and Table 2.

Applications Information

Power-On Reset (POR)

When power is applied to V_{DD} , the DAC output is set to zero scale. To optimize DAC linearity, wait until the supplies have settled and the internal setup and calibration sequence completes (200 μ s, typ).

Power Supplies and Bypassing Considerations

Bypass V_{DD} with high-quality ceramic capacitors to a low-impedance ground as close as possible to the device. Minimize lead lengths to reduce lead inductance. Connect GND to the analog ground plane.

Layout Considerations

Digital and AC transient signals on GND can create noise at the output. Connect GND to form the star ground for the DAC system. Refer remote DAC loads to this system ground for the best possible performance. Use proper grounding techniques, such as a multilayer board with a low-inductance ground plane, or star connect all ground return paths back to the MAX5703/MAX5704/MAX5705 GND. Carefully layout the traces between channels to reduce AC cross-coupling. Do not use wirewrapped boards and sockets. Use shielding to maximize noise immunity. Do not run analog and digital signals parallel to one another, especially clock signals. Avoid routing digital lines underneath the MAX5703/MAX5704/MAX5705 package.

Definitions

Integral Nonlinearity (INL)

INL is the deviation of the measured transfer function from a straight line drawn between two codes once offset and gain errors have been nullified.

Differential Nonlinearity (DNL)

DNL is the difference between an actual step height and the ideal value of 1 LSB. If the magnitude of the DNL \leq 1 LSB, the DAC guarantees no missing codes and is monotonic. If the magnitude of the DNL \geq 1 LSB, the DAC output may still be monotonic.

Offset Error

Offset error indicates how well the actual transfer function matches the ideal transfer function. The offset error is calculated from two measurements near zero code and near maximum code.

Gain Error

Gain error is the difference between the ideal and the actual full-scale output voltage on the transfer curve, after nullifying the offset error. This error alters the slope of the transfer function and corresponds to the same percentage error in each step.

Zero-Scale Error

Zero-scale error is the difference between the DAC output voltage when set to code zero and ground. This includes offset and other die level nonidealities.

Full-Scale Error

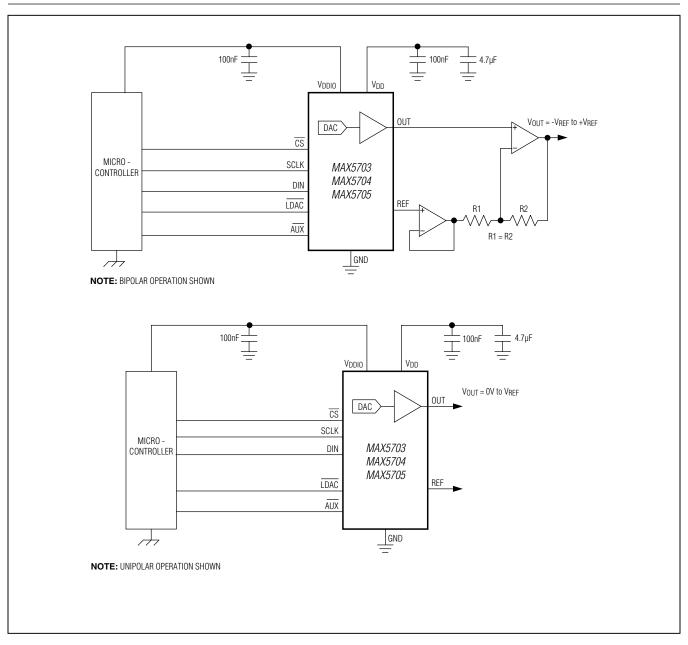
Full-scale error is the difference between the DAC output voltage when set to full scale and the reference voltage. This includes offset, gain error, and other die level nonidealities.

Settling Time

The settling time is the amount of time required from the start of a transition, until the DAC output settles to the new output value within the converter's specified accuracy.

Digital Feedthrough

Digital feedthrough is the amount of noise that appears on the DAC output when the DAC digital control lines are toggled.


Digital-to-Analog Glitch Impulse

A major carry transition occurs at the midscale point where the MSB changes from low to high and all other bits change from high to low, or where the MSB changes from high to low and all other bits change from low to high. The duration of the magnitude of the switching glitch during a major carry transition is referred to as the digital-to-analog glitch impulse.

The digital-to-analog power-up glitch is the duration of the magnitude of the switching glitch that occurs as the device exits power-down mode.

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

Typical Operating Circuits

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

Ordering Information

PART	PIN-PACKAGE	RESOLUTION (BIT)	INTERNAL REFERENCE TEMPCO (ppm/°C)
MAX5703ATB+T	10 TDFN-EP*	8	10 (typ), 25 (max)
MAX5703AUB+	10 μMAX	8	10 (typ), 25 (max)
MAX5704ATB+T	10 TDFN-EP*	10	10 (typ), 25 (max)
MAX5704AUB+	10 μMAX	10	10 (typ), 25 (max)
MAX5705AAUB+	10 μMAX	12	4 (typ), 12 (max)
MAX5705BATB+T	10 TDFN-EP*	12	10 (typ), 25 (max)
MAX5705BAUB+	10 μMAX	12	10 (typ), 25 (max)

Note: All devices are specified over the -40°C to +125°C temperature range.

Chip Information

Package Information

PROCESS: BICMOS

For the latest package outline information and land patterns (footprints), go to www.maximintegated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
10 TDFN-EP	T1032N+1	21-0429	90-0082
10 μMAX	U10+2	<u>21-0061</u>	90-0330

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

^{*}EP = Exposed pad.

Ultra-Small, Single-Channel, 8-/10-/12-Bit Buffered Output Voltage DACs with Internal Reference and SPI Interface

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	11/12	Initial release	_
1	2/13	Released MAX5703/MAX5704. Updated the Electrical Characteristics.	2–8, 25
2	6/13	Released the MAX5703/MAX5704/MAX5705 TDFN packages.	25
3	11/14	Added details to AUX input description	14, 15, 22

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Digital to Analog Converters - DAC category:

Click to view products by Maxim manufacturer:

Other Similar products are found below:

5962-8876601LA PM7545FPCZ AD5311BRMZ-REEL7 AD664AJ AD7534JPZ TCC-103A-RT 057536E 5962-89657023A 702423BB

TCC-202A-RT AD664BE TCC-303A-RT TCC-206A-RT AD5770RBCBZ-RL7 DAC8229FSZ-REEL AD5673RBCPZ-2 MCP48FVB24
20E/ST MCP48FVB28-E/MQ MCP48FEB18-20E/ST MCP48FEB18-E/MQ MCP48FEB24-E/MQ MCP48FEB28T-20E/ST

MCP47FVB04T-E/MQ MCP48FEB28T-E/MQ MCP48FVB28T-20E/ST MCP47FVB28T-20E/ST MCP47FEB24T-E/MQ MCP48FVB18T
20E/ST MCP47FEB14T-E/MQ MCP47FEB08T-E/MQ MCP48FVB08T-20E/ST MCP47FEB04T-E/MQ MCP47FVB04T-20E/ST

AD7524JRZ-REEL LTC1664CGN LTC1664IGN LTC7545ACSW MCP47DA1T-A1E/OT MCP4921-E/MC UC3910D DAC39J84IAAV

DAC8218SPAG DAC8562TDGSR MAX545BCPD+ DAC7641YB/250 DAC7611PB DAC0800LCM TLV5638CDR TLC5615IDR

DAC900TPWRQ1