Quad, 12-Bit, Low-Power, 2-Wire, Serial Voltage-Output DAC

Abstract

General Description The MAX5842 is a quad, 12-bit voltage-output, digital-to-analog converter (DAC) with an $\mathrm{I}^{2} \mathrm{C}^{T M}$-compatible, 2-wire interface that operates at clock rates up to 400 kHz . The device operates from a single 2.7 V to 5.5 V supply and draws only $230 \mu \mathrm{~A}$ at $\mathrm{V} D \mathrm{D}=3.6 \mathrm{~V}$. A powerdown mode decreases current consumption to less than $1 \mu \mathrm{~A}$. The MAX5842 features three software-selectable power-down output impedances: $100 \mathrm{k} \Omega$, $1 \mathrm{k} \Omega$, and high impedance. Other features include internal precision Rail-to-Rail ${ }^{\circledR}$ output buffers and a power-on reset (POR) circuit that powers up the DAC in the 100k Ω power-down mode. The MAX5842 features a double-buffered $\mathrm{I}^{2} \mathrm{C}$-compatible serial interface that allows multiple devices to share a single bus. All logic inputs are CMOS-logic compatible and buffered with Schmitt triggers, allowing direct interfacing to optocoupled and transformer-isolated interfaces. The MAX5842 minimizes digital noise feedthrough by disconnecting the clock (SCL) signal from the rest of the device when an address mismatch is detected. The MAX5842 is specified over the extended temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and is available in a miniature 10-pin $\mu \mathrm{MAX}$ package. Refer to the MAX5841 data sheet for the 10-bit version.

		Applications
Digital Gain and Offset Adjustments		
Programmable Voltage and Current Sources		
Programmable Attenuation		
VCO/Varactor Diode Control		
Low-Cost Instrumentation		
Battery-Powered Equipment		
ATE		
Pin Configuration		
TOP VIEW		
AdD 1		10 OUTD
SCL 2	MAXI/V	9 OUTC
$V_{D D} 3$	MAX5842	8 оитв
GND 4		7 OUTA
SDA 5		6 REF
$\mu \mathrm{MAX}$		

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd. ${ }^{2} C$ is a trademark of Philips Corp.

Features

- Ultra-Low Supply Current $230 \mu \mathrm{~A}$ at $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ $280 \mu \mathrm{~A}$ at $\mathrm{VDD}=5.5 \mathrm{~V}$
- 300nA Low-Power Power-Down Mode
- Single 2.7V to 5.5V Supply Voltage
- Fast 400kHz I²C-Compatible 2-Wire Serial Interface
- Schmitt-Trigger Inputs for Direct Interfacing to Optocouplers
- Rail-to-Rail Output Buffer Amplifiers
- Three Software-Selectable Power-Down Output Impedances $100 \mathrm{k} \Omega, 1 \mathrm{k} \Omega$, and High Impedance
- Read-Back Mode for Bus and Data Checking
- Power-On Reset to Zero
- 10-Pin μ MAX Package

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	ADDRESS
MAX5842LEUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$	011110 X
MAX5842MEUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$	101110 X

Typical Operating Circuit

Quad, 12-Bit, Low-Power, 2-Wire, Serial Voltage-Output DAC

ABSOLUTE MAXIMUM RATINGS

VDD, SCL, SDA to GND \qquad
\qquad
\qquad -0.3 V to $\mathrm{V}_{D D}+0.3 \mathrm{~V}$ Maximum Current into Any Pin. $0.3 \mathrm{to} \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right.$)
10-Pin $\mu \mathrm{MAX}$ (derate 5.6 mW above $+70^{\circ} \mathrm{C}$) \qquad .444 mW

Operating Temperature Range
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature
$+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) .. $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, G N D=0, V_{R E F}=V_{D D}, R L=5 k \Omega, C L=200 p F, T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC ACCURACY (NOTE 2)						
Resolution	N		12			Bits
Integral Nonlinearity	INL	(Note 3)		± 2	± 16	LSB
Differential Nonlinearity	DNL	Guaranteed monotonic (Note 3)			± 1	LSB
Zero-Code Error	ZCE	Code $=000$ hex, $\mathrm{V}_{\text {DD }}=2.7 \mathrm{~V}$		6	40	mV
Zero-Code Error Tempco				2.3		ppm/ ${ }^{\circ} \mathrm{C}$
Gain Error	GE	Code = FFF hex		-0.8	-3	\%FSR
Gain-Error Tempco				0.26		ppm/ ${ }^{\circ} \mathrm{C}$
Power-Supply Rejection Ratio	PSRR	Code = FFF hex, VDD $=4.5 \mathrm{~V}$ to 5.5 V		58.8		dB
DC Crosstalk				30		$\mu \mathrm{V}$

REFERENCE INPUT

Reference Input Voltage Range	V REF		0	$V_{D D}$	V	
Reference Input Impedance			32	45		$\mathrm{k} \Omega$
Reference Current		Power-down mode	± 0.3			± 1

DAC OUTPUT

Output Voltage Range		No load (Note 4)	0	V_{DD}	V
DC Output Impedance		Code $=800$ hex	1.2		Ω
Short-Circuit Current		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=$ full scale (short to GND)	42.2		mA
		$\mathrm{V}_{\text {DD }}=3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=$ full scale (short to GND)	15.1		
Wake-Up Time		$V_{D D}=5 \mathrm{~V}$	8		$\mu \mathrm{s}$
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$	8		
DAC Output Leakage Current		Power-down mode $=$ high impedance, VDD $=5.5 \mathrm{~V}$, Vout_ $=$ VDD or GND	± 0.1	± 1	$\mu \mathrm{A}$
DIGITAL INPUTS (SCL, SDA)					
Input High Voltage	V_{IH}		$\begin{aligned} & 0.7 \times \\ & V_{D D} \end{aligned}$		V
Input Low Voltage	VIL			$\begin{gathered} 0.3 \times \\ V_{D D} \end{gathered}$	V

Quad, 12-Bit, Low-Power, 2-Wire, Serial Voltage-Output DAC

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, G N D=0, V_{R E F}=V_{D D}, R_{L}=5 \mathrm{k} \Omega, C_{L}=200 \mathrm{pF}, T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Hysteresis			$\begin{gathered} 0.05 \times \\ V_{D D} \end{gathered}$			V
Input Leakage Current		Digital inputs $=0$ or V_{DD}		± 0.1	± 1	$\mu \mathrm{A}$
Input Capacitance				6		pF
DIGITAL OUTPUT (SDA)						
Output Logic Low Voltage	VOL	ISINK $=3 \mathrm{~mA}$			0.4	V
Three-State Leakage Current	IL	Digital inputs $=0$ or VDD		± 0.1	± 1	$\mu \mathrm{A}$
Three-State Output Capacitance				6		pF
DYNAMIC PERFORMANCE						
Voltage Output Slew Rate	SR			0.5		V/us
Voltage Output Settling Time		To 1/2LSB code 400 hex to C00 hex or C00 hex to 400 hex (Note 5)		4	12	$\mu \mathrm{s}$
Digital Feedthrough		Code $=000$ hex, digital inputs from 0 to $V_{\text {DD }}$		0.2		nV -s
Digital-to-Analog Glitch Impulse		Major carry transition (code $=7 \mathrm{FF}$ hex to 800 hex and 800 hex to 7FF hex)		12		nV -s
DAC-to-DAC Crosstalk				2.4		nV -s
POWER SUPPLIES						
Supply Voltage Range	VDD		2.7		5.5	V
Supply Current with No Load	IDD	All digital inputs at 0 or $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$		230	395	$\mu \mathrm{A}$
		All digital inputs at 0 or $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		280	420	
Power-Down Supply Current	IDDPD	All digital inputs at 0 or $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		0.3	1	$\mu \mathrm{A}$
TIMING CHARACTERISTICS (FIGURE 1)						
Serial Clock Frequency	fSCL		0		400	kHz
Bus Free Time Between STOP and START Conditions	tBUF		1.3			$\mu \mathrm{s}$
START Condition Hold Time	thD, STA		0.6			$\mu \mathrm{s}$
SCL Pulse Width Low	tLow		1.3			$\mu \mathrm{s}$
SCL Pulse Width High	thigh		0.6			$\mu \mathrm{s}$
Repeated START Setup Time	tSU,STA		0.6			$\mu \mathrm{s}$
Data Hold Time	thD, DAT		0		0.9	$\mu \mathrm{s}$
Data Setup Time	tSU,DAT		100			ns
SDA and SCL Receiving Rise Time	t_{r}	(Note 5)	0		300	ns
SDA and SCL Receiving Fall Time	tf	(Note 5)	0		300	ns
SDA Transmitting Fall Time	t_{f}	(Note 5)	$\begin{gathered} 20+ \\ 0.1 C_{b} \end{gathered}$		250	ns
STOP Condition Setup Time	tsu,sto		0.6			$\mu \mathrm{s}$

Quad, 12-Bit, Low-Power, 2-Wire, Serial Voltage-Output DAC

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, G N D=0, V_{R E F}=V_{D D}, R L=5 k \Omega, C L=200 p F, T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX
Uns Capacitance	Cb_{b}	(Note 5)		400	pF
Maximum Duration of Suppressed Pulse Widths	tsP		0	50	ns

Note 1: All devices are 100% production tested at $T_{A}=+25^{\circ} \mathrm{C}$ and are guaranteed by design for $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$.
Note 2: Static specifications are tested with the output unloaded.
Note 3: Linearity is guaranteed from codes 115 to 3981
Note 4: Offset and gain error limit the FSR.
Note 5: Guaranteed by design. Not production tested.

Typical Operating Characteristics

$\left(V_{D D}=+5 \mathrm{~V}, R_{L}=5 k \Omega.\right)$

Quad, 12-Bit, Low-Power, 2-Wire, Serial Voltage-Output DAC

Typical Operating Characteristics (continued)
$\left(V_{D D}=+5 V, R_{L}=5 k \Omega.\right)$

GAIN ERROR vs. TEMPERATURE

SUPPLY CURRENT vs. INPUT CODE

ZERO-CODE ERROR
vs. TEMPERATURE

DAC OUTPUT VOLTAGE
vs. OUTPUT SOURCE CURRENT (NOTE 6)

SUPPLY CURRENT vs. TEMPERATURE

DAC OUTPUT VOLTAGE
vs. OUTPUT SINK CURRENT (NOTE 6)

SUPPLY CURRENT
vs. SUPPLY VOLTAGE

Quad, 12-Bit, Low-Power, 2-Wire, Serial Voltage-Output DAC

Quad, 12-Bit, Low-Power, 2-Wire, Serial Voltage-Output DAC

Typical Operating Characteristics (continued)
$\left(V_{D D}=+5 V, R L=5 k \Omega.\right)$

Note 6: The ability to drive loads less than $5 k \Omega$ is not implied.

Quad, 12-Bit, Low-Power, 2-Wire, Serial Voltage-Output DAC

PIN	NAME	FUNCTION
1	ADD	Address Select. A logic high sets the address LSB to 1; a logic low sets the address LSB to zero.
2	SCL	Serial Clock Input
3	VDD	Power Supply
4	GND	Ground
5	SDA	Bidirectional Serial Data Interface
6	REF	Reference Input
7	OUTA	DAC A Output
8	OUTB	DAC B Output
9	OUTC	DAC C Output
10	OUTD	DAC D Output

Detailed Description

The MAX5842 is a quad, 12-bit, voltage-output DAC with an $I^{2} \mathrm{C} / \mathrm{SMBus-compatible} 2$-wire interface. The device consists of a serial interface, power-down circuitry, four input and DAC registers, four 12-bit resistor string DACs, four unity-gain output buffers, and output resistor networks. The serial interface decodes the address and control bits, routing the data to the proper input or DAC register. Data can be directly written to the DAC register, immediately updating the device output, or can be written to the input register without changing the DAC output. Both registers retain data as long as the device is powered.

DAC Operation
The MAX5842 uses a segmented resistor string DAC architecture, which saves power in the overall system and guarantees output monotonicity. The MAX5842's input coding is straight binary, with the output voltage given by the following equation:

$$
V_{\text {OUT }}=\frac{V_{\text {REF }} \times(\mathrm{D})}{2^{N}}
$$

where $N=12$ (bits), and $D=$ the decimal value of the input code (0 to 4095).

Output Buffer
The MAX5842 analog outputs are buffered by precision, unity-gain followers that slew $0.5 \mathrm{~V} / \mu \mathrm{s}$. Each buffer output swings rail-to-rail, and is capable of driving $5 \mathrm{k} \Omega$ in parallel with 200 pF . The output settles to $\pm 0.5 \mathrm{LSB}$ within $4 \mu \mathrm{~s}$.

Power-On Reset

The MAX5842 features an internal POR circuit that initializes the device upon power-up. The DAC registers
are set to zero scale and the device is powered down, with the output buffers disabled and the outputs pulled to GND through the $100 \mathrm{k} \Omega$ termination resistor. Following power-up, a wake-up command must be initiated before any conversions are performed.

Power-Down Modes

The MAX5842 has three software-controlled, lowpower, power-down modes. All three modes disable the output buffers and disconnect the DAC resistor strings from REF, reducing supply current draw to $1 \mu \mathrm{~A}$ and the reference current draw to less than $1 \mu \mathrm{~A}$. In power-down mode 0 , the device output is high impedance. In power-down mode 1, the device output is internally pulled to GND by a $1 \mathrm{k} \Omega$ termination resistor. In power-down mode 2, the device output is internally pulled to GND by a $100 \mathrm{k} \Omega$ termination resistor. Table 1 shows the power-down mode command words.
Upon wake-up, the DAC output is restored to its previous value. Data is retained in the input and DAC registers during power-down mode.

Digital Interface The MAX5842 features an $1^{2} \mathrm{C} /$ SMBus-compatible 2 -wire interface consisting of a serial data line (SDA) and a serial clock line (SCL). The MAX5842 is SMBus compatible within the range of $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 V . SDA and SCL facilitate bidirectional communication between the MAX5842 and the master at rates up to 400 kHz . Figure 1 shows the 2 -wire interface timing diagram. The MAX5842 is a transmit/receive slave-only device, relying upon a master to generate a clock signal. The master (typically a microcontroller) initiates data transfer on the bus and generates SCL to permit that transfer.
A master device communicates to the MAX5842 by transmitting the proper address followed by command and/or data words. Each transmit sequence is framed

Quad, 12-Bit, Low-Power, 2-Wire, Serial Voltage-Output DAC

Table 1. Power-Down Command Bits

POWER-DOWN COMMAND BITS		MODE/FUNCTION	
PD1	PDO		
0	0	Power-up device. DAC output restored to previous value.	
0	1	Power-down mode 0. Power down device with output floating.	
1	0	Power-down mode 1. Power down device with output terminated with $1 \mathrm{k} \Omega$ to GND.	
1	1	Power-down mode 2. Power down device with output terminated with $100 \mathrm{k} \Omega$ to GND.	

by a START (S) or REPEATED START (S_{r}) condition and a STOP (P) condition. Each word transmitted over the bus is 8 bits long and is always followed by an acknowledge clock pulse.
The MAX5842 SDA and SCL drivers are open-drain outputs, requiring a pullup resistor to generate a logic high voltage (see Typical Operating Circuit). Series resistors Rs are optional. These series resistors protect the input stages of the MAX5842 from high-voltage spikes on the bus lines, and minimize crosstalk and undershoot of the bus signals.

Bit Transfer

One data bit is transferred during each SCL clock cycle. The data on SDA must remain stable during the high period of the SCL clock pulse. Changes in SDA while SCL is high are control signals (see START and

STOP Conditions). Both SDA and SCL idle high when the $I^{2} \mathrm{C}$ bus is not busy.

START and STOP Conditions
When the serial interface is inactive, SDA and SCL idle high. A master device initiates communication by issuing a START condition. A START condition is a high-tolow transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA, while SCL is high (Figure 2). A START condition from the master signals the beginning of a transmission to the MAX5842. The master terminates transmission by issuing a not acknowledge followed by a STOP condition (see Acknowledge Bit (ACK)). The STOP condition frees the bus. If a repeated START condition (Sr) is generated instead of a STOP condition, the bus remains active. When a STOP condition or incorrect address is detected, the MAX5842 internally disconnects SCL from the serial interface until the next START condition, minimizing digital noise and feedthrough.

Early STOP Conditions

The MAX5842 recognizes a STOP condition at any point during transmission except if a STOP condition occurs in the same high pulse as a START condition (Figure 3). This condition is not a legal ${ }^{2} \mathrm{C}$ format; at least one clock pulse must separate any START and STOP conditions.

Repeated START Conditions

A REPEATED START (S_{r}) condition may indicate a change of data direction on the bus. Such a change occurs when a command word is required to initiate a read operation. Sr may also be used when the bus master is writing to several $I^{2} \mathrm{C}$ devices and does not want to relinquish control of the bus. The MAX5842 serial interface supports continuous write operations with or without an S_{r} condition separating them. Continuous

Figure 1. 2-Wire Serial Interface Timing Diagram

Quad, 12-Bit, Low-Power, 2-Wire, Serial Voltage-Output DAC

Figure 2. START and STOP Conditions

Figure 3. Early STOP Conditions
read operations require S_{r} conditions because of the change in direction of data flow.

Acknowledge Bit (ACK)
The acknowledge bit (ACK) is the ninth bit attached to any 8 -bit data word. ACK is always generated by the receiving device. The MAX5842 generates an ACK when receiving an address or data by pulling SDA low during the ninth clock period. When transmitting data, the MAX5842 waits for the receiving device to generate an ACK. Monitoring ACK allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master should reattempt communication at a later time.

Slave Address
A bus master initiates communication with a slave device by issuing a START condition followed by the 7-bit slave address (Figure 4). When idle, the MAX5842 waits for a START condition followed by its slave
address. The serial interface compares each address value bit by bit, allowing the interface to power down immediately if an incorrect address is detected. The LSB of the address word is the Read/ $\overline{W r i t e}(R / \bar{W})$ bit. $R \bar{W}$ indicates whether the master is writing to or reading from the MAX5842 ($\mathrm{R} / \overline{\mathrm{W}}=0$ selects the write condition, $R / \bar{W}=1$ selects the read condition). After receiving the proper address, the MAX5842 issues an ACK by pulling SDA low for one clock cycle.
The MAX5842 has four different factory/user-programmed addresses (Table 2). Address bits A6 through A1 are preset, while AO is controlled by ADD. Connecting ADD to GND sets AO $=0$. Connecting ADD to $V_{D D}$ sets $A O=1$. This feature allows up to four MAX5842s to share the same bus.

Table 2. MAX5842 ${ }^{2}$ 2C Slave Addresses

PART	VADD	DEVICE ADDRESS (A6...A0)
MAX5842L	GND	0111100
MAX5842L	VDD $^{\text {MA }}$	0111101
MAX5842M	GND	1011100
MAX5842M	VDD	1011101

Write Data Format

In write mode $(R / \bar{W}=0)$, data that follows the address byte controls the MAX5842 (Figure 5). Bits C3-C0 configure the MAX5842 (Table 3). Bits D11-D0 are DAC data. Input and DAC registers update on the falling edge of SCL during the acknowledge bit. Should the write cycle be prematurely aborted, data is not updated and the write cycle must be repeated. Figure 6 shows two example write data sequences.

Extended Command Mode The MAX5842 features an extended command mode that is accessed by setting $\mathrm{C} 3-\mathrm{C} 0=1$ and $\mathrm{D} 11-\mathrm{D} 8=0$. The next data byte writes to the shutdown registers (Figure 7). Setting bits A, B, C, or D to 1 sets that DAC

Figure 4. Slave Address Byte Definition

Figure 5. Command Byte Definition

Quad, 12-Bit, Low-Power, 2-Wire, Serial Voltage-Output DAC

EXAMPLE WRITE DATA SEQUENCE

EXAMPLE WRITE TO POWER-DOWN REGISTER SEQUENCE
Figure 6. Example Write Command Sequences
to the selected power-down mode based on the states of PD0 and PD1 (Table 1). Any combination of the four DACs can be controlled with a single write sequence.

Read Data Format

In read mode $(R / \bar{W}=1)$, the MAX5842 writes the contents of the DAC register to the bus. The direction of data flow reverses following the address acknowledge by the MAX5842. The device transmits the first byte of data, waits for the master to acknowledge, then transmits the second byte. Figure 8 shows an example read data sequence.
${ }^{12} C$ Compatibility
The MAX5842 is compatible with existing $I^{2} \mathrm{C}$ systems. SCL and SDA are high-impedance inputs; SDA has an open drain that pulls the data line low during the ninth clock pulse. The Typical Operating Circuit shows a typical ${ }^{2} \mathrm{C}$ application. The communication protocol supports the standard $I^{2} \mathrm{C} 8$-bit communications. The general call address is ignored. The MAX5842 address is compatible with the 7 -bit ${ }^{2} \mathrm{C}$ addressing protocol only. No 10-bit address formats are supported.

Digital Feedthrough Suppression

When the MAX5842 detects an address mismatch, the serial interface disconnects the SCL signal from the core circuitry. This minimizes digital feedthrough caused by the SCL signal on a static output. The serial interface reconnects the SCL signal once a valid START condition is detected.

Figure 7. Extended Command Byte Definition

Applications Information

Digital Inputs and Interface Logic
The MAX5842 2 -wire digital interface is $1^{2} \mathrm{C} /$ SMBus compatible. The two digital inputs (SCL and SDA) load the digital input serially into the DAC. Schmitt-trigger buffered inputs allow slow-transition interfaces such as optocouplers to interface directly to the device. The digital inputs are compatible with CMOS logic levels.

Power-Supply Bypassing and Ground Management

 Careful PC board layout is important for optimal system performance. Keep analog and digital signals separate to reduce noise injection and digital feedthrough. Use a ground plane to ensure that the ground return from GND to the power-supply ground is short and low impedance. Bypass VDD with a $0.1 \mu \mathrm{~F}$ capacitor to ground as close to the device as possible.Chip Information
TRANSISTOR COUNT: 17,213
PROCESS: BiCMOS

Quad, 12-Bit, Low-Power, 2-Wire, Serial Voltage-Output DAC

Table 3. Command Byte Definitions

SERIAL DATA INPUT								FUNCTION
C3	C2	C1	C0	D11	D10	D9	D8	
0	0	0	0	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	Load DAC A input and DAC registers with new data. Contents of DAC B, C, and D input registers are transferred to the respective DAC registers. All outputs are updated.
0	0	0	1	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	Load DAC B input and DAC registers with new data. Contents of DAC A, C, and D input registers are transferred to the respective DAC registers. All outputs are updated.
0	0	1	0	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	Load DAC C input and DAC registers with new data. Contents of DAC A, B, and D input registers are transferred to the respective DAC registers. All outputs are updated.
0	0	1	1	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	Load DAC D input and DAC registers with new data. Contents of DAC A, B, and C input registers are transferred to the respective DAC registers. All outputs are updated simultaneously.
0	1	0	0	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	Load DAC A input register with new data. DAC outputs remain unchanged.
0	1	0	1	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	Load DAC B input register with new data. DAC outputs remain unchanged.
0	1	1	0	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	Load DAC C input register with new data. DAC outputs remain unchanged.
0	1	1	1	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	Load DAC D input register with new data. DAC outputs remain unchanged.
1	0	0	0	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	Data in all input registers is transferred to respective DAC registers. All DAC outputs are updated simultaneously. New data is loaded into DAC A input register.
1	0	0	1	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	Data in all input registers is transferred to respective DAC registers. All DAC outputs are updated simultaneously. New data is loaded into DAC B input register.
1	0	1	0	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	Data in all input registers is transferred to respective DAC registers. All DAC outputs are updated simultaneously. New data is loaded into DAC C input register.
1	0	1	1	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	Data in all input registers is transferred to respective DAC registers. All DAC outputs are updated simultaneously. New data is loaded into DAC D input register.
1	1	0	0	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	Load all DACs with new data and update all DAC outputs simultaneously. Both input and DAC registers are updated with new data.
1	1	0	1	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	$\begin{aligned} & \text { DAC } \\ & \text { DATA } \end{aligned}$	Load all input registers with new data. DAC outputs remain unchanged.

Quad, 12-Bit, Low-Power, 2-Wire, Serial Voltage-Output DAC

Table 3. Command Byte Definitions (continued)

SERIAL DATA INPUT								FUNCTION
C3	C2	C1	C0	D11	D10	D9	D8	
1	1	1	0	X	X	X	X	Update all DAC outputs simultaneously. Device ignores D11-D8. Do not send the data byte.
1	1	1	1	0	0	0	0	Extended command mode. The next word writes to the powerdown registers (Extended Command Mode).
1	1	1	1	0	0	0	1	Read DAC A data. The device expects an S_{r} condition followed by an address word with $R \bar{W}=1$.
1	1	1	1	0	0	1	0	Read DAC B data. The device expects an S_{r} condition followed by an address word with $\mathrm{R} \overline{\mathrm{W}}=1$.
1	1	1	1	0	1	0	0	Read DAC C data. The device expects an Sr_{r} condition followed by an address word with $\mathrm{R} / \overline{\mathrm{W}}=1$.
1	1	1	1	1	0	0	0	Read DAC D data. The device expects an S_{r} condition followed by an address word with $R / \bar{W}=1$.

Figure 8. Example Read Word Data Sequence

Quad, 12-Bit, Low-Power, 2-Wire, Serial Voltage-Output DAC

Quad, 12-Bit, Low-Power, 2-Wire, Serial Voltage-Output DAC

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital to Analog Converters - DAC category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
5962-8876601LA PM7545FPCZ AD5311BRMZ-REEL7 AD664AJ AD7534JPZ TCC-103A-RT 057536E 5962-89657023A 702423BB TCC-202A-RT AD664BE TCC-303A-RT TCC-206A-RT AD5770RBCBZ-RL7 DAC8229FSZ-REEL AD5673RBCPZ-2 MCP48FVB2420E/ST MCP48FVB28-E/MQ MCP48FEB18-20E/ST MCP48FEB18-E/MQ MCP48FEB24-E/MQ MCP48FEB28T-20E/ST MCP47FVB04T-E/MQ MCP48FEB28T-E/MQ MCP48FVB28T-20E/ST MCP47FVB28T-20E/ST MCP47FEB24T-E/MQ MCP48FVB18T20E/ST MCP47FEB14T-E/MQ MCP47FEB08T-E/MQ MCP48FVB08T-20E/ST MCP47FEB04T-E/MQ MCP47FVB04T-20E/ST AD7524JRZ-REEL LTC1664CGN LTC1664IGN LTC7545ACSW MCP47DA1T-A1E/OT MCP4921-E/MC UC3910D DAC39J84IAAV DAC8218SPAG DAC8562TDGSR MAX545BCPD+ DAC7641YB/250 DAC7611PB DAC0800LCM TLV5638CDR TLC5615IDR DAC900TPWRQ1

