Low-Voltage, Quad, Hot-Swap Controllers/Power Sequencers

Abstract

General Description The MAX5927A/MAX5929A-MAX5929D +1V to +15V quad hot-swap controllers provide complete protection for multisupply systems. They allow the safe insertion and removal of circuit cards into live backplanes. These devices hot swap multiple supplies ranging from +1 V to +15 V , provided one supply is at or above +2.7 V . The input voltage rails (channels) can be configured to sequentially turn-on/off, track each other, or have completely independent operation. The discharged filter capacitors of the circuit card provide low impedance to the live backplane. High inrush currents from the backplane to the circuit card can burn up connectors and components, or momentarily collapse the backplane power supply leading to a system reset. The MAX5927A/MAX5929A-MAX5929D hot-swap controllers prevent such problems by gradually ramping up the output voltage and regulating the current to a preset limit when the board is plugged in, allowing the system to stabilize safely. After the startup cycle is complete, on-chip comparators provide VariableSpeed/BiLevel ${ }^{\text {TM }}$ protection against shortcircuit and overcurrent faults, and provide immunity against system noise and load transients. The load is disconnected in the event of a fault condition. The MAX5929C/ MAX5929D automatically restart after a fault condition, while the MAX5929A/MAX5929B must be unlatched. The MAX5927A fault management mode is selectable. The MAX5927A/MAX5929A-MAX5929D offer a variety of options to reduce external component count and design time. All devices integrate an on-board charge pump to drive the gates of low-cost external n-channel MOSFETs, an adjustable startup timer, and an adjustable current limit. The devices offer integrated features like startup current regulation and current glitch protection to eliminate external timing resistors and capacitors. The MAX5929B/MAX5929D provide an open-drain, active-low status output for each channel, the MAX5929A/ MAX5929C provide an open-drain, active-high status output for each channel, and the MAX5927A status output polarity is selectable. The MAX5927A is available in a 32-pin thin QFN package and the MAX5929A-MAX5929D are available in a 24-pin QSOP package. All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.

Applications

PCI Express ${ }^{\circledR}$ Hot Plug	Basestation Line Cards
Hot Plug-In Daughter Cards	Portable Computer Device
RAID	Bays (Docking Stations)
Power-Supply	Network Switches, Routers,
Sequencing/Tracking	Hubs
VariableSpeed/BiLevel is a trademark of Maxim Integrated	
Products, Inc.	
PCI Express is a registered trademark of PCI-SIG Corp. trademark	

PCI Express is a registered trademark of PCI-SIG Corp. trademark

Features

- Safe Hot Swap for +1V to +15V Power Supplies with Any Input Voltage ($\mathrm{V}_{\text {IN }} \geq 2.7 \mathrm{~V}$)
- Adjustable Circuit-Breaker/Current-Limit Threshold from 25 mV to 100 mV
- Configurable Tracking, Sequencing, or Independent Operation Modes
- VariableSpeed/BiLevel Circuit-Breaker Response
- Internal Charge Pumps Generate n-Channel MOSFET Gate Drives
- Inrush Current Regulated at Startup
- Autoretry or Latched Fault Management
- Programmable Undervoltage Lockout
- Status Outputs Indicate Fault/Safe Condition

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX5927AETJ+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 Thin QFN-EP*
MAX5929AEEG +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 QSOP
MAX5929BEEG +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 QSOP
MAX5929CEEG +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 QSOP
MAX5929DEEG +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 QSOP

${ }^{\star} E P=$ Exposed pad.
+Denotes a lead-free/RoHS-compliant package.
Selector Guide and Typical Operating Circuit appear at end of data sheet.

Pin Configurations

Pin Configurations continued at end of data sheet.

Low-Voltage, Quad, Hot-Swap Controllers/Power Sequencers

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND, unless otherwise noted.)
IN_ ..-0.3V to +16V
GATE_..-0.3V to (IN_ + 6V)
BIAS (Note 1) .. (VIN - 0.3V) to +16V
ON_, STAT_, LIM_ (MAX5927A), TIM, MODE,
LATCH (MAX5927A), POL (MAX5927A)
(Note 1)..-0.3V to (VIN + 0.3V)
SENSE_...-0.3V to (IN_ + 0.3V)

Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Note 1: V_{IN} is the largest of $\mathrm{V}_{\mathrm{IN} 1}, \mathrm{~V}_{\mathrm{IN} 2}, \mathrm{~V}_{\mathrm{IN} 3}$, and $\mathrm{V}_{\mathrm{IN} 4}$.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\text {IN }}=+1 \mathrm{~V}\right.$ to +15 V provided at least one supply is larger than or equal to $+2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{IN} 1}=12.0 \mathrm{~V}, \mathrm{~V}_{\operatorname{IN} 2}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 3}=3.3 \mathrm{~V}, \mathrm{~V}_{\operatorname{IN} 4}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=+3.3 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) $($ Notes 1,2$)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES						
IN_ Input Voltage Range	VIN_	At least one $\mathrm{V}_{1 \mathrm{~N}}$	1.0		15	V
Supply Current	IQ	$\begin{aligned} & l_{\mathrm{IN} 1}+\mathrm{I}_{\mathrm{IN} 2}+\mathrm{I}_{\mathrm{N} 3}+\mathrm{I}_{\mathrm{IN} 4}, \mathrm{~V}_{\mathrm{ON}}=2.7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=+15 \mathrm{~V}, \text { after STAT_ asserts } \end{aligned}$		2.5	5	mA
CURRENT CONTROL						
Slow-Comparator Threshold (VIN_- VSENSE_) (Note 3)	VSC,TH	$\begin{aligned} & \text { LIM_ }_{-} \text {GND, MAX5927A/ } \\ & \text { MAX5929A-MAX5929D (Note 4) } \end{aligned}$	22.5	25	28	mV
		RLIM_ $=10 \mathrm{k} \Omega$ (MAX5927A)	80		125	
		RLIM_from LIM_ to GND (MAX5927A)	$\begin{aligned} & \text { RLIM_ } \times 7.5 \times \\ & 10^{-6}+25 \mathrm{mV} \end{aligned}$			
Slow-Comparator Response Time (Note 4)	tSCD	1 mV overdrive	3			ms
		50 mV overdrive	130			$\mu \mathrm{s}$
Fast-Comparator Threshold (VIN_ - VSENSE_)	VFC,TH		$\begin{gathered} 2 \times \\ V_{\mathrm{SC}, \mathrm{TH}} \\ \hline \end{gathered}$			mV
Fast-Comparator Response Time	tFCD	10mV overdrive, from overload condition	200			ns
SENSE_ Input Bias Current	IB SENSE_	VSENSE_ = VIN_		0.03	1	$\mu \mathrm{A}$

Low-Voltage, Quad, Hot-Swap Controllers/Power Sequencers

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\text {IN }}=+1 \mathrm{~V}\right.$ to +15 V provided at least one supply is larger than or equal to $+2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{IN} 1}=12.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 2}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 3}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 4}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=+3.3 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Notes 1,2$)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MOSFET DRIVER						
Startup Period (Note 5)	tstart	$\mathrm{R}_{\text {TIM }}=100 \mathrm{k} \Omega$	8.0	10.8	13.6	ms
		$\mathrm{R}_{\text {TIM }}=4 \mathrm{k} \Omega$ (minimum value)	0.30	0.4	0.55	
		TIM floating (default)	5	9	14	
Average Gate Current	IGATE	Charging, $\mathrm{V}_{\text {GATE }}=$ GND, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$ (Note 6)	80	100	125	$\mu \mathrm{A}$
		Discharging, during startup		100		
		Discharging, normal turn-off or triggered by the slow comparator after startup, $V_{G A T E}=5 \mathrm{~V}, \mathrm{~V}_{I N_{-}}=10 \mathrm{~V}, \mathrm{~V}_{O N_{-}}=0 \mathrm{~V}$	2	3	7	mA
		Discharging, triggered by a fault after startup, $\mathrm{V}_{\text {GATE }}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=10 \mathrm{~V}$, $\left(\right.$ VIN_ $_{-}-$VSENSE_ $\left.^{\prime}\right)>\mathrm{V}_{\text {FC, TH }}($ Note 7$)$	28	50	120	
Gate-Drive Voltage	V DRIVE	$\mathrm{V}_{\text {GATE }}-\mathrm{V}_{\text {IN_, }}, \mathrm{IGATE}_{-}=1 \mu \mathrm{~A}$	4.9	5.3	5.6	V
ON COMPARATOR						
ON_ Threshold	VON_, TH	Low to high	0.83	0.875	0.90	V
		Hysteresis		25		mV
ON_Propagation Delay		10mV overdrive		10		$\mu \mathrm{s}$
ON_ Voltage Range	VON_	Without false output inversion			VIN	V
ON_ Input Bias Current	IBON_	$\mathrm{V}_{\text {ON_ }}=\mathrm{V}_{\text {IN }}$		0.03	1	$\mu \mathrm{A}$
ON_ Pulse Width Low	tunLatch	To unlatch after a latched fault	100			$\mu \mathrm{s}$
DIGITAL OUTPUTS (STAT_)						
Output Leakage Current		$\mathrm{V}_{\text {STAT }} \leq 15 \mathrm{~V}$			1	$\mu \mathrm{A}$
Output Voltage Low	VoL_	$\begin{aligned} & \text { POL }=\text { unconnected (MAX5927A }), \\ & \text { ISINK }=1 \mathrm{~mA} \end{aligned}$			0.4	V
UNDERVOLTAGE LOCKOUT (UVLO)						
UVLO Threshold	VuvLo	Startup is initiated when this threshold is reached by any $\mathrm{V}_{\mathrm{I}} \mathrm{N}_{-}$and $\mathrm{V}_{\mathrm{ON}}>0.9 \mathrm{~V}$ (Note 8)	2.25		2.65	V
UVLO Hysteresis	VUVLO,HYST			250		mV
UVLO Glitch Filter Reset Time	tD, GF	VIN < VUVLO maximum pulse width to reset			10	$\mu \mathrm{s}$
UVLO to Startup Delay	tD,UVLO	Time input voltage must exceed Vuvio before startup is initiated	20	37.5	60	ms
Input Power-Ready Threshold	VPWRRDY	(Note 9)	0.9	0.95	1.0	V
Input Power-Ready Hysteresis	VPWRHYST			50		mV

Low-Voltage, Quad, Hot-Swap
 Controllers/Power Sequencers

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\text {IN }}=+1 \mathrm{~V}\right.$ to +15 V provided at least one supply is larger than or equal to $+2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{IN} 1}=12.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 2}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 3}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 4}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=+3.3 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Notes 1,2$)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LOGIC AND TIMING						
POL Input Pullup	IPOL	POL = GND (MAX5927A)	2	4	6	$\mu \mathrm{A}$
LATCH Input Pullup	ILATCH	LATCH = GND (MAX5927A)	2	4	6	$\mu \mathrm{A}$
MODE Input Voltage	$\mathrm{V}_{\text {MODE }}$	MODE unconnected (default to sequencing mode)	1.0	1.25	1.5	V
Independent Mode Selection Threshold	VInder, TH	VMODE rising			0.4	V
Tracking Mode Selection Threshold	VTRACK, TH	Vmode rising	2.7			V
MODE Input Impedance	Rmode			200		k Ω
Autoretry Delay	tretry	Delay time to restart after fault shutdown		$\begin{gathered} 64 \times \\ \text { tSTART } \end{gathered}$		ms

Note 2: All devices are 100% tested at $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$. Limits over temperature are guaranteed by design.
Note 3: The slow-comparator threshold is adjustable. VSC,TH $=$ RLIM $\times 7.5 \mu \mathrm{~A}+25 \mathrm{mV}$ (see the Typical Operating Characteristics).
Note 4: The current-limit slow-comparator response time is weighed against the amount of overcurrent-the higher the overcurrent condition, the faster the response time (see the Typical Operating Characteristics).
Note 5: The startup period (tSTART) is the time during which the slow comparator is ignored and the device acts as a current limiter by regulating the sense current with the fast comparator (see the Startup Period section).
Note 6: The current available at GATE is a function of VGATE (see the Typical Operating Characteristics).
Note 7: After a fault triggered by the fast comparator, the gate is discharged by the strong discharge current.
Note 8: Each channel input while the other inputs are at +1 V .
Note 9: Each channel input while any other input is at +3.3 V .

Typical Operating Characteristics

(Typical Operating Circuit, Q1 = Q2 = Q3 = Q4 = Fairchild FDB7090L, VIN1 = 12V, VIN2 = 5.0V, VIN3 = 3.3V, VIN4 = 1.0V, $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$, unless otherwise noted. Channels 1 through 4 are identical in performance. Where characteristics are interchangeable, channels 1 through 4 are referred to as $\mathrm{W}, \mathrm{X}, \mathrm{Y}$, and Z .)

Low-Voltage, Quad, Hot-Swap Controllers/Power Sequencers

Typical Operating Characteristics (continued)
(Typical Operating Circuit, Q1 = Q2 = Q3 = Q4 = Fairchild FDB7090L, $\mathrm{V}_{\mathrm{IN} 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 2}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 3}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 4}=1.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$, unless otherwise noted. Channels 1 through 4 are identical in performance. Where characteristics are interchangeable, channels 1 through 4 are referred to as $\mathrm{W}, \mathrm{X}, \mathrm{Y}$, and Z .)

Low-Voltage, Quad, Hot-Swap Controllers/Power Sequencers

Typical Operating Characteristics (continued)

(Typical Operating Circuit, Q1 = Q2 = Q3 = Q4 = Fairchild FDB7090L, $\mathrm{V}_{\mathrm{IN} 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 2}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 3}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 4}=1.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$, unless otherwise noted. Channels 1 through 4 are identical in performance. Where characteristics are interchangeable, channels 1 through 4 are referred to as $\mathrm{W}, \mathrm{X}, \mathrm{Y}$, and Z .)

TURN-OFF TIME SLOW-COMPARATOR FAULT

STARTUP WAVEFORMS FAST TURN-ON
(CGATE $\left.=0 n F, C_{b o a r d}=1000 \mu F\right)$

AUTORETRY DELAY (TIME FLOATING)

TURN-OFF TIME FAST-COMPARATOR FAULT

STARTUP WAVEFORMS SLOW TURN-ON
($\mathrm{C}_{\text {GATE }}=0.22 \mu \mathrm{~F}, \mathrm{C}_{\text {BOARD }}=1000 \mu \mathrm{~F}$)

TURN-ON IN VOLTAGE-TRACKING MODE

Low-Voltage, Quad, Hot-Swap Controllers/Power Sequencers

Typical Operating Characteristics (continued)

(Typical Operating Circuit, Q1 = Q2 = Q3 = Q4 = Fairchild FDB7090L, $\mathrm{V}_{\mathrm{IN} 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 2}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 3}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 4}=1.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$, unless otherwise noted. Channels 1 through 4 are identical in performance. Where characteristics are interchangeable, channels 1 through 4 are referred to as $\mathrm{W}, \mathrm{X}, \mathrm{Y}$, and Z .)

TURN-OFF IN POWER-SEQUENCING MODE

$4 \mathrm{~ms} / \mathrm{div}$

Low-Voltage, Quad, Hot-Swap Controllers/Power Sequencers

PIN		NAME	FUNCTION
MAX5927A	MAX5929AMAX5929D		
1	4	IN1	Channel 1 Supply Input. Connect to a supply voltage from 1 V to 15 V and to one end of RSENSE1. Bypass with a $0.1 \mu \mathrm{~F}$ capacitor to ground.
2	5	SENSE1	Channel 1 Current-Sense Input. Connect SENSE1 to the drain of an external MOSFET and to one end of RSENSE1.
3	6	GATE1	Channel 1 Gate-Drive Output. Connect to gate of external n-channel MOSFET.
4	-	LIM4	Channel 4 Current-Limit Setting. Connect a resistor from LIM4 to GND to set current-trip level. Connect to GND for the default 25 mV threshold. Do not leave unconnected.
5	7	IN4	Channel 4 Supply Input. Connect to a supply voltage from 1 V to 15 V and to one end of RSENSE4. Bypass with a $0.1 \mu \mathrm{~F}$ capacitor to ground.
6	8	SENSE4	Channel 4 Current-Sense Input. Connect SENSE4 to the drain of an external MOSFET and to one end of RSENSE4.
7	9	GATE4	Channel 4 Gate-Drive Output. Connect to gate of external n-channel MOSFET.
8	10	STAT1	Open-Drain Status Signal for Channel 1. STAT1 asserts when hot swap is successful and tstart has elapsed. STAT1 deasserts if ON1 is low, or if channel 1 is turned off for any fault condition.
9	11	STAT2	Open-Drain Status Signal for Channel 2. STAT2 asserts when hot swap is successful and tstart has elapsed. STAT2 deasserts if ON2 is low, or if channel 2 is turned off for any fault condition.
10	12	TIM	Startup Timer Setting. Connect a resistor from TIM to GND to set the startup period. Leave TIM unconnected for the default startup period of 9 ms . RTIM must be between $4 \mathrm{k} \Omega$ and $500 \mathrm{k} \Omega$.
11, 20	-	N.C.	No Connection. Not internally connected.
12	-	LATCH	Latch/Autoretry Selection Input. Connect LATCH to GND for autoretry mode after a fault. Leave LATCH unconnected for latch mode.
13	13	STAT3	Open-Drain Status Signal for Channel 3. STAT3 asserts when hot swap is successful and tstart has elapsed. STAT3 deasserts if ON3 is low, or if channel 3 is turned off for any fault condition.
14	14	STAT4	Open-Drain Status Signal for Channel 4. STAT4 asserts when hot swap is successful and tstart has elapsed. STAT4 deasserts if ON4 is low, or if channel 4 is turned off for any fault condition.
15	15	BIAS	Supply Reference Output. The highest supply is available at BIAS for filtering. Connect a 1 nF to 10 nF ceramic capacitor from BIAS to GND. No other connections are allowed to this pin.
16	16	GND	Ground
17	17	GATE3	Channel 3 Gate-Drive Output. Connect to gate of external n-channel MOSFET.
18	18	SENSE3	Channel 3 Current-Sense Input. Connect SENSE3 to the drain of an external MOSFET and to one end of RSENSE3.
19	19	IN3	Channel 3 Supply Input. Connect to a supply voltage from 1 V to 15 V and to one end of Rsense3.
21	-	LIM3	Channel 3 Current-Limit Setting. Connect a resistor from LIM3 to GND to set current-trip level. Connect to GND for the default 25 mV threshold. Do not leave unconnected.

Low-Voltage, Quad, Hot-Swap Controllers/Power Sequencers

Pin Description (continued)

PIN		FUNCTION	
MAX5927A	MAX5929A- MAX5929D		
22	20	GATE2	Channel 2 Gate-Drive Output. Connect to gate of external n-channel MOSFET.
23	21	SENSE2	Channel 2 Current-Sense Input. Connect SENSE2 to the drain of an external MOSFET and to one end of RSENSE2.
24	22	IN2	Channel 2 Supply Input. Connect to a supply voltage from 1V to 15V and to one end of RSENSE2.
25	-	LIM2	Channel 2 Current-Limit Setting. Connect a resistor from LIM2 to GND to set the current- trip level. Connect to GND for the default 25mV threshold. Do not leave unconnected.
26	23	ON4	On/Off Channel 4 Control Input. See the Mode section.
27	24	ON3	On/Off Channel 3 Control Input. See the Mode section.
28	1	MODE	Mode Configuration Input. Mode is configured according to Table 1 as soon as one of the IN_ voltages exceeds UVLO and before turning on OUT_. See the Mode section.
29	-	POL	STAT Output Polarity Select. See Table 3 and the Status Output section. 30
31	2	ON2	On/Off Channel 2 Control Input. See the Mode section.
32	-	ON1	On/Off Channel 1 Control Input. See the Mode section.
EP	-	EP	Channel 1 Current-Limit Setting. Connect a resistor from LIM1 to GND to set the current- trip level. Connect to GND for the default 25mV threshold. Do not leave unconnected.
	Exposed Pad. EP is internally connected to GND. Leave EP unconnected or connect to GND.		

Detailed Description

The MAX5927A/MAX5929A-MAX5929D are circuitbreaker ICs for hot-swap applications where a line card is inserted into a live backplane. The MAX5927A/ MAX5929A-MAX5929D operate down to 1V provided one of the inputs is at or $\geq 2.7 \mathrm{~V}$. Normally, when a line card is plugged into a live backplane, the card's discharged filter capacitors provide low impedance that can momentarily cause the main power supply to collapse. MAX5927A/MAX5929A-MAX5929D reside either on the backplane or on the removable card to provide inrush current limiting and short-circuit protection. This is achieved by using external n-channel MOSFETs, external current-sense resistors, and on-chip comparators. The startup period and current-limit threshold of the MAX5927A/MAX5929A-MAX5929D can be adjusted with external resistors. Figure 1 shows the MAX5927A/ MAX5929A-MAX5929D functional diagram.
The MAX5927A offers four programmable current limits, selectable fault management mode, and selectable STAT_ output polarity. The MAX5929A-MAX5929D feature fixed current limits, and a variety of fault management and STAT_ polarity option combinations.

Mode
The MAX5927A/MAX5929A-MAX5929D support three modes of operation: voltage tracking, power sequencing, and independent. Select the appropriate mode according to Table 1.

Voltage-Tracking Mode

Connect MODE high to enter voltage-tracking mode. While in voltage-tracking mode, all channels turn on and off together. To turn all channels on:

- At least one VIN_ must exceed Vuvio (2.45V) for the UVLO to startup delay (37.5 ms).
- All VIN_ must exceed Vpwrrdy (0.95V).
- All Von_ must exceed VON,TH (0.875V).
- No faults may be present on any channel.

Table 1. Operational Mode Selection

MODE	OPERATION
High (connect to BIAS)	Voltage tracking
Unconnected	Power sequencing
GND	Independent

Low-Voltage, Quad, Hot-Swap
 Controllers/Power Sequencers

Figure 1. Functional Diagram

The MAX5927A/MAX5929A-MAX5929D turn off all channels if any of the above conditions are not met. After a fault-latched shutdown, cycle any of the ON_ inputs to unlatch and restart all channels.

Power-Sequencing Mode

Leave MODE floating to enter power-sequencing mode. While in power-sequencing mode, the MAX5927A/MAX5929A-MAX5929D turn on and off
each channel depending on the state of the corresponding VON_. To turn on a given channel:

- At least one VIN_ must exceed VUVLO (2.45V) for the UVLO to startup delay (37.5 ms).
- All VIN_ must exceed VPWRRDY (0.95V).
- The corresponding VON_ must exceed VON,TH (0.875V).
- No faults can be present on any channel.

Low-Voltage, Quad, Hot-Swap Controllers/Power Sequencers

Figure 2. Voltage-Tracking Timing Diagram (Provided tD, UVLO Requirement is Met)

Low-Voltage, Quad, Hot-Swap Controllers/Power Sequencers

Figure 3. Power-Sequencing Timing Diagram (Provided tD, UVLO Requirement is Met)

Low-Voltage, Quad, Hot-Swap Controllers/Power Sequencers

Figure 4. Power-Sequencing Fault Turn-Off

The MAX5927A/MAX5929A-MAX5929D turn off all channels if any of the above conditions are not met. After a fault-latched shutdown, cycle any of the ON_ inputs to unlatch and restart all channels, depending on the corresponding VON_state.

Independent Mode

Connect MODE to GND to enter independent mode. While in independent mode, the MAX5927A/ MAX5929A-MAX5929D provide complete independent control for each channel. To turn on a given channel:

- At least one VIN must exceed VUVLO (2.45V) for the UVLO to startup delay (37.5 ms).
- The corresponding VIN_ must exceed VpWrRDY (0.95V).
- The corresponding VON_ must exceed VON,TH (0.875V).

The MAX5927A/MAX5929A-MAX5929D turn off the corresponding channel if any of the above conditions are not met. During a fault condition on a given channel only, the affected channel is disabled. After a fault-latched shutdown, recycle the corresponding ON_ inputs to unlatch and restart only the corresponding channel.

Startup Period
RTIM sets the duration of the startup period from 0.4 ms $(R T I M=4 k \Omega)$ to $50 \mathrm{~ms}(R T I M=500 \mathrm{k} \Omega)$ (see the Setting the Startup Period, RTim section). The default startup period is fixed at 9 ms when TIM is floating. The startup period begins after the turn-on conditions are met as described in the Mode section, and the device is not latched or in its autoretry delay (see the Latched and Autoretry Fault Management section).
The MAX5927A/MAX5929A-MAX5929D limit the load current if an overcurrent fault occurs during startup instead of completely turning off the external MOSFETs. The slow comparator is disabled during the startup period and the load current can be limited in two ways:

1) Slowly enhancing the MOSFETs by limiting the MOSFET gate-charging current.
2) Limiting the voltage across the external currentsense resistor.
During the startup period, the gate-drive current is limited to $100 \mu \mathrm{~A}$ and decreases with the increase of the gate voltage (see the Typical Operating Characteristics). This allows the controller to slowly enhance the MOSFETs. If the fast comparator detects an overcurrent, the MAX5927A/MAX5929A-MAX5929D regulate the gate voltage to ensure that the voltage across the sense resistor does not exceed VSU,TH. This effectively regulates the inrush current during startup.
Figure 6 shows the startup waveforms. STAT_ is asserted immediately after the startup period if no fault condition is present.

VariableSpeed/BiLevel Fault Protection

VariableSpeed/BiLevel fault protection incorporates comparators with different thresholds and response times to monitor the load current (Figure 7). During the startup period, protection is provided by limiting the load current. Protection is provided in normal operation (after the startup period has expired) by discharging the MOSFET gates with a $3 \mathrm{~mA} / 50 \mathrm{~mA}$ pulldown current in response to a fault condition. After a fault, STAT_ is deasserted, the MAX5929A/MAX5929B stays latched off and the MAX5929C/MAX5929D automatically restart. Use the MAX5927A LATCH input to control whether the STAT_ outputs latch off or autoretry after a fault condition (see the Latched and Autoretry Fault Management section).

Low-Voltage, Quad, Hot-Swap
 Controllers/Power Sequencers

Figure 5. Independent Mode Timing Diagram

Low-Voltage, Quad, Hot-Swap Controllers/Power Sequencers

Figure 6. Independent Mode Startup Waveforms

Slow-Comparator Startup Period

The slow comparator is disabled during the startup period while the external MOSFETs are turning on. Disabling the slow comparator allows the device to ignore the higher-than-normal inrush current charging the board capacitors when a card is first plugged into a live backplane.

Slow-Comparator Normal Operation

After the startup period is complete, the slow comparator is enabled and the device enters normal operation. The comparator threshold voltage (V SC,TH) is adjustable from 25 mV to 100 mV . The slow-comparator response time is 3 ms for a 1 mV overdrive. The response time decreases to 100μ s with a large overdrive. The variable-speed response time allows the MAX5927A/MAX5929A-MAX5929D to ignore lowamplitude momentary glitches, thus increasing system noise immunity. After an extended overcurrent condition, a fault is generated, STAT_ outputs are deasserted, and the MOSFET gates are discharged with a 3 mA pulldown current.

Fast-Comparator Startup Period During the startup period, the fast comparator regulates the gate voltages to ensure that the voltage

Figure 7. VariableSpeed/BiLevel Response
across the sense resistor does not exceed the startup fast-comparator threshold voltage (VSU,TH), VSU,TH is scaled to two times the slow-comparator threshold (VSC,TH).

Fast-Comparator Normal Operation In normal operation, if the load current reaches the fastcomparator threshold, a fault is generated, STAT_ is deasserted, and the MOSFET gates are discharged with a strong 50 mA pulldown current. This happens in the event of a serious current overload or a dead short. The fast-comparator threshold voltage ($\mathrm{VFC}, \mathrm{TH}$) is scaled to two times the slow-comparator threshold (VSC,TH). This comparator has a fast response time of 200ns (Figure 7).

Undervoltage Lockout (UVLO)
The UVLO prevents the MAX5927A/MAX5929AMAX5929D from turning on the external MOSFETs until one input voltage exceeds the UVLO threshold (2.45V) for tD,UVLO. The MAX5927A/MAX5929A-MAX5929D use power from the highest input voltage rail for the charge pumps. This allows for more efficient chargepump operation. The highest $\mathrm{VIN}_{\mathrm{I}}$ is provided as an output at BIAS. The UVLO protects the external MOSFETs from an insufficient gate-drive voltage.

Low-Voltage, Quad, Hot-Swap
 Controllers/Power Sequencers

Table 2. Selecting Fault Management Mode (MAX5927A)

LATCH	FAULT MANAGEMENT
Unconnected	Fault condition latches MOSFETs off
Low	Autoretry mode

Table 3. Selecting STAT_ Polarity (MAX5927A)

POL	STAT_ $^{\prime}$
Low	Asserts low
Unconnected	Asserts high (open drain)

tD,UVLO ensures that the board is fully inserted into the backplane and that the input voltages are stable. MAX5927A/MAX5929A-MAX5929D include a UVLO glitch filter, tD, GF, to reject all input voltage noise and transients. Bringing all input supplies below the UVLO threshold for longer than tD, GF reinitiates tD,UVLO and the startup period, tSTART. See Figure 8 for an example of automatic turn-on function.

Latched and Autoretry Fault Management

The MAX5929A/MAX5929B always latch the external MOSFETs off when an overcurrent fault is detected, and the MAX5929C/MAX5929D are always in autoretry mode. The MAX5927A can be configured to either latch the external MOSFETs off or to autoretry (see Table 2). Toggling ON_ below 0.875 V for at least $100 \mu \mathrm{~s}$ clears the MAX5929A/MAX5929B or MAX5927A (LATCH = unconnected) fault and reinitiates the startup period. Similarly, the MAX5929C/MAX5929D or MAX5927A (LATCH = GND) turn the external MOSFETs off when an overcurrent fault is detected, then automatically restart after the autoretry delay that is internally set to 64 times tstart.

Status Outputs (STAT_)

The status (STAT_) outputs are open-drain outputs that assert when hot swap is successful and tstart has elapsed. STAT_ deasserts if ON_ is low or if the channel is turned off for any fault condition.
The polarity of the STAT_ outputs is selected using POL for the MAX5927A (see Table 3). Tables 4 and 5 contain the MAX5927A/MAX5929A-MAX5929D truth tables.

Figure 8. Automatic Turn-On when Input Voltages are Above their Respective Undervoltage Lockout Threshold (Provided $t D$, UVLO Requirement is Met)

Applications Information

Component Selection

n-Channel MOSFETs
Select the external MOSFETs according to the application's current levels. Table 6 lists recommended components. The MOSFET's on-resistance (RDS(ON)) should be chosen low enough to have a minimum voltage drop at full load to limit the MOSFET power dissipation. High RDS(ON) causes output ripple if there is a pulsating load. Determine the device power rating to accommodate a short-circuit condition on the board at startup and when the device is in autoretry mode (see the MOSFET Thermal Considerations section).
Using these devices in latched mode allows the use of MOSFETs with lower power ratings. A MOSFET typically withstands single-shot pulses with higher dissipation than the specified package rating. Table 7 lists some recommended MOSFET manufacturers.

Low-Voltage, Quad, Hot-Swap Controllers/Power Sequencers

Table 4. Status Output Truth Table: Voltage-Tracking and Power-Sequencing Modes

PART	CHANNEL 1 FAULT	CHANNEL 2 FAULT	CHANNEL 3 FAULT	CHANNEL 4 FAULT	STAT1/ GATE1*	STAT2/ GATE2*	STAT3/ GATE3*	STAT4/ GATE4*
MAX5927A (POL = 1), MAX5929B/ MAX5929D	Yes	X	X	X	L/OFF	L/OFF	L/OFF	L/OFF
	X	Yes	X	X	L/OFF	L/OFF	L/OFF	L/OFF
	X	X	Yes	X	L/OFF	L/OFF	L/OFF	L/OFF
	X	X	X	Yes	L/OFF	L/OFF	L/OFF	L/OFF
	No	No	No	No	H/ON	H/ON	H/ON	H/ON
MAX5927A (POL = 0), MAX5929C/ MAX5929D	Yes	X	X	X	H/OFF	H/OFF	H/OFF	H/OFF
	X	Yes	X	X	H/OFF	H/OFF	H/OFF	H/OFF
	X	X	Yes	X	H/OFF	H/OFF	H/OFF	H/OFF
	X	X	X	Yes	H/OFF	H/OFF	H/OFF	H/OFF
	No	No	No	No	L/ON	L/ON	L/ON	L/ON

*L = Low, H = High.
Table 5. Status Output Truth Table: Independent Mode

CHANNEL 1 FAULT	CHANNEL 2 FAULT	CHANNEL 3 FAULT	CHANNEL 4 FAULT	STAT1/ GATE1	STAT2/ GATE2	STAT3/ GATE3	STAT4/ GAATE4
Yes	Yes	Yes	Yes	Unasserted/OFF	Unasserted/OFF	Unasserted/OFF	Unasserted/OFF
Yes	Yes	Yes	No	Unasserted/OFF	Unasserted/OFF	Unasserted/OFF	Asserted/ON
Yes	Yes	No	Yes	Unasserted/OFF	Unasserted/OFF	Asserted/ON	Unasserted/OFF
Yes	Yes	No	No	Unasserted/OFF	Unasserted/OFF	Asserted/ON	Asserted/ON
Yes	No	Yes	Yes	Unasserted/OFF	Asserted/ON	Unasserted/OFF	Unasserted/OFF
Yes	No	Yes	No	Unasserted/OFF	Asserted/ON	Unasserted/OFF	Asserted/ON
Yes	No	No	Yes	Unasserted/OFF	Asserted/ON	Asserted/ON	Unasserted/OFF
Yes	No	No	No	Unasserted/OFF	Asserted/ON	Asserted/ON	Asserted/ON
No	Yes	Yes	Yes	Asserted/ON	Unasserted/OFF	Unasserted/OFF	Unasserted/OFF
No	Yes	Yes	No	Asserted/ON	Unasserted/OFF	Unasserted/OFF	Asserted/ON
No	Yes	No	Yes	Asserted/ON	Unasserted/OFF	Asserted/ON	Unasserted/OFF
No	Yes	No	No	Asserted/ON	Unasserted/OFF	Asserted/ON	Asserted/ON
No	No	Yes	Yes	Asserted/ON	Asserted/ON	Unasserted/OFF	Unasserted/OFF
No	No	Yes	No	Asserted/ON	Asserted/ON	Unasserted/OFF	Asserted/ON
No	No	No	Yes	Asserted/ON	Asserted/ON	Asserted/ON	Unasserted/OFF
No	No	No	No	Asserted/ON	Asserted/ON	Asserted/ON	Asserted/ON

Note: STAT_ is asserted when hot swap is successful and ton has elapsed. STAT_ is unasserted during a fault.

Low-Voltage, Quad, Hot-Swap Controllers/Power Sequencers

Table 6. Recommended n-Channel MOSFETs

PART NUMBER	MANUFACTURER	DESCRIPTION
IRF7413	International Rectifier	11 m , 8, 8-pin SO, 30V
IRF7401		22 m , 8-pin SO, 20 V
IRL3502S		$6 \mathrm{~m} \Omega$, ${ }^{2} \mathrm{PAK}, 20 \mathrm{~V}$
MMSF3300	On Semiconductor	$20 \mathrm{~m} \Omega$, 8-pin SO, 30V
MMSF5N02H		30 m , 8, 8-pin SO, 20 V
MTB60N05H		$14 \mathrm{~m} \Omega$, D ${ }^{2}$ PAK, 50 V
FDS6670A	Fairchild Semiconductor	$10 \mathrm{~m} \Omega$, 8-pin SO, 30V
ND8426A		$13.5 \mathrm{~m} \Omega, 8$-pin SO, 20V
FDB8030L		$4.5 \mathrm{~m} \Omega$, D ${ }^{2}$ PAK, 30 V

Table 7. Component Manufacturers

COMPONENT	MANUFACTURER	PHONE	WEBSITE
Sense Resistors	Vishay/Dale Resistors	$402-564-3131$	www.vishay.com
	IRC, Inc.	$361-992-7900$	www.irctt.com
MOSFETs	International Rectifier	$310-322-3331$	www.irf.com
	Fairchild Semiconductor	$888-522-5372$	www.fairchildsemi.com
	On Semiconductor	$602-244-6600$	www.onsemi.com

Sense Resistor

The slow-comparator threshold voltage is adjustable from 25 mV to 100 mV . Select a sense resistor that causes a drop equal to the slow-comparator threshold voltage at a current level above the maximum normal operating current. Typically, set the overload current at 1.2 to 1.5 times the full load current. The fast-comparator threshold is two times the slow-comparator threshold in normal operating mode. Choose the sense resistor power rating to be greater than or equal to 2 x (IOVERLOAD) \times VSC,TH. Table 7 lists some recommended sense resistor manufacturers.

Slow-Comparator Threshold, RLIM_ (MAX5927A)
The slow-comparator threshold voltage is adjustable from 25 mV to 100 mV , allowing designers to fine-tune the current-limit threshold for use with standard-value sense resistors. Low slow-comparator thresholds allow for increased efficiency by reducing the power dissipated by the sense resistor. Furthermore, the low 25 mV slowcomparator threshold is beneficial when operating with supply rails down to 1 V because it allows a small percentage of the overall output voltage to be used for current sensing. The VariableSpeed/BiLevel fault protection feature offers inherent system immunity against load transients and noise. This allows the slow-comparator threshold to be set close to the maximum normal
operating level without experiencing nuisance faults. To adjust the slow-comparator threshold, calculate RLIM_ as follows:

$$
\mathrm{R}_{\mathrm{LIM}_{-}}=\frac{\mathrm{V}_{\text {TH }}-25 \mathrm{mV}}{7.5 \mu \mathrm{~A}}
$$

where V_{TH} is the desired slow-comparator threshold voltage. Shorting LIM_ to GND sets $\mathrm{V}_{\text {TH }}$ to 25 mV . Do not leave LIM_ unconnected.

Setting the Startup Period, RTIM

The startup period (tSTART) is adjustable from 0.4 ms to 50 ms . The adjustable startup period feature allows systems to be customized for MOSFET gate capacitance and board capacitance (CBOARD). The startup period is adjusted with a resistor connected from TIM to GND (RTIM). RTIM must be between $4 k \Omega$ and $500 \mathrm{k} \Omega$. The startup period has a default value of 9 ms when TIM is left unconnected. Calculate RTim with the following equation:

$$
\mathrm{R}_{\text {TIM }}=\frac{\mathrm{t}_{\text {START }}}{128 \times 800 \mathrm{pF}}
$$

where tSTART is the desired startup period.

Low-Voltage, Quad, Hot-Swap Controllers/Power Sequencers

Figure 9. Operating with an External Gate Capacitor
Startup Sequence
There are two ways of completing the startup sequence. Case A describes a startup sequence that slowly turns on the MOSFETs by limiting the gate charge. Case B uses the current-limiting feature and turns on the MOSFETs as fast as possible while still preventing a high inrush current. The output voltage ramp-up time (tON) is determined by the longer of the two timings, case A and case B. Set the startup timer (tSTART) to be longer than ton to guarantee enough time for the output voltage to settle.

Case A: Slow Turn-On (Without Current Limit)

There are two ways to turn on the MOSFETs without reaching the fast-comparator current limit:

- If the board capacitance (CBOARD) is small, the inrush current is low.
- If the gate capacitance is high, the MOSFETs turn on slowly.
In both cases, the turn-on time is determined only by the charge required to enhance the MOSFET. The small $100 \mu \mathrm{~A}$ gate-charging current effectively limits the output voltage $\mathrm{dv} / \mathrm{dt}$. Connecting an external capacitor between GATE and GND extends the turnon time. The time required to charge/discharge a MOSFET is as follows:

$$
\mathrm{t}=\frac{\mathrm{C}_{\mathrm{GATE}} \times \Delta \mathrm{V}_{\mathrm{GATE}}+\mathrm{Q}_{\mathrm{GATE}}}{\mathrm{I}_{\mathrm{GATE}}}
$$

where:
CGATE is the external gate to ground capacitance (Figure 9),

Figure 10. Adjustable Undervoltage Lockout
ΔV GATE is the change in gate charge,
QGATE is the MOSFET total gate charge,
IGATE is the gate-charging/discharging current.
In this case, the inrush current depends on the MOSFET gate-to-drain capacitance (Crss) plus any additional capacitance from GATE to GND (CGATE), and on any load current (ILOAD) present during the startup period.

$$
I_{\mathrm{INRUSH}}=\frac{\mathrm{C}_{\text {BOARD }}}{\mathrm{C}_{\text {rSs }}+\mathrm{C}_{\text {GATE }}} \times I_{\text {GATE }}+I_{\text {LOAD }}
$$

Example: Charging and discharging times using the Fairchild FDB7030L MOSFET

If $\mathrm{V}_{\text {IN1 }}=5 \mathrm{~V}$, GATE1 charges up to 10.4 V (VIN1 + VDRIVE), and therefore, $\Delta \mathrm{V}$ GATE $=10.4 \mathrm{~V}$. The manufacturer's data sheet specifies that the FDB7030L has approximately 60 nC of gate charge and $\mathrm{C}_{\text {rss }}=600 \mathrm{pF}$. The MAX5927A/MAX5929A-MAX5929D have a $100 \mu \mathrm{~A}$ gate-charging current and a $3 \mathrm{~mA} / 50 \mathrm{~mA}$ normal//strong discharging current. CBOARD $=6 \mu \mathrm{~F}$ and the load does not draw any current during the startup period. With no gate capacitor, the inrush current, charge, and discharge times are:

$$
\begin{gathered}
I_{\text {INRUSH }}=\frac{6 \mu \mathrm{~F}}{600 \mathrm{pF}+0} \times 100 \mu \mathrm{~A}+0=1 \mathrm{~A} \\
I_{\text {CHARGE }}=\frac{0 \times 10.4 \mathrm{~V}+60 \mathrm{nC}}{100 \mu \mathrm{~A}}=0.6 \mathrm{~ms} \\
\text { tDISCHARGE }=\frac{0 \times 10.4 \mathrm{~V}+60 \mathrm{nC}}{3 \mathrm{~mA}}=0.02 \mathrm{~ms} \\
\text { t DISCHARGE(STRONG })=\frac{0 \times 10.4 \mathrm{~V}+60 \mathrm{nC}}{50 \mathrm{~mA}}=1.2 \mathrm{\mu s}
\end{gathered}
$$

Low-Voltage, Quad, Hot-Swap Controllers/Power Sequencers

MAX5927A/MAX5929A-MAX5929D

Figure 11. Power Sequencing: Channel Z Turns On tDELAY After Channel Y

With a $22 n F$ gate capacitor, the inrush current, charge, and discharge times are:

$$
\begin{gathered}
I_{\text {INRUSH }}=\frac{6 \mu \mathrm{~F}}{600 \mathrm{pF}+22 \mathrm{nF}} \times 100 \mu \mathrm{~A}+0=26.5 \mathrm{~mA} \\
\mathrm{t}_{\mathrm{CHARGE}}=\frac{22 \mathrm{nF} \times 10.4 \mathrm{~V}+60 \mathrm{nC}}{100 \mu \mathrm{~A}}=2.89 \mathrm{~ms} \\
\mathrm{t}_{\mathrm{DISCHARGE}}=\frac{22 \mathrm{nF} \times 10.4 \mathrm{~V}+60 \mathrm{nC}}{3 \mathrm{~mA}}=0.096 \mathrm{~ms} \\
\mathrm{t}_{\mathrm{DISCHARGE}}(\text { STRONG })=\frac{22 \mathrm{nF} \times 10.4 \mathrm{~V}+60 \mathrm{nC}}{50 \mathrm{~mA}}=5.8 \mu \mathrm{~s}
\end{gathered}
$$

Case B: Fast Turn-On (With Current Limit)

In applications where the board capacitance (CBOARD) is high, the inrush current causes a voltage drop across RSENSE that exceeds the startup fast-comparator threshold. The fast comparator regulates the voltage across the sense resistor to V_{FC},TH. This effectively regulates the inrush current during startup. In this case, the current charging CBOARD can be considered constant and the turn-on time is:

$$
\mathrm{t}_{\mathrm{ON}}=\frac{\mathrm{C}_{\mathrm{BOARD}} \times \mathrm{V}_{\mathrm{IN}} \times \mathrm{R}_{\text {SENSE }}}{\mathrm{V}_{\mathrm{FC}, \mathrm{TH}}}
$$

Low-Voltage, Quad, Hot-Swap Controllers/Power Sequencers

The maximum inrush current in this case is:

$$
I_{\text {INRUSH }}=\frac{V_{\text {FC,TH }}}{R_{\text {SENSE }}}
$$

Figure 6 shows the waveforms and timing diagrams for a startup transient with current regulation (see the Typical Operating Characteristics). When operating under this condition, an external gate capacitor is not required.

ON_Comparators The ON_ comparators control the on/off function of the MAX5927A/MAX5929A-MAX5929D. ON_ is also used to reset the fault latch (latch mode). Pull VON_ low for $100 \mu \mathrm{~s}$, tUNLATCH, to reset the shutdown latch. ON_ also programs the UVLO threshold (see Figure 10). A resis-tive-divider between VIN_, VON_, and GND sets the user programmable turn-on voltage. In power-sequencing mode, an RC circuit can be used at ON_ to set the delay timing (see Figure 11).

Using the MAX5927A/

MAX5929A-MAX5929D on the Backplane Using the MAX5927A/MAX5929A-MAX5929D on the backplane allows multiple cards with different input capacitance to be inserted into the same slot even if the card does not have on-board hot-swap protection. The startup period can be triggered if N_{-}is connected to ON_ through a trace on the card (Figure 12).

Input Transients

The voltage at IN1, IN2, IN3, or IN4 must be above VUVLO during inrush and fault conditions. When a short-circuit condition occurs on the board, the fast comparator trips cause the external MOSFET gates to be discharged at 50 mA according to the mode of operation (see the Mode section). The main system power supply must be able to sustain a temporary fault current, without dropping below the UVLO threshold of 2.45 V , until the external MOSFET is completely off. If the main system power supply collapses below UVLO, the MAX5927A/MAX5929A-MAX5929D force the device to restart once the supply has recovered. The MOSFET is turned off in a very short time resulting in a high di/dt. The backplane delivering the power to the external card must have low inductance to minimize voltage transients caused by this high di/dt.

Figure 12. Using the MAX5927A/MAX5929A-MAX5929D on a Backplane

MOSFET Thermal Considerations
During normal operation, the external MOSFETs dissipate little power. The MOSFET RDS(ON) is low when the MOSFET is fully enhanced. The power dissipated in normal operation is $P_{D}=\operatorname{lLOAD}^{2} \times \operatorname{RDS}(\mathrm{ON})$. The most power dissipation occurs during the turn-on and turn-off transients when the MOSFETs are in their linear regions. Take into consideration the worst-case scenario of a continuous short-circuit fault, consider these two cases:

1) The single turn-on with the device latched after a fault: MAX5927A (LATCH = high or unconnected) or MAX5929A/MAX5929B.
2) The continuous autoretry after a fault: MAX5927A (LATCH = low) or MAX5929C/MAX5929D.
MOSFET manufacturers typically include the package thermal resistance from junction to ambient ($R_{\theta J A}$) and thermal resistance from junction to case ($\mathrm{R}_{\theta \mathrm{JC}}$), which determines the startup time and the retry duty cycle ($d=$ tSTART/(tSTART + tRETRY). Calculate the required transient thermal resistance with the following equation:

$$
Z_{\text {日JA }(\operatorname{MAX})} \leq \frac{T_{J M A X}-T_{A}}{V_{I N} \times I_{\text {START }}}
$$

where ISTART $=$ VSU,TH/RSENSE.

Low-Voltage, Quad, Hot-Swap Controllers/Power Sequencers

Layout Considerations

To take full tracking advantage of the switch response time to an output fault condition, it is important to keep all traces as short as possible and to maximize the high-current trace dimensions to reduce the effect of undesirable parasitic inductance. Place the MAX5927A/MAX5929A-MAX5929D close to the card's connector. Use a ground plane to minimize impedance and inductance. Minimize the current-sense resistor trace length ($<10 \mathrm{~mm}$), and ensure accurate current sensing with Kelvin connections (Figure 13).
When the output is short circuited, the voltage drop across the external MOSFET becomes large. Hence, the power dissipation across the switch increases, as does the die temperature. An efficient way to achieve good power dissipation on a surface-mount package is to lay out two copper pads directly under the MOSFET package on both sides of the board. Connect the two pads

Figure 13. Kelvin Connection for the Current-Sense Resistors to the ground plane through vias, and use enlarged copper mounting pads on the topside of the board.

Typical Operating Circuit

Low-Voltage, Quad, Hot-Swap Controllers/Power Sequencers

Selector Guide

PART	CURRENT LIMIT	FAULT MANAGEMENT	STAT_POLARITY
MAX5927AETJ+	Programmable	Selectable	Selectable
MAX5929AEEG +	Fixed	Latched	Asserted high (open drain)
MAX5929BEEG +	Fixed	Latched	Asserted low
MAX5929CEEG +	Fixed	Autoretry	Asserted high (open drain)
MAX5929DEEG +	Fixed	Autoretry	Asserted low

Pin Configurations (continued)

Chip Information
PROCESS: BiCMOS
_Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
24 QSOP	E24-1	$\underline{\mathbf{2 1 - 0 0 5 5}}$
32 TQFN	T3255-4	$\underline{\mathbf{2 1 - 0 1 4 0}}$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Hot Swap Voltage Controllers category:

Click to view products by Maxim manufacturer:

Other Similar products are found below :
LTC4227CUFD-4\#PBF LTC4212IMS ADM1075-2ARUZ-RL7 LM5067MW-1/NOPB ADM1075-1ARUZ-RL7 MAX5969BETB+T
MIC22700YML-TR LTC4223CDHD-1\#PBF MAX40200AUK+T LTC4224IDDB-2\#TRMPBF LT1640LIS8\#PBF LTC4217CDHC-12\#PBF
LT1640ALCS8\#PBF LT4294HDD\#PBF LTC4253CGN\#PBF LTC4211CMS8\#PBF LTC4230CGN\#PBF LTC4224IMS-1\#PBF
LTC4216IMS\#PBF LTC4212IMS\#PBF LTC4260CGN\#PBF LTC4227CGN-2\#PBF LTC4244IGN\#PBF LTC4212CMS\#PBF
LT4250HCN8\#PBF ADM1276-3ACPZ-RL LTC4226IUD-1\#PBF LT1640AHCN8 ADM1075-2ACPZ ADM1075-1ACPZ ADM1073ARUZ ADM1073ARUZ-REEL7 ADM1075-1ARUZ ADM1075-2ARUZ ADM1170-1AUJZ-RL7 ADM1171-2AUJZ-RL7 ADM1172-1AUJZ-RL7 ADM1172-2AUJZ-RL7 ADM1176-1ARMZ-R7 ADM1177-1ARMZ-R7 ADM1177-2ARMZ-R7 ADM1178-1ARMZ-R7 ADM1275-3ARQZ ADM1275-1ARQZ ADM1275-3ARQZ-R7 ADM1276-3ACPZ ADM1278-1BCPZ ADM4210-1AUJZ-RL7 ADM1275-2ARQZ ADM1070ARTZ-REEL7

